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Abstract
In the present thesis we familiarize the reader with the Union-closed sets conjecture.
The conjecture states that any finite union-closed family of sets has an element that
belongs to at least half of the member sets. We examine in detail the conjecture’s
assumptions, known observations, equivalent formulations, selected known partial re-
sults and results regarding small families of sets. We also mention recent breakthroughs
obtaining a constant fraction for the conjecture.

The main result presented in this thesis is that the Union-closed sets conjecture
holds when the size of the biggest set is at most 14, we improve upon the previously
known results for sizes 7,9,10,11,12 by Poonen [20], Lo Faro [11], Marković [18], Bošn-
jak and Marković [3] and Vučković and Živković [28] respectively. This main result was
obtained in a joint project of the author of the thesis and Jana Chrastinová, Adam
Kabela and Jakub Teska. This thesis provides a detailed introduction and explanation
of the methods used as well as a summary of our computer assisted proof.

Our approach is to formulate a restriction of the Union-closed sets conjecture as
an integer linear programming problem. For comupting purposes, we relax the prob-
lem to a linear programming problem. We compensate for the relaxation by splitting
the proof into multiple cases, iteratively proving ever stronger inequalities and adding
them as constraints. We use hypergraph isomorphism for organising the case hierarchy.
The proof is computer-assisted.

Key words
Union-closed sets conjecture, Small families of sets, Linear programming, LP Relax-
ation, LP Duality, Computer assisted proof.



Abstrakt
V předkládané práci je čtenář nejprve seznámen s Franklovou hypotézou. Franklova
hypotéza říká, že všechny konečné systémy množin uzavřené na sjednocení obsahují
prvek, který patří do alespoň poloviny množin v systému. V práci detailně rozebíráme
předpoklady hypotézy, základní poznatky, ekvivalentní formulace, vybrané známé čá-
stečné výsledky a výsledky týkající se malých systémů množin. Zmíněn je též nedávný
průlom v nalezení konstantního dolního odhadu hypotézy.

Hlavní výsledek prezentovaný v této práci je důkaz, že Franklova hypotéza platí
pro systémy množin uzavřených na sjednocení, kde velikost největší množiny v sys-
tému je nejvýše 14. Tento výsledek zlepšuje doposud známé výsledky pro velikosti
7,9,10,11,12 od Poonen [20], Lo Faro [11], Marković [18], Bošnjak and Marković [3] a
Vučković a Živković [28] v tomto pořadí. Důkaz je výsledkem skupinového projektu
autora této práce, Jany Chrastinové, Adama Kabely a Jakuba Tesky. Předkládaná
práce obsahuje detailní představení a vysvětlení použitých metod a také shrnutí celého
počítačem asistovaného důkazu.

V důkazu nejdříve formulujeme restrikci Franklovy hypotézy jako problém celočí-
selného lineárního programování, který z výpočetních důvodů relaxujeme na problém
lineárního programování. Relaxaci kompenzujeme rozdělením důkazu do několika čás-
tí, iterativně dokazujeme čím dál silnější nerovnice, které přidáváme do programu jako
podmínky. K organizaci a řazení částí důkazu využíváme izomorfizmus hypergrafů.

Klíčová slova
Franklova hypotéza o množinových systémech uzavřených na sjednocení, malé systémy
množin, lineární programování, LP relaxace, LP dualita, důkaz pomocí počítače.
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Notation
ℱ, 𝒢, ℋ, … Families of sets

𝐴, 𝐵, 𝐶, … Sets, member sets

𝑎, 𝑏, 𝑐, … Elements of member sets

ℱ𝑐 The family of complements of the member sets of ℱ

2𝐴 Power set of a set 𝐴

𝑘-set A set of size 𝑘

𝑨, 𝑩, … Matrices

𝒂, 𝒃, … Vectors

𝑨𝑇 Transpose of a matrix 𝐴

𝒄𝑇 Transpose of a vector 𝑐

𝐺, … Graphs

(𝐿, ≼), … Lattices

ℝ, ℤ Real and integer domains

ℝ𝑛, ℤ𝑛 Domains of real and integer 𝑛-dimensional vectors

ℝ𝑚×𝑛, ℤ𝑚×𝑛 Domains of real and integer 𝑚 by 𝑛 matrices

Elementary definitions
Family of sets A family of sets is a collection of pairwise distinct sets.

Union-closed A family of sets ℱ is union-closed if for every 𝐴, 𝐵 ∈ ℱ the union 𝐴 ∪ 𝐵 belongs
to ℱ.

Universe Let ℱ be a family of sets. The union of all sets in ℱ is called the universe of ℱ,
denoted by 𝑈(ℱ).

Abundant, rare
element, frequency

Let ℱ be a family of sets. An element 𝑒 ∈ 𝑈(ℱ) is called abundant if it belongs
to at least half of the member sets of ℱ and rare if it belongs to at most half
of the member sets of ℱ. The frequency of 𝑒 is the number of set in ℱ which
contain 𝑒.

Bĳection Let 𝐴, 𝐵 be sets and let 𝑓 : 𝐴 → 𝐵. We say that 𝑓 is a bĳection if  ∀𝑎, 𝑏 ∈ 𝐴 :
𝑓(𝑎) = 𝑓(𝑏) ⇒ 𝑎 = 𝑏  and  ∀𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 : 𝑓(𝑎) = 𝑏 and also ∀𝑎 ∈ 𝐴∃𝑏 ∈ 𝐵 :
𝑓(𝑎) = 𝑏.

Nonoriented graph Let 𝑉  be a finite set and let 𝐸 be a set of 2-subsets of 𝑉 . Then the tuple (𝑉 , 𝐸) =
𝐺 is called a nonoriented graph, or graph for short. Vertices 𝑣1, 𝑣2 ∈ 𝑉  are adja-
cent in 𝐺 if and only if {𝑣1, 𝑣2} ∈ 𝐸

Stable set Let 𝐺 = (𝑉 , 𝐸) be a graph. A subset of the vertex set 𝑆 ⊆ 𝑉  is called stable if
no two vertices in 𝑆 are adjacent in 𝐺.

Bipartite graph Bipartite graph is a graph whose vertex set 𝑉  can be divided into two disjoint
stable sets.

Binary relation A subset 𝜌 of the cartesian product 𝑋 × 𝑋 is called a binary relation on 𝑋.
We say that 𝜌 is reflexive if ∀𝑥 ∈ 𝑋 : (𝑥, 𝑥) ∈ 𝜌, antisymmetric if ∀𝑥, 𝑦 ∈ 𝑋 :
(𝑥, 𝑦) ∈ 𝜌 and (𝑦, 𝑥) ∈ 𝜌 ⇒ 𝑥 = 𝑦 and transitive if ∀𝑥, 𝑦, 𝑧 ∈ 𝑋 : (𝑥, 𝑦), (𝑦, 𝑧) ∈
𝜌 ⇒ (𝑥, 𝑧) ∈ 𝜌.

Lattice Let 𝐿 be a set and ≼ be a reflexive, transitive and antisymmetric binary relation
on 𝐿. We define the greatest lower bound 𝑎 ∧ 𝑏 to be 𝑥 ∈ 𝐿 such that 𝑥 ≼ 𝑎,  𝑥 ≼
𝑏 and also if for some𝑧 it holds 𝑧 ≼ 𝑎,  𝑧 ≼ 𝑎 then 𝑧 ≼ 𝑥. The least upper bound
𝑎 ∨ 𝑏 is 𝑦 ∈ 𝐿 such that 𝑥 ≽ 𝑎,  𝑥 ≽ 𝑏 and if for some 𝑧 ∈ 𝐿 it holds 𝑧 ≽ 𝑎,  𝑧 ≽
𝑎 then 𝑧 ≽ 𝑦. If ∀𝑎, 𝑏 ∈ 𝐿 ∃𝑎 ∧ 𝑏 ∃𝑎 ∨ 𝑏, then (𝐿, ≼) is called a lattice.
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1  Introduction
The aims of this thesis are to familiarize the reader with the Union-closed sets conjecture
and related partial results and also to examine the application of linear programming to
a restriction of the conjecture.

The text is divided into two chapters. The first chapter first briefly introduces the
Union-closed sets conjecture in Section 1.1. Afterwards, we discuss the assumptions of the
conjecture in Section 1.2, examine the conjecture’s equivalent formulations in Section 1.4
and summarize known partial results in Sections 1.5, 1.6 and 1.7. We give a brief expla-
nation of linear programming in Section 1.8.

In Chapter 2 we apply linear programming to a restriction of the Union-closed sets
conjecture where the size of the biggest set is bounded. We prove that the conjecture
holds for families on at most 14 elements. We give a detailed explanation of our proof
architecture in Sections 2.3 and 2.4. Afterwards, we provide an outline of our proof and
discuss corollaries of our results.

1.1  Union-closed sets conjecture

The Union-closed sets conjecture is a famous conjecture in combinatorics. The conjec-
ture is commonly attributed to Frankl [13] and dated to 1979, but Balla, Bollobás and
Eccles [2] mention that the conjecture is even older and was known in the 1970s as a
folklore conjecture. A detailed historical and mathematical overview of the conjecture
can be found in the survey by Bruhn and Schaudt [4] titled The journey of the Union-
closed sets conjecture describing the travel of the conjecture from continent to continent
in the pre-internet era as well as the journey towards understanding the problem through
partial results.

The conjecture concerns families of sets that are closed under taking unions. A family
of sets is a collection of pairwise distinct sets. A family ℱ is union-closed if for every
two member-sets 𝐴, 𝐵 ∈ ℱ their union 𝐴 ∪ 𝐵 also belongs to ℱ. The Union-closed sets
conjecture states the following.

Conjecture 1.1.1 (Union-closed sets conjecture): Any finite union-closed family of sets
ℱ ≠ {∅} has an element that belongs to at least half of the member-sets of ℱ.

Despite its simple formulation, the conjecture remains an open problem in mathe-
matics and even proving partial results can be challenging.

1.2  Assumptions of the Union-closed sets conjecture

In this section, we discuss the assumptions of the Union-closed sets conjecture and provide
examples showing why every assumption is necessary.

We start with the assumption that families are finite. The conjecture does not hold
for infinite union-closed families of sets, as shown, for instance, in [20]. Consider the fam-
ily consisting of sets {𝑛,  𝑛 + 1,  𝑛 + 2,  …} ∀𝑛 ∈ ℕ , depicted in Figure 1. This family has
infinitely many member sets, but each element appears in finitely many member sets.

2



{1,  2,  3,  4,  5, …}
{2,  3,  4,  5, …}

{3,  4,  5, …}
{4,  5, …}

⋱ ⋮
Figure 1: A family with infinitely many member sets where

every element 𝑛 appears in precisely 𝑛 member sets.

The next assumption is union-closure. Figure 2 shows two finite families that are not
union-closed and have no abundant elements.

{1, 2, 3}
{1} {2} {3}

∅

{1, 2, 3, 4}
{1, 2} {2, 3} {3, 4}
{1} {2} {3} {4}

∅
Figure 2: Two examples of not-union-closed families with no abundant elements.

The frequencies of the most common element are 2/5 and 4/9 respectively.

In the case ℱ = {∅} it is immediate that there are no elements in 𝑈(ℱ) and thus there
can not be an abundant element.

A family is defined as a collection of pairwise distinct sets. Figure 3 shows a collection
that contains all the sets of 2{1,2,3} and where singleton sets are duplicated. One can
easily check that all elements belong to less than half of the member sets.

{1, 2, 3}
{1, 2} {2, 3} {1, 3}

{1} {1} {2} {2} {3} {3}
∅

Figure 3: An example of a union-closed collection of sets that is not pairwise-distinct
and where each element belongs to 5 of the 11 member sets.

1.3  Elementary observations

First we note that if Conjecture 1.1.1 is true, then the constant of one half is tight. To
see this, consider a simple family as follows. For any finite set 𝐴, let ℱ be the family
of all subsets of 𝐴. It is easy to see that ℱ is union-closed. Moreover, every element
of 𝐴 appears in exactly half of the member-sets of ℱ since for every subset 𝐵 ∈ ℱ it’s
complement 𝐴 ∖ 𝐵 also belongs to ℱ and the complement 𝐴 ∖ 𝐵 is unique for every 𝐵.

Next simple observation is that a union-closed family always contains it’s universe.
Union closure guarantees that the union of every two sets 𝐴, 𝐵 in ℱ also belongs to ℱ.
So 𝐴 ∪ 𝐵 belongs to ℱ and by union closure 𝐴 ∪ 𝐵 ∪ 𝐶 also belongs to ℱ for 𝐶 ∈ ℱ.
This process continues until we get that ∪𝐴∈ℱ 𝐴, the universe of ℱ, also belongs to ℱ.

The following observation talks about families which contain small member sets. It
was first observed by Renaud and Sarvate [23].
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Observation 1.3.1:  Let ℱ be a finite union-closed family. If  ℱ contains a singleton
member set {𝑎}, then 𝑎 is abundant in ℱ. Similarly, if ℱ contains a member set {𝑎, 𝑏},
then at least one of the elements 𝑎, 𝑏 is abundant in ℱ.

Proof:  Let ℱ be a union-closed family and let {𝑎} ∈ ℱ. Then consider a member set 𝐴 ∈
ℱ, either  𝑎 ∈ 𝐴  or  𝑎 ∉ 𝐴. In the case that  𝑎 ∉ 𝐴  by union closure ℱ contains {𝑎} ∪ 𝐴.
We note that for any distinct 𝐴, 𝐵 ∈ ℱ the sets 𝐴 ∪ {𝑎} and 𝐵 ∪ {𝑎} are distinct as well.
Thus there are at least as many sets containing 𝑎 as there are sets not containing 𝑎 and
therefore 𝑎 belongs to at least half of the member sets of ℱ.

Now let ℱ be a union-closed family and let {𝑎, 𝑏} ∈ ℱ. Denote ℱ𝑎 𝑏 the family of all
member sets of ℱ that contain both 𝑎 and 𝑏. Similarly, denote ℱ𝑎 𝑏 and ℱ𝑎 𝑏 the families
of member sets of ℱ that contain exactly one of 𝑎, 𝑏 and ℱ𝑎 𝑏 the family of member
sets of ℱ containing neither 𝑎 nor 𝑏. We want to show that there must be at least as
many sets in ℱ𝑎 𝑏 as there are in ℱ𝑎 𝑏. Again, consider a member set 𝐴 ∈ ℱ𝑎 𝑏 , by union
closure ℱ must contain {𝑎, 𝑏} ∪ 𝐴 which belongs to ℱ𝑎 𝑏  . Thus |ℱ𝑎 𝑏| ≥ |ℱ𝑎 𝑏| . Now we
may, without loss of generality, assume that |ℱ𝑎 𝑏| ≥ |ℱ𝑎 𝑏| . Then 𝑎 belongs to at least
half of the member sets in ℱ. □

We note that the pattern of Observation 1.3.1 breaks at sets of size 3. This was first
observed by Renaud and Sarvate [23], who constructed a finite union-closed family con-
taining {1, 2, 3} such that no elements of {1, 2, 3} appear in at least half of the member
sets of  ℱ. We include a similar construction by Poonen [20] because the original paper
[23] seems to be difficult to find online. For the ease of understanding the structure of
Poonen’s construction ℱ, we consider the family ℱ𝑐 whose sets are precisely the comple-
ments of member sets of ℱ. The family ℱ𝑐 is depicted in Figure 4. We show that ℱ𝑐

is intersection-closed and that each element of {1, 2, 3} belongs to more than half of the
member sets of ℱ𝑐, which is equivalent to the elements not being abundant in ℱ, as
discussed in Section 1.4.

{1, 2, 3, 4, 5, 6, 7, 8, 9}
{4, 5, 6, 7, 8, 9}

{1, 2, 3}
{1, 2} {2, 3} {1, 3}

{1} {2} {3}

∅

{1, 2, 3, 4}
{1, 2, 3, 5}
{1, 2, 3, 6}
{1, 2, 3, 7}
{1, 2, 3, 8}
{1, 2, 3, 9}

{2, 3, 4}
{2, 3, 5}

{1, 3, 6}
{1, 3, 7}

{1, 2, 8}
{1, 2, 9}

{4} {5} {6} {7} {8} {9}

Figure 4: A family ℱ𝑐 containing {1, 2, 3} such that none of the elements
of {1, 2, 3} appear in at most half of the member sets of ℱ𝑐

Observation 1.3.2:  The family ℱ𝑐 depicted in Figure 4 is intersection-closed and each
element of {1, 2, 3} belongs to more than half of the member sets of ℱ𝑐.
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Proof: We want to show that ℱ𝑐 is intersection-closed and that none of the elements of
{1, 2, 3} are rare. Clearly ℱ𝑐 contains 2{1,2,3} as a sub-family. It is immediate that the
intersection of any two 4-sets or of any two 3-sets always belongs to 2{1,2,3}. The same
also applies the intersection of a 3-set and a 4-set from ℱ𝑐, as the intersection is either a
2-subset of 2{1,2,3}, {1, 2, 3} itself or one of the other 3-sets in ℱ𝑐. Intersecting the only
6-set in ℱ𝑐 with a subset of 2{1,2,3} always yields ∅ and the intersection of the 6-set with
any 4-set or 3-set in ℱ𝑐 is a singleton set all of which belong to ℱ𝑐. The intersection of
the universe with any other set in ℱ𝑐 is the set itself and the intersection of a singleton
set with any other set is either the singleton set itself or the emptyset, all of which are
present in ℱ𝑐. Therefore we conclude that ℱ is intersection-closed. The reader can easily
verify that each element of {1, 2, 3} belongs to 15 out of the 28 member sets and thus
none of them is rare. □

Corollary 1.3.2.1:  The existence of a 3-set 𝐴 in a finite union-closed family ℱ does
not imply that any of the elements of 𝐴 are abundant in ℱ.

Another trivial observation is that the Union-closed sets conjecture holds for union-closed
families ℱ with average member set size greater than or equal to half of the size of it’s
universe 𝑈(ℱ).

Observation 1.3.3:  If the following inequality holds for a union-closed family ℱ, then
ℱ satisfies Conjecture 1.1.1.

1
|ℱ|

⋅ ∑
𝐴∈ℱ

|𝐴| ≥
1
2

|𝑈(ℱ)|

Proof:  Let 𝑚 denote |ℱ| and let 𝑛 denote |𝑈(ℱ)|. Average size of member sets in ℱ is
greater than or equal to 𝑛

2 , so the number of occurrences of all elements of 𝑈(ℱ) in ℱ
is at least 𝑚 ⋅ 𝑛

2 . There are 𝑛 elements in |𝑈(ℱ)| and from the pigeonhole principle we
conclude that at least one element must occur in at least 𝑚

2  member sets. □

1.4  Equivalent formulations of the Union-closed sets con-
jecture

In this section, we discuss three equivalent formulations of the Union-closed sets conjec-
ture. More details can be found in [4]. The union-closure property of families of sets has
a dual intersection-closure property. Considering this, Conjecture 1.1.1 can be naturally
reformulated in terms of these intersection-closed families of sets.

Conjecture 1.4.1: Any finite intersection-closed family of at least two sets has an ele-
ment that belongs to at most half of the member-sets.

Observation 1.4.2: Conjecture 1.4.1 is equivalent to Conjecture 1.1.1.

Proof:  To show the equivalence we first prove that a family is union-closed if and only if
it’s complement is intersection-closed. Let ℱ be a family with universe 𝑈(ℱ), we define
the complement of ℱ as ℱ𝑐 = {𝑈(ℱ) ∖ 𝐴  :  𝐴 ∈ ℱ}. Let 𝐴, 𝐵 be any two sets in ℱ, so
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clearly 𝑈(ℱ) ∖ 𝐴 and 𝑈(ℱ) ∖ 𝐵 are both in ℱ𝑐. Since ℱ is union-closed, (𝐴 ∪ 𝐵) ∈ ℱ
and thus 𝑈(ℱ) ∖ (𝐴 ∪ 𝐵) belongs to ℱ𝑐 And this is exactly the intersection (𝑈(ℱ) ∖
𝐴) ∩ (𝑈(ℱ) ∖ 𝐵).

Next, we show that if ℱ has an abundant element, then ℱ𝑐 has a rare element.
Suppose that ℱ has an abundant element 𝑎, which belongs to at least half of the member
sets of ℱ. For every 𝐴 ∈ ℱ it holds that 𝑎 ∈ 𝐴 ⟺ 𝑎 ∉ 𝐴𝑐, so 𝑎 belongs to at most half
of the sets in ℱ𝑐 and is rare in ℱ𝑐. □

An example of union-closed family and it’s intersection-closed complementary family is
shown in Figure 5.

{1, 2, 3, 4}
{1, 2, 3}, {2, 3, 4}, {1, 2, 4}

{1, 2}, {1, 3}, {2, 3}
{1}, {2}

∅

{1, 2, 3, 4}
{1, 3, 4}, {2, 3, 4}

{1, 4}, {2, 4}, {3, 4}
{1}, {3} {4}

∅
Figure 5: Example of union-closed family and it's intersection-closed complementary family.

Another equivalent formulation of Conjecture 1.1.1 is in terms of finite lattices. Using
lattices to formulate a conjecture about union-closed families of sets is quite natural, since
every union or intersection closed family forms a lattice [4]. We say an element 𝑥 ∈ 𝐿 is
join-irreducible if  ∀ 𝑎, 𝑏 ∈ 𝐿  :  𝑥 = 𝑎 ∨ 𝑏  implies  𝑥 = 𝑎  ∨  𝑥 = 𝑏.

Conjecture 1.4.3: Let (𝐿, ≼) be a finite lattice with at least two elements. Then there is
a join-irreducible element 𝑎 ∈ 𝐿 such that at most half of the elements of 𝐿 are greater
than or equal to 𝑎.

To show the equivalence between this formulation and the Union-closed sets conjecture,
it is sufficient to show that the lattice formulation is equivalent to Conjecture 1.4.1 as
done in [4].

Theorem 1.4.4:  The lattice formulation 1.4.3 is equivalent to Conjecture 1.1.1.

The Union-closed sets conjecture can also be formulated in terms of maximal stable sets
of bipartite graphs. A stable set of a graph 𝐺 is a subset of 𝑉 (𝐺) where no two vertices
are adjacent in 𝐺. A stable set is called maximal if no other vertex in 𝐺 can be added
to it.

Conjecture 1.4.5: Let 𝐺 be a bipartite graph with at least one edge. Then each bipartition
class of 𝐺 contains a vertex that belongs to at most half of the maximal stable sets of 𝐺.

This formulation of the Union-closed sets conjecture was first stated by Bruhn, Charbit,
Schaudt and Telle [5], who proved it’s equivalence to Conjecture 1.4.1.

Theorem 1.4.6:  The graph formulation 1.4.5 is equivalent to Conjecture 1.1.1.

The lattice and graph formulations resulted in a number of partial results of the Union-
closed sets conjecture. For the lattice formulation the following result is known. Recall
that a lattice (𝐿, ≼) is lower semimodular if the implication 𝑏 ≺ 𝑎 ∨ 𝑏 ⟹ 𝑎 ∧ 𝑏 ≺ 𝑎 holds
for all 𝑎, 𝑏 ∈ 𝐿.

6



Theorem 1.4.7 (Reinhold [22]): Lower semimodular lattices satisfy Conjecture 1.4.3.

For the graph formulation the following two results were shown by Bruhn, Charbit,
Schaudt, and Telle [5]. Recall that a graph is chordal if every cycle of length at least six
has a chord, an edge connecting two vertices in the cycle that are distance greater than
one apart in the cycle. Also recall that a graph is subcubic if all it’s vertices have degrees
less than or equal to three.

Theorem 1.4.8: Chordal bipartite graphs satisfy Conjecture 1.4.5.

Theorem 1.4.9: Every subcubic bipartite graph satisfies Conjecture 1.4.5.

1.5  Constant lower bound breakthrough

In 2022, Gilmer [14] made a breakthrough by proving a constant lower bound for the
Union-closed sets conjecture.

Theorem 1.5.1: Any finite union-closed family of sets ℱ ≠ {∅} has an element that
belongs to at least 1% of the member sets of ℱ.

In his work, Gilmer claimed, that his results could be improved to 3−
√

5
2 ≈ 38%. Quickly

after that Alweiss, Huang and Selke [1], Chase and Lovett [8], Sawin [25] and Pebody [19]
independently proved it, greatly increasing the lower bound.

Theorem 1.5.2: Any finite union-closed family of sets ℱ ≠ {∅} has an element that
belongs to at least 3−

√
5

2 ≈ 38% of the member sets of ℱ.

Later Cambie [6] showed an upper bound for the approach of Sawin [25]. This bound is
smaller than one would hope for, approximately 0.038% greater than 3−

√
5

2 , which is still
far from Conjecture 1.1.1.

Theorem 1.5.3:  Any finite union-closed family of sets ℱ ≠ {∅} has an element that
belongs to at least 3−

√
5

2 + 0.037952211% of the member sets of ℱ.

Chase and Lovett [8] extended Theorem 1.5.2 to a generalization of Conjecture 1.1.1 using
approximate union-closed families. For  0 ≤ 𝑐 ≤ 1  a 𝑐-approximate union-closed family ℱ
is a family if for at least a 𝑐-fraction of the pairs 𝐴, 𝐵 ∈ ℱ their union 𝐴 ∪ 𝐵 belongs
to ℱ.

Theorem 1.5.4:  Let ℱ be an (1 − 𝜀)-approximate union-closed set system, where 𝜀 <
1
2 , then there is an element which belongs to a 3−

√
5

2 − 𝛿 fraction of the sets in ℱ, where
𝛿 = 2𝜀(1 + log(1

𝜀)
log(|ℱ|)).

In their paper Chase and Lovett provide an example of an approximate union-closed
family where the bound of 3−

√
5

2  is optimal, see Example 1.4. in [8].

Before Gilmer’s result, the best known lower bound on the frequency of the most
common element was a simple observation by Knill [16].
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Theorem 1.5.5:  Any union-closed family  ℱ on m member-sets has an element belonging
to least 𝑚−1

log2(𝑚) of the member sets.

For the sake of completeness, we include Knill’s short proof, here explained with more
details.

Proof:  Choose a subset of the universe 𝑆 ⊆ 𝑈(ℱ) minimal such that every non-empty
member set of ℱ intersects 𝑆. We show that for every 𝑥 ∈ 𝑆 there is 𝐴 ∈ ℱ such that 𝐴 ∩
𝑆 = {𝑥}. Otherwise 𝑆 ∖ 𝑥 would have non-empty intersection with every 𝐴 ∈ ℱ, which
is a contradiction with the minimality of 𝑆. We extend this observation to any subset
of 𝑆 as follows. Consider the case for a 2-subset of S. We want to show that ∀{𝑥, 𝑦} ⊆
𝑆 there exists 𝐴 ∈ ℱ such that 𝐴 ∩ 𝑆 = {𝑥, 𝑦}. We know that there is 𝐵 ∈ ℱ such that
𝐵 ∩ 𝑆 = {𝑥} and also there exists 𝐶 ∈ ℱ such that 𝐶 ∩ 𝑆 = {𝑦}. Since ℱ is union-closed,
we have (𝐵 ∪ 𝐶) ∈ ℱ and (𝐵 ∪ 𝐶) ∩ 𝑆 = {𝑥, 𝑦}. By a similar argument, each subset of 𝑆
is an intersection 𝑆 ∩ 𝐴 for some 𝐴 ∈ ℱ. From this we conclude that there must be at
least as many member sets in ℱ as there are subsets of 𝑆, 𝑚 ≥ 2|𝑆| and so log2(𝑚) ≥ |𝑆|.
Clearly, there are at least 𝑚 − 1 non-empty member-set of ℱ. We use that every non-
empty member-set of ℱ intersects 𝑆 and we consider an element 𝑒 of 𝑆 most frequently
appearing in there intersections, by the pidgeon-hole principle 𝑒 appears in at least 𝑚−1

|𝑆|
of these intersections. Thus, 𝑒 belongs to at least 𝑚−1

log2(𝑚)  member sets of ℱ. □

This result was later improved by Wójcik [29] to 2.4𝑚
log2(𝑚)  for large 𝑚.

1.6  Frankl-complete families

The Union-closed sets conjecture can be attacked from many direction. Already in Sec-
tion 1.3 we show that any union-closed family ℱ containing a set of size 1 or 2 has an
element that belongs to at least half of the member sets. This section talks about an
extension of this idea, Frankl-complete families, which are small families for which any
finite union-closed super-family satisfies Conjecture 1.1.1.

Definition 1.6.1 (Frankl-complete family):  A union-closed family of sets ℱ𝑐 is Frankl-
complete (FC) if for any finite union-closed family ℱ ⊇ ℱ𝑐 an element of 𝑈(ℱ𝑐) appears
in at least half of the member sets of ℱ.

Poonen gave necessary and sufficient conditions for a union-closed family to be Frankl-
complete, see Theorem 1 in [20]. The author also proved that three 3-subsets of a 4-set
is a Frankl-complete family.

Theorem 1.6.2:  The Union-closed sets conjecture holds for union-closed families con-
taining three 3-subsets of a 4-set.

Vaughan [27] extended Poonen’s results and proved, among other results, that all five 4-
subsets of a 5-set, or any ten 4-subsets of a 6-set generate an FC-family.

Theorem 1.6.3:  The Union-closed sets conjecture holds for union-closed families ℱ
satisfying one of the following.

• ℱ contains all five 4-subsets of a 5-set
• ℱ contains ten 4-subsets of a 6-set
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In 2007 Morris [21] shows a complete characterization of all Frankl-complete families on
5 elements. Additionally, he shows more sub-families that generate an FC-family. In the
following theorem we mention three such sub-families, refer to [21] for more.

Theorem 1.6.4:  The Union-closed sets conjecture holds for every finite union-closed
family ℱ satisfying at least one of the following.

• ℱ contains at least three 3-subsets of a 5-set.
• ℱ contains at least four 3-subsets of a 6-set.
• ℱ contains at least eight 4-subsets of a 6-set.

Recently a full classification of all Frankl-complete families on at most 6 elements was
given by Marić, Vučković and Živković [17].

1.7  Small families

A different direction to attack the Union-closed sets conjecture is to consider a restriction
of the conjecture, one where the size of the biggest set is bounded by a given constant.

Conjecture 1.7.1:  Any finite union-closed family of sets ℱ ≠ {∅} on at most 𝑛 elements
has an element that belongs to at least half of the member sets of  ℱ for a given bound 𝑛.

To prove Conjecture 1.7.1 even for small 𝑛 is a difficult task. We are able to check all
families with brute-force only for the first few 𝑛. Indeed, as the power set of the universe
of size 𝑛 has 2𝑛 elements, then the number of all possible families on 𝑛 elements is 22𝑛 .
This sequence grows incredibly fast with 𝑛. Even for 𝑛 = 10 the number of families on 10
elements is approximately 1.8 ⋅ 10308, which is simply too much to iterate over.

Starting with Poonen, there have been many new ideas to push the bound in
Conjecture 1.7.1 ever higher. In 1992, Poonen [20] proved that the Union-closed sets con-
jecture holds when the size of the biggest set in ℱ is at most 7. Lo Faro [11] improved
this bound to 9, followed by Marković [18], Bošnjak and Marković [3] and Vučković and
Živković [28] who improved the bound to 10, 11 and 12 respectively.

Theorem 1.7.2: The Union-closed sets conjecture holds for all families on at most 12
elements.

The results of Vučković and Živković are the best known bound to date. In Chapter 2 we
present our approach and improve the bound to 14.

A different result is the following theorem by Lo Faro [12] which provides a bound
on the number of member sets based on the size of the biggest set.

Theorem 1.7.3: Under the assumption that the union-closed sets conjecture fails, let 𝑚
denote the minimum cardinality of |𝑈(ℱ)| taken over all counterexamples ℱ to the union-
closed sets conjecture. Then any counterexample has at least 4𝑚 − 1 member-sets.

Combining Theorem 1.7.3 with Theorem 1.7.2 we get that the Union-closed sets conjec-
ture holds for all families containing at most 50 member sets.

Corollary 1.7.3.1: The Union-closed sets conjecture holds for all families with at most
50 member sets.
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1.8  Linear programming

In this section we recall the concept of linear programming and briefly demonstrate it’s
applications and geometric interpretation. For a detailed introduction to the topic we
refer the reader, for instance, to the works of Chvátal [9] and Cook et al. [10].

Linear programming (LP) is a classical problem in mathematical optimization. The
applications of linear programming range from solving practical problems like supply
chain management, production planning and portfolio optimization to solving problems
in numerous areas of theoretical mathematics.

The definition on linear programming is as follows.

Definition 1.8.1 (Linear programming):  Let  𝒙 be a vector of n real variables, 𝑨 ∈
ℝ𝑚×𝑛, 𝒃 ∈ ℝ𝑚 and 𝒄 ∈ ℝ𝑛. Minimizing the function 𝒄𝑇 𝒙 subject to constraints 𝑨𝒙 ≥ 𝒃
written as

min
 𝒙∈ℝ𝑛

𝒄𝑇 𝒙

𝑨𝒙 ≥ 𝒃

is called a linear programming problem.

The function 𝒄𝑇 𝒙 is called the objective function. A vector 𝒙 satisfying the constraints
𝑨𝒙 ≥ 𝒃 is called a feasible solution. A feasible solution which minimizes the objective
function is called an optimal solution. Note that the objective function 𝒄𝑇 𝒙 is another
way of writing 𝑐1𝑥1 + 𝑐2𝑥2 + … + 𝑐𝑛𝑥𝑛 which is a linear combination of elements of 𝒙.
An example objective function is plotted in Figure 6. Similarly, constraints 𝑨𝒙 ≥ 𝒃 can
be rewritten as a system of linear inequalities as follows.

𝑎1,1𝑥1 + 𝑎1,2𝑥2 + … + 𝑎1,𝑛𝑥𝑛 ≥ 𝑏1

𝑎2,1𝑥1 + 𝑎2,2𝑥2 + … + 𝑎2,𝑛𝑥𝑛 ≥ 𝑏2

⋮
𝑎𝑚,1𝑥1 + 𝑎𝑚,2𝑥2 + … + 𝑎𝑚,𝑛𝑥𝑛 ≥ 𝑏𝑚

(1)

Each of these constraints defines a half-space. The intersection of all such half-spaces is a
convex polytope. Each point of the polytope corresponds to a feasible solution and vice
versa. In this way the polytope encodes all possible solutions of the problem and is called
the feasible region.

One of the standard methods for solving linear programming problems is the simplex
algorithm. It is established that if an LP problem has an optimal solution, then at least
one optimal solution is a vertex of the feasible region. This is a consequence of the linearity
of the objective function and of each constraint. The simplex algorithm starts in an initial
vertex. There are multiple algorithms for choosing the initial vertex. In each iteration the
algorithm considers adjacent vertices of the current vertex on the feasible region. It then
compares the values of the objective function at these vertices. If the objective function
at the current vertex is smaller than in all adjacent vertices, then the current vertex is an
optimal solution. Otherwise the algorithm moves into the adjacent vertex with the lowest
value of the objective function and continues to the next iteration.

We further explain linear programming on a simple example.
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Example 1.8.2:  Suppose that we have a vector of two variables 𝒙 = [𝑥1 𝑥2]𝑇 , a vector
𝒄 = [1 1]𝑇  and want to minimize the objective function  𝒄𝑇 𝒙 = 𝑥1 + 𝑥2 subject to con-
straints 𝑨𝒙 ≥ 𝒃 where

𝑨 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 2

1
−1
−3
−1
0.1

−1
1.4

2
1

−1
−1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

,     𝒃 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −1

3.5
−1

−15
−12
−6.5⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

The feasible region and the objective function are shown in Figure 6. Constraints 𝑨𝒙 ≥
𝒃 can be written as follows.

2𝑥1 − 1𝑥2 ≥ −1
1𝑥1 + 1.4𝑥2 ≥ 3.5
−1𝑥1 + 2𝑥2 ≥ −1
−3𝑥1 + 1𝑥2 ≥ −15
−1𝑥1 − 1𝑥2 ≥ −12
0.1𝑥1 − 1𝑥2 ≥ −6.5

To solve this problem we use the simplex algorithm. We choose the vertex 𝒙0 = [6.75 5.25]𝑇

as a starting point. Iterations of the simplex algorithm are shown in Table 1 and in
Figure 7.

current vertex 𝒙𝑖 𝒄𝑇 𝒙𝑖 adjacent vertices 𝒙𝑎
𝑖 , 𝒙𝑏

𝑖 𝒄𝑇 𝒙𝑎
𝑖 𝒄𝑇 𝒙𝑏

𝑖

𝒙0 = [6.75 5.25]𝑇 12 𝒙𝑎
0 = [5.8 2.4]𝑇  , 𝒙𝑏

0 = [5 7]𝑇 8.2 12

𝒙1 = [5.8 2.4]𝑇 8.2 𝒙𝑎
1 = [2.47 0.74]𝑇 , 𝒙𝑏

1 = [6.75 5.25]𝑇 3.21 12

𝒙2 = [2.47 0.74]𝑇 3.21 𝒙𝑎
2 = [0.55 2.1]𝑇 , 𝒙𝑏

2 = [5.8 2.4]𝑇 2.62 8.2

𝒙3 = [0.55 2.1]𝑇 2.62 𝒙𝑎
3 = [2.47 0.74]𝑇 , 𝒙𝑏

3 = [2.75 6.5]𝑇 3.21 9.25

Table 1: Iterations of the simplex algorithm

Solving linear programming problems with the simplex algorithm is generally fast and
very efficient for practical applications, but there are instances in which the algorithm
takes an exponential number iterations. There are polynomial algorithms for solving LP
problems, for instance the ellipsoid algorithm. For practical applications the simplex al-
gorithm is generally preferred.
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𝑥1

𝑥2

min 
𝒄𝑇

𝒙

𝒄𝑇 𝒙

𝑥1

𝑥2

Figure 6: Geometric interpretation of example 1.8.2. On the left there is the feasible polygon, an
arrow indicating the direction in which the objective function is minimized and a line perpendic-
ular to the arrow indicating a contour of the objective function. On the right side is a plot of the

objective function on the feasible polygon.

𝑥1

𝑥2

𝑥1

𝑥2

𝑥3

𝑥4

Figure 7: Steps of the simplex algorithm in example 1.8.2.

In a linear programming problem the variable  𝒙 can take real values. However, there are
scenarios in which only integer or binary values are allowed. For instance problems where
the variable 𝒙 describes an amount of people or whether a particular edge is present in
a graph. In Section 2.1 we formulate a case of the Union-closed sets conjecture 1.1.1 as a
linear programming problem with binary variables.

Definition 1.8.3 (Integer linear programming):  Let  𝒙 be a vector of n integer vari-
ables, 𝑨 ∈ ℝ𝑚×𝑛, 𝒃 ∈ ℝ𝑚 and 𝒄 ∈ ℝ𝑛. Minimizing the function 𝒄𝑇 𝒙 subject to constraints
𝑨𝒙 ≥ 𝒃 written as

min
 𝒙∈ℤ𝑛

𝒄𝑇 𝒙

𝑨𝒙 ≥ 𝒃

is called an integer linear programming (ILP) problem.

For the sake of clarity we compare LP and ILP on an example. We consider an ILP
problem with the objective function and constraints as in Example 1.8.2. The feasible
region and the objective function of this ILP problem are shown in Figure 8. Observe
that the integer restriction on each variable of the vector 𝒙 makes the feasible region a
discrete set of isolated points. We note that the feasible region of an ILP problem is a
subset of the feasible region of an LP problem with the same constraints.
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𝑥1

𝑥2
𝒄𝑇 𝒙

𝑥1

𝑥2

Figure 8: Example of an integer linear programming problem

Applying the simplex or the ellipsoid algorithms to integer linear programming problems
is not possible. While there are algorithms for solving ILP problems, such as the branch
and bound or the cutting plane method, these algorithms take an exponential number of
iterations. In contrast to linear programming, ILP is known to be NP-Hard. Considering
this, we may want to seek an approximate solution. An approximation we will use is
called relaxation.

Definition 1.8.4 (Linear programming relaxation):  Given an integer linear programming
problem (2) we define the relaxed linear programming problem to be (3).

min
 𝒙∈ℤ𝑛

𝒄𝑇 𝒙

𝑨𝒙 ≥ 𝒃
(2)

min
 𝒙∈ℝ𝑛

𝒄𝑇 𝒙

𝑨𝒙 ≥ 𝒃
(3)

We note that the solution of the relaxed problem can be arbitrarily far from the
solution of the original problem. Despite this, relaxation gives a bound on the objective
function in an optimal solution of the original problem.

We established that the feasible region of an ILP problem is a subset of the feasible
region of the corresponding relaxed problem. Using this and the fact that the objective
function is a linear combination of elements of 𝒙 we get that the inequality (4) holds
for an optimal solution 𝒙𝐿𝑃  of the relaxed problem and an optimal solution 𝒙𝐼𝐿𝑃  of the
original ILP problem.

𝒄𝑇 𝒙𝐿𝑃 ≤ 𝒄𝑇 𝒙𝐼𝐿𝑃 (4)

We use this bound in Section 2.2 when formulating a restriction of the Union-closed sets
conjecture as an LP problem.

Next, we turn our attention to duality in linear programming.

Definition 1.8.5 (Dual problem):  Consider an LP problem (5). We call this problem
primal. The dual problem to the primal problem is defined as (6).

Primal problem

min
 𝒙∈ℝ𝑛

𝒄𝑇 𝒙

𝑨𝒙 ≥ 𝒃
(5)

Dual problem

max
 𝒚∈ℝ𝑚

𝒃𝑇 𝒚

𝑨𝑇 𝒚 ≤ 𝒄
(6)
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There are two fundamental theorems regarding duality in linear programming that
describe the relationship between primal and dual solutions of LP problems.

Theorem 1.8.6 (Weak duality theorem):  For every LP problem (5) and it’s dual (6) it
holds: If 𝒙 ∈ ℝ𝑛 is a feasible solution of the primal and 𝒚 ∈ ℝ𝑚 is a feasible solution of
the dual then 𝒃𝑇 𝒚 ≤ 𝒄𝑇 𝒙.

Theorem 1.8.7 (Strong duality theorem):  If the primal (5) or the dual (6) has an op-
timal solution, then the other also has an optimal solution such that  𝒃𝑇 𝒚 = 𝒄𝑇 𝒙.

We use linear programming duality in Section 2.6 to quickly validate our results from
Section 2.5 without having to compute the whole proof again.
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2  Small families and linear programming
In this chapter we apply linear programming to a restriction of the Union-closed sets
conjecture where the size of the universe is bounded. Our approach is to first formulate
Conjecture 1.7.1 as an ILP problem in Section 2.1, which we then relax in Section 2.2.
The rest of this chapter provides a detailed explanation of our approach to compensate
for the relaxation, summarizes our computer assisted proof and discusses corollaries of
the proof.

2.1  ILP-formulation of a restriction of the Union-closed
sets conjecture

Recall the restriction of the Union-closed sets conjecture from Section 1.7. We bound the
size of the universe by a given constant 𝑛. Also recall that the number of all subset of
a set 𝑈  is 2|𝑈|, which is finite for any finite set 𝑈 . The idea is to represent any family
ℱ on 𝑛 elements by a collection of binary variables indicating whether a given subset
of {1, …, 𝑛} is present in ℱ. In this way, we can represent any of the 22𝑛 families on 𝑛
elements as a binary vector of length 2𝑛. We illustrate this process on a simple example.

Example 2.1.1:  Let 𝑛 = 3  and  𝑈 = {1, 2, 3}. In each of the following cases we represent
the family on the left as the binary vector of length  23 on the right.

{1, 2, 3}
{1, 2}, {1, 3}

{1}, {2}
∅

⟶
   𝑥∅   𝑥{1}  𝑥{2}  𝑥{3}  𝑥{1,2}  𝑥{2,3}  𝑥{1,3}  𝑥{1,2,3}

[ 1,    1,    1,    0,    1,    0,    1,    1 ]

{1}, {2, 3}
∅

⟶
   𝑥∅   𝑥{1}  𝑥{2}  𝑥{3}  𝑥{1,2}  𝑥{2,3}  𝑥{1,3}  𝑥{1,2,3}

[ 1,    1,    0,    0,    0,    1,    0,    0 ]

Throughout the rest of this thesis, we denote 𝑥𝐴 the variable indicating whether 𝐴 is
present in ℱ. Additionally, when working with a specific member set, for example 𝐴 =
{1, 2, 3}, we write 𝑥123 instead of 𝑥{1,2,3}.

Currently we represent any family on 𝑛 elements with binary variables, but only
want to consider union-closed families. We express union-closure with the following set
of constraints.

𝑥𝐴∪𝐵 + 1  ≥  𝑥𝐴 + 𝑥𝐵 ∀ 𝐴, 𝐵 ∈ 2𝑈 (7)

Observation 2.1.2:  A family ℱ is union-closed if and only if  ℱ satisfies the con-
straints (7)

Proof:  In the case that 𝐴, 𝐵 ∉ ℱ we have 𝑥𝐴 = 𝑥𝐵 = 0 and thus 𝑥𝐴∪𝐵 + 1 ≥ 0 clearly
holds. If exactly one of 𝐴, 𝐵 belongs to ℱ, then 𝑥𝐴∪𝐵 + 1  ≥  1 holds regardless of the
value of 𝑥𝐴∪𝐵. In the case that both 𝐴 and 𝐵 belong to ℱ we have 𝑥𝐴∪𝐵 + 1 ≥ 2, which
holds if and only if ℱ contains the union 𝐴 ∪ 𝐵. □
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We define a new variable 𝒶, which we call abundance. This variable is meant to represent
the number of occurrences of the most frequent element. To this end, we add the following
constraints for 𝒶.

𝒶 ≥ ∑
𝐴∈2𝑈: 𝑖∈𝐴

𝑥𝐴  ∀ 𝑖 ∈ 𝑈 (8)

Simply put, for any element 𝑖 ∈ 𝑈  abundance must be greater than or equal to the number
of occurrences of 𝑖. For 𝒶 minimal such that it satisfies constraints (8) the variable 𝒶 is
indeed equal to the number of occurrences of the most common element of the universe.

We would like to know whether every union-closed familiy ℱ on 𝑛 elements has an
abundant element that belongs to at least half of the sets of ℱ. With ℱ represented as a
binary vector, we can express the number of member sets in ℱ as a sum of all variables
𝑥𝐴. Thus a family ℱ has an abundant element if and only if the following inequality holds
for 𝒶 minimal satisfying constraints (8).

𝒶 ≥
1
2

∑
𝐴∈2𝑈

𝑥𝐴

In other words if  𝒶 − 1
2 ∑𝐴∈2𝑈 𝑥𝐴  is non-negative. Consequently if  𝒶 − 1

2 ∑𝐴∈2𝑈 𝑥𝐴  is
non-negative for all families on at most 𝑛 elements, then we know that Conjecture 1.7.1
holds.

𝒶 −
1
2

∑
𝐴∈2𝑈

𝑥𝐴 (9)

We may equivalently ask whether the minimum of the expression 𝒶 − 1
2 ∑𝐴∈2𝑈 𝑥𝐴 over

all families on at most 𝑛 elements is non-negative. We note that the expression (9) is a
linear combination of 𝑎 and of all 𝑥𝐴 and also that the constraints (7) and (8) are systems
of linear inequalities. With this in mind we define the following ILP problem and prove
it’s equivalence to Conjecture 1.7.1.

Problem 2.1.3:  Let 𝑈 = {1, …, 𝑛} for a given 𝑛. We define the following ILP problem.

Variables: 𝑥𝐴 ∈ {0, 1}       ∀ 𝐴 ∈ 2𝑈

𝒶 ∈ ℤ

Minimize: 𝒶 − 1
2 ∑

𝐴∈2𝑈
𝑥𝐴

Subject to: 𝑥𝐴∪𝐵 + 1  ≥  𝑥𝐴 + 𝑥𝐵  ∀ 𝐴, 𝐵 ∈ 2𝑈

𝒶 ≥ ∑
 𝐴∈2𝑈

 𝑖∈𝐴

𝑥𝐴      ∀ 𝑖 ∈ 𝑈

Observation 2.1.4:  Conjecture 1.7.1 is true for a given bound 𝑛 if and only if an optimal
solution of Problem 2.1.3 is non-negative for 𝑛.

Proof:  We showed in Observation 2.1.2 that constraints (7) are equivalent to a family
ℱ being union-closed, thus any feasible solution of Problem 2.1.3 is union-closed and all
union-closed families on at most 𝑛 elements are feasible. Constraints (8) and the fact that
we are minimizing guarantee that in an optimal solution ℱ, the variable 𝒶 represents
the number of occurrences of the most frequent element in ℱ. If we subtract one half
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of the total number of member sets in ℱ and get a non-negative answer, then ℱ must
have an abundant element. Because we were minimizing, any other feasible solution has
a non-negative value of the objective function as well from which we conclude that every
other union-closed family on at most 𝑛 elements has an abundant element. Otherwise if
an optimal solution ℱ has negative objective value, then ℱ has no abundant element and
thus Conjecture 1.7.1 is false for 𝑛. □

2.2  LP-relaxation

In the previous section we have formulated a restriction of the Union-closed sets conjec-
ture with a bound on the size of the universe as an ILP Problem 2.1.3. However, solving
this problem is very slow in practice. Recall from Section 1.8 that integer linear program-
ming is an NP-hard problem. One way to deal with this is to relax the problem to an LP
problem with real variables.

Problem 2.2.1:  Let 𝑈 = {1, …, 𝑛} for a given 𝑛. We define an LP problem as follows.

Variables: 𝑥𝐴 ∈ [0, 1]       ∀ 𝐴 ∈ 2𝑈

𝒶 ∈ ℝ

Minimize: 𝒶 − 1
2 ∑

𝐴∈2𝑈
𝑥𝐴

Subject to: 𝑥𝐴∪𝐵 + 1  ≥  𝑥𝐴 + 𝑥𝐵  ∀ 𝐴, 𝐵 ∈ 2𝑈

𝒶 ≥ ∑
 𝐴∈2𝑈

 𝑖∈𝐴

𝑥𝐴      ∀ 𝑖 ∈ 𝑈

Recall from Section 1.8 the inequality (4), which states that the objective value in an
optimal solution of an ILP problem is greater than or equal to the objective value in an
optimal solution of the corresponding relaxed problem. Thus if the optimal solution of
the relaxed problem is non-negative, the optimal solution of the original ILP problem is
also non-negative and therefore Conjecture 1.7.1 holds for 𝑛.

Observation 2.2.2:  For a given constant 𝑛 it holds that if an optimal solution of
Problem 2.2.1 will have non-negative objective value, then Conjecture 1.7.1 holds for 𝑛.

Since Problem 2.2.1 is an LP problem, we can solve it quickly with an LP solver, we
use Gurobi [15] as our solver of choice. In our experiments it turned out that the op-
timal solution of Problem 2.2.1 has negative objective value. We note that this does
not mean that Conjecture 1.7.1 were false for a given 𝑛, because the reverse implica-
tion in Observation 2.2.2 does not hold. If the objective value in an optimal solution of
Problem 2.2.1 is negative, then we can make no conclusions regarding Conjecture 1.7.1.
In the next section we compensate the negativity by adding stronger constraints and
splitting the proof into nultiple cases.

2.3  Proof architecture

In this section we try to improve the negative objective value in an optimal solution of
Problem 2.2.1 by adding stronger constraints and splitting the proof into multiple cases.
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Definition 2.3.1:  Let ℱ be a family on at most 𝑛 elements. We define a case containing
ℱ to be Problem 2.2.1 with member sets of ℱ fixed, expressed by additional constraints
(10).

𝑥𝐴 = 1  ∀𝐴 ∈ ℱ (10)

While an optimal solution of Problem 2.2.1 has negative objective value, it turns out
that cases containing large families (|ℱ| > 20) often have a non-negative optimal solution.
From cases that have a non-negative optimal solution we are able to derive additional
constraints for the rest of our proof.

Observation 2.3.2:  Let ℱ be a family on at most 𝑛 elements and suppose that the
optimal solution of a case containing ℱ has non-negative objective value. Now let 𝒢 be
a different family on at most 𝑛 elements. In the case containing 𝒢 we may assume that
there are at most |ℱ| − 1 member sets of ℱ.

∑
𝐴∈ℱ

𝑥𝐴   ≤   |ℱ| − 1

Proof:  Since the case containing ℱ has non-negative optimal solution we can assume that
there are at most |ℱ| − 1 member sets of ℱ present. Otherwise the feasible region of case
containing 𝒢 would be a subset of case containing ℱ and therefore have a non-negative
optimal solution. □

We generalize this observation to yield stronger constraints, but first we need to define
what it means for two families to be isomorphic.

Definition 2.3.3:  Let ℱ, 𝒢 be families of sets. We say that ℱ and 𝒢 are isomorphic,
denoting ℱ ≅ 𝒢, if there exists a bĳection 𝑓 : 𝑈(ℱ) ⟶ 𝑈(𝒢) such that for all 𝐴 ∈ 2𝑈(ℱ)

it holds that 𝐴 ∈ ℱ ⟺ 𝑓(𝐴) ∈ 𝒢, where 𝑓(𝐴) denotes {𝑓(𝑎) : 𝑎 ∈ 𝐴}. We say that 𝑓 is
an isomorphism between ℱ and 𝒢.

Example 2.3.4:  Let ℱ = {{1, 2}, {2, 3}}, 𝒢 = {{1, 2}, {1, 4}} and ℋ = {{1, 2}, {3, 4}}.

1

2 3

4

ℱ

1

2 3

4

𝒢

1

2 3

4

ℋ

Clearly ℱ is isomorphic to 𝒢, an isomorphism between ℱ and 𝒢 is for example 𝑓 =
⎩{
⎨
{⎧2→1

1→4
3→2
4→3

 .
On the other hand, ℱ ≅ ℋ as ℱ and ℋ have different structure.

We note that isomorphism preserves the frequencies of all elements.

Observation 2.3.5:  Let ℱ, 𝒢 be finite union-closed families. Let 𝑓 : 𝑈(ℱ) → 𝑈(𝒢) be
an isomorphism between ℱ and 𝒢. Then for any element 𝑒 ∈ 𝑈(ℱ) it holds that 𝑒 is
abundant in ℱ if and only if the corresponding 𝑓(𝑒) is abundant in 𝒢.
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For our purposes, when testing whether all finite union-closed families on at most 𝑛 ele-
ments have an abundant element, we can think of isomorphic families as being equivalent
in terms of abundance.

Lemma 2.3.6:  Let ℱ and 𝒢 be families on at most 𝑛 elements and let the case containing
ℱ have a non-negative optimal solution. If 𝒢 contains a sub-family  𝒢′ such that 𝒢′ ≅ ℱ
then we can skip the case containing 𝒢.

Proof:  Since a case containing ℱ has a non-negative solution, we know that all super-
families of ℱ have an abundant element. In the case that 𝒢′ = 𝒢 and therefore 𝒢 ≅ ℱ
we use Observation 2.3.5 and get that all super-families of 𝒢 have an abundant element.
Otherwise let 𝒢′ be a proper sub-family of 𝒢. Clearly, every super-family of 𝒢 is also a
super-family of 𝒢′. Since 𝒢′ ≅ ℱ we use Observation 2.3.5 and get that all super-families
of 𝒢′, including all super-families of 𝒢, have an abundant element, which is what we
wanted. □

For two given families ℱ, 𝒢 checking whether 𝒢 contains a subgrap isomorphic to ℱ is
not an easy task. Luckily, the SageMath [26] library provides a function for this task,
which we use in our proof. With this in mind we prove the following lemma which we use
to generate strong constraints from previous non-negative cases.

Lemma 2.3.7:  Let ℱ, 𝒢 be families on at most 𝑛 elements and let the case containing
ℱ have a non-negative optimal solution. In the case containing 𝒢 we may assign zero to
all variables 𝑥𝐴 for which {𝐴} ∪ 𝒢 is isomorphic to a super-family of ℱ, resulting in the
following set of constraints.

𝑥𝐴 = 0  ∀𝐴 ∈ (2𝑈 ∖ 𝒢)  :  ({𝐴} ∪ 𝒢) ≅ ℱ′ ⊇ ℱ

Proof:  Let 𝐴 ∈ 2𝑈  be a set such that {𝐴} ∪ 𝒢 is isomorphic to ℱ′ ⊇ ℱ and let a case con-
taining ℱ has a non-negative optimal solution. If 𝐴 is assigned one, we use Lemma 2.3.6
and get that we can skip this case as all super-families of {𝐴} ∪ 𝒢 have an abundant
element. As a result we assign zero to the variable 𝑥𝐴 in the case containing 𝒢. □

Example 2.3.8:  Let 𝑈 = {1, 2, 3, 4} and ℱ = {{1, 2}, {2, 3}} and suppose that the case
containing ℱ has a non-negative optimal solution. Now consider the family 𝒢 = {{1, 2}}.
In the case containing 𝒢 we may, as a corollary of Lemma 2.3.7, assume that each set of
ℋ ≔ {{2, 3}, {1, 3}, {1, 4}, {2, 4}} can be assigned zero.

1

2 3

4

ℱ

1

2 3

4

ℋ𝒢

As a corollary we keep a collection  𝒞 containing all families ℱ for which a case containing
ℱ had a non-negative optimal solution. In each subsequent case containing another family
𝒢 we first check if 𝒢 contains a sub-family 𝒢′ such that 𝒢′ ≅ ℱ for some ℱ ∈ 𝒞. If it
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does, then we skip the case containing 𝒢. Otherwise we we assign zero to all variables 𝑥𝐴
for which {𝐴} ∪ 𝒢 is isomorphic to a super-family of at least one ℱ ∈ 𝒞.

Our approach is to choose cases systematically. We pick a specific class of families
and run a case containing ℱ for every non-isomorphic ℱ in the given class. If all of them
are non-negative, then we may add an additional constraint. These classes of families are
𝑘-uniform families with 𝑚 member sets. A family ℱ is 𝑘-uniform if every member set of
ℱ has size 𝑘.

Lemma 2.3.9:  Let 𝐶𝑘,𝑚 be the class of all non-isomorphic 𝑘-uniform families with 𝑚
member sets. Assume that all cases containing families ℱ ∈ 𝐶𝑘,𝑚 have non-negative ob-
jective value. Then we may assume that there are at most 𝑚 − 1 sets of size 𝑘.

∑
𝐴∈2𝑈

|𝐴|=𝑘 

𝑥𝐴  ≤  𝑚 − 1
(11)

Proof:  Let ℋ be a family on at most 𝑛 elements containing 𝑚 member sets of size 𝑘. And
assume that all member sets 𝐴 ∈ ℋ have 𝑥𝐴 = 1. Clearly ℋ is a 𝑘-uniform family with 𝑚
member sets and must be isomorphic to a family ℱ ∈ 𝐶𝑘,𝑚. Since the case containing ℱ
has a non-negative solution, we can use Lemma 2.3.6 to conclude that all super-families
of ℋ have an abundant element. We therefore assume that at least one member set of
ℋ is missing. □

We pick 𝑘, 𝑚 and prove all cases containing non-isomorphic 𝑘-uniform families with 𝑚
member sets. Then using Lemma 2.3.9 we add constraints (11) and pick a new pair of
𝑘, 𝑚. For a given 𝑘 and a sufficiently large 𝑚 we are usually able to prove all cases con-
taining non-isomorphic 𝑘-uniform families with 𝑚 member sets. We then add constraints
(11) and try to gradually lower the number of member sets 𝑚, obtaining ever stronger
constraints. The goal is to eventually prove that for a given 𝑘 the sum of all 𝑘-sets is
equal to zero.

Recall Observation 1.3.3 from Section 1.3 stating that if the average size of all mem-
ber sets is greater than or equal to 𝑛

2  then there exists an abundant element. In our proof
we guarantee this bound on average member set size by proving Lemma 2.3.9 for all 𝑘 up
to ⌈𝑛

2 − 1⌉ and for 𝑚 = 1 yielding the following constraint.

∑
𝐴⊆2𝑈

|𝐴|≤⌈𝑛
2 −1⌉

𝑥𝐴 = 0
(12)

This constraint guarantees that all member sets are of size at least 𝑛2  and thus the average
member set size is at least 𝑛

2  as well. Therefore by Observation 1.3.3 we conclude that
all families satisfying this constraint have an abundant element, which we use to finish
our proof.

Another class of families from which we want to derive constraints are 𝑘-dominated
families with 𝑚 member sets. A family of sets ℱ is 𝑘-dominated if there exists a 𝑘-subset
of 𝑈  which belongs to all member sets of ℱ.

Lemma 2.3.10:  Let 𝐶𝑘,𝑚 be the class of all non-isomorphic 𝑘-dominated families with
𝑚 member sets. Assume that all cases containing families ℱ ∈ 𝐶𝑘,𝑚 have non-negative
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objective value. Then we can assume that for all 𝑋 ⊂ 𝑈 such that |𝑋| = 𝑘 there are at
most 𝑚 − 1 supersets of 𝑋.

∑
𝐴∈2𝑈

𝑋⊆𝐴 

𝑥𝐴 ≤  𝑚 − 1   ∀𝑋 ⊂ 𝑈 : |𝑋| = 𝑘
(13)

Proof:  Let ℋ be a 𝑘-dominated family on at least 𝑚 member sets. Since ℋ is 𝑘-domi-
nated, it contains a sub-family ℋ′ isomorphic to some ℱ ∈ 𝐶𝑘,𝑚. Using Lemma 2.3.6 we
get that all super-families of ℋ are non-negative. Therefore we assume that there are at
most 𝑚 − 1 sets all containing a fixed subset of size 𝑘. □

In our experiments it turned out that there are families of sets, for which cases have par-
ticularly negative optimal solutions. This includes 𝑘-dominated families with few member
sets. We deploy a strategy to deal with these families at the beginning of our proof.

Observation 2.3.11:  Let ℱ be a family and let the case containing ℱ be negative. We
choose an arbitrary number of sets 𝐴 ∈ (2𝑈 ∖ ℱ) and add constraints  𝑥𝐴 = 0  for all of
the sets 𝐴 such that the case containing ℱ with the constraints 𝑥𝐴 = 0 has a non-negative
optimal solution. Thus if the constraints 𝑥𝐴 = 0 were valid then the case containing ℱ is
proved. We can obtain these constraints using Lemma 2.3.7 for cases containing {𝐴} ∪
ℱ. If the optimal solution of cases containing {𝐴} ∪ ℱ are non-negative for all {𝐴}, then
using Lemma 2.3.7 we obtain constraints 𝑥𝐴 = 0 and the case containing ℱ is proved. If
the for some 𝐴 the case containing {𝐴} ∪ ℱ has a negative optimal solution, then we may
use the same process on {𝐴} ∪ ℱ recursively, proving another set of constraints 𝑥𝐵 = 0
until we get that {𝐴} ∪ ℱ has a non-negative optimal solution.

This is a long recursive process, which we only really want to run for certain particularly
negative cases. For example let ℱ be a 𝑘-dominated family with few member sets, then
solving the case containing ℱ with this method allows us to skip a lot of cases using
Lemma 2.3.6 because ℱ has few member sets. Additionally, because ℱ is 𝑘-dominated,
we are a step closer to proving all cases containing non-isomorphic 𝑘-dominated families
with 𝑚 member sets and using Lemma 2.3.10 to obtain strong constraints for a small 𝑚.

Another direction to tackle the negativity of cases is by proving additional stronger
constraints, which we present in the next section.

2.4  Strengthening constraints

Recall from Section 1.3 that if a finite union-closed family ℱ contains a member set 𝐴
of size one or two, then at least one of the elements of 𝐴 is abundant in ℱ. Therefore
in Problem 2.2.1 we may assume that any feasible solution contains no set of size one or
two. We express this with the following constraints.

∑
𝐴∈2𝑈

|𝐴|=1 

𝑥𝐴 = 0   ∑
𝐵∈2𝑈

|𝐵|=2 

𝑥𝐵 = 0
(14)

Also recall from Section 1.6 the results of Poonen [20], Vaughan [27] and Morris [21]
regarding Frankl-complete families. Since any finite union-closed family ℱ containing an
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FC-family has an abundant element, we can assume that no feasible solution contains an
FC-family. Theorem 1.6.2 states that three 3-subsets of a 4-set form a FC-family. Thus
as a corollary of Theorem 1.6.2 we may assume that there are at most two 3-subsets of
any 4-set in ℱ.

∑
𝐴⊆𝑀
|𝐴|=3

𝑥𝐴 ≤ 2   ∀𝑀 ⊆ 𝑈 : |𝑀| = 4
(15)

Similar constraints can be constructed from Theorems 1.6.3 and 1.6.4 simply with differ-
ent bounds and set sizes. We note that all such constraints are linear inequalities.

Next, we show that it is sufficient to only consider families on exactly 𝑛 elements. To
this end, we prove the following lemma.

Lemma 2.4.1:  Let 𝐶𝑖 be the class of all union-closed families of sets whose largest set is
of size precisely 𝑖, and let 𝑛 and 𝑚 be positive integers such that 𝑛 > 𝑚. If every family
from 𝐶𝑛 has an abundant element, then every family from 𝐶𝑚 has an abundant element.

Proof:  Consider a family ℱ𝑚 ∈ 𝐶𝑚 and assume that every family ℱ𝑛 ∈ 𝐶𝑛 has an abun-
dant element. If all elements of 𝑈(ℱ𝑚) are abundant in ℱ𝑚 then the implication clearly
holds. Otherwise denote 𝑒 the element of 𝑈(ℱ𝑚) that belongs to less than half of the
member sets of ℱ𝑚. We add 𝑛 − 𝑚 new elements to all sets 𝐴 ∈ ℱ𝑚 :  𝑒 ∈ 𝐴 and denote
the result ℱ′

𝑚. Clearly ℱ′
𝑚 is union-closed and belongs to 𝐶𝑛. The number of member sets

does not change by adding elements to them, so |ℱ𝑚| = |ℱ′
𝑚|. Since 𝑒 is not abundant

in ℱ𝑚, 𝑒 and all of the newly added elements are not abundant in ℱ′
𝑚. On the other

hand all of the elements abundant in ℱ𝑚 are also abundant in ℱ′
𝑚. Combining this we

get that ℱ𝑚 has an abundant element if and only if ℱ′
𝑚 has an abundant element, and

using the assumption that every family in 𝐶𝑛 has an abundant element we conclude that
ℱ𝑚 has an abundant element. □

Corollary 2.4.1.1:  It is sufficient to check all families on exactly 𝑛 elements, so we may
assume that the universe 𝑈 = {1, …, 𝑛} is present in ℱ, since every union-closed family
contains it’s universe, as shown in Section 1.3.

𝑥𝑈 = 1 (16)

Recall from Section 2.1 the union-closure constraints (7). In practice, the number of
these constraints is high and having too many constraints slows down the LP solver by
increasing the number of vertices of the feasible region. Recall that there are 2𝑛 variables
𝑥𝐴 in our program and we define constraints (7) for every pair of distinct variables 𝑥𝐴,
yielding (2𝑛

2 ) constraints in total. Instead, we present a different approach. Consider a
case containing some family ℱ and define the following set of constraints.

𝑥𝐴∪𝐵 + 1  ≥  𝑥𝐴 + 𝑥𝐵  ∀𝐴 ∈ ℱ  ∀𝐵 ∈ 2𝑈 (17)

Clearly, for each set 𝐴 ∈ ℱ the variable 𝑥𝐴 is equal to 1, which simplifies the inequality.

𝑥𝐴∪𝐵  ≥  𝑥𝐵  ∀𝐴 ∈ ℱ  ∀𝐵 ∈ 2𝑈 (18)

In our experience, in an optimal solution of most cases, variables associated with small
member-sets tend to have high value, while variables associated with larger sets tend to
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have smaller value. Our aim is to, through constraints detailed in this section, guarantee
that the value of smaller sets will propagate up to variables representing larger sets. We
say we boost the larger sets. We note that each of the constraints (18) is a stronger con-
straint than any of the constraints (7). In the constraints (7) the sum on the right side
needs to be greater than 1 in order to propagate value to the variable 𝑥𝐴∪𝐵. On the other
hand, in (18) the value of 𝑥𝐵 gets propagated to 𝑥𝐴∪𝐵, since there is no additive constant
on the left side of the inequality.

We have successfully lowered the number of constraints (7) by using constraints (17)
in our proof instead, and reduced the time the LP solver takes to solve each case. However,
by omitting some of the constraints (7) we expand the feasible region and as a result
lower the objective value of an optimal solution of each case. We introduce more types of
constraints to improve this.

Choose a set of interest 𝑆 that we want to boost, usually one of the larger sets in 2𝑈 .
We boost 𝑆 by it’s subsets of size |𝑆| − 1 using the following inequality.

(|𝑆| − 1) ⋅ 𝑥𝑆 + 1   ≥ ∑
𝐵⊂𝑆

|𝐵|=|𝑆|−1

𝑥𝐵 (19)

For example when 𝑆 = {1, 2, 3} we get the following.

2 ⋅ 𝑥123 + 1 ≥  𝑥12 + 𝑥13 + 𝑥23

Clearly, when one of the subsets on the right hand side is present, then the inequality
holds as the left hand side is at least one. When two of them are present then by union-
closure 𝑥123 is present too and thus we get 3 ≥ 2. Then if all three of the sets on the
left hand side are present the inequality still holds. We generalize this observation to the
constraints (19).

Observation 2.4.2:  Every finite union-closed family satisfies constraints (19).

Proof:  Let ℱ be a union-closed family and let 𝑆 ∈ 2𝑈 . If none of the (|𝑆| − 1)-subsets of
𝑆 belongs to ℱ, then the sum on the right hand side is equal to zero and the inequality
clearly holds. In the case that exactly one (|𝑆| − 1)-subset of 𝑆 belongs to ℱ, then the
left hand side is equal to one and the inequality still clearly holds. If two or more (|𝑆| −
1)-subsets of 𝑆 belong to ℱ, then the right side of the inequality is equal to |𝑆|, because
the union of any two (|𝑆| − 1)-subsets of 𝑆 is 𝑆 which by union-closure belongs to ℱ. The
number of (|𝑆| − 1)-subsets of 𝑆 is equal to |𝑆| and therefore the inequality holds. □

In a few special cases we can improve the coefficient |𝑆| − 1 to a smaller number, obtain-
ing a stronger inequality. We do this using FC-families. Recall for example Theorem 1.6.2
from Section 1.6. We combine the fact that a family ℱ has an abundant element if there
are 3 or more 3-subsets of a 4-set with constraints (19) and get the following inequality
for 𝑆 = {1, 2, 3, 4}.

1 ⋅ 𝑥1234 + 1  ≥  𝑥123 + 𝑥124 + 𝑥134 +234

For the last set of constraints, let ℱ be a family of sets and let 𝐴 be a member set of
ℱ or a union of member sets of ℱ. Now consider the case containing ℱ, clearly 𝑥𝐴 =
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1. Next, let 𝐵 ⊂ 𝐴 and let 𝐶 ⊂ (𝑈 ∖ 𝐴). We construct the following inequality and prove
it’s validity.

𝑥𝐴∪𝐶 + (|𝐵| − 1) ⋅ 𝑥𝐵∪𝐶 + 1 ≥  𝑥𝐴 + ∑
𝐷⊂𝐵

|𝐷|=|𝐵|−1

𝑥𝐷∪𝐶 (20)

Since 𝑥𝐴 = 1 the inequality can be simplified to the following.

𝑥𝐴∪𝐶 + (|𝐵| − 1) ⋅ 𝑥𝐵∪𝐶 ≥ ∑
𝐷⊂𝐵

|𝐷|=|𝐵|−1

𝑥𝐷∪𝐶

Which is a strong constraint because the left hand side lacks an additive constant. Thus
the weight of any of the 𝐷 ∪ 𝐶 will propagate to the left hand side. We provide a simple
example of constraints (20) for 𝐴 = {0, 1, 2, 3}, 𝐵 = {0, 1, 2} and 𝐶 = {5, 6}.

𝑥012356 + 2 ⋅ 𝑥01256 + 1 ≥  𝑥0123 + 𝑥0156 + 𝑥0256 + 𝑥1256

One can easily check that this inequality holds. We know that 𝑥𝐴 = 1. In the case  𝑥0156 +
𝑥0256 + 𝑥1256 = 0  the inequality clearly holds as the left hand side is at least one. When
 𝑥0156 + 𝑥0256 + 𝑥1256 = 1 , for example if 𝑥0165 = 1, then the inequality holds because the
union {0, 1, 2, 3} ∪ {0, 1, 5, 6} is equal to {0, 1, 2, 3, 5, 6}, which is present on the left hand
side and thus the inequality holds tight. In the case that  𝑥0156 + 𝑥0256 + 𝑥1256 = 2  the
union of any two of the sets yields {0, 1, 2, 5, 6}, the left hand side is equal to four and
the inequality holds. The inequality also holds if all variables on the right hand side are
equal to one. We generalize this observation to constraints (20).

Observation 2.4.3:  Every finite union-closed family satisfies constraints (20).

Proof:  The union of any two 𝐷 ∪ 𝐶 always yields 𝐵 ∪ 𝐶 as 𝐷 is (|𝐵| − 1)-subset of 𝐵.
Additionally, the union of 𝐴 and any 𝐷 ∪ 𝐶 is equal to 𝐴 ∪ 𝐶 as 𝐷 ⊂ 𝐴. Thus if there
are at least two 𝐷 ∪ 𝐶 present, the inequality holds. The number of all 𝐷 ∪ 𝐶 is |𝐵|, thus
if all of 𝐷 ∪ 𝐶 are present we have |𝐵| + 1 on the right hand side and |𝐵| + 1 on the left
hand side and the inequality holds tight. In the case that only one of 𝐷 ∪ 𝐶 is present,
then by union-closure 𝐴 ∪ 𝐶 must also be present and the inequality holds. When none
of the 𝐷 ∪ 𝐶 is present the inequality holds trivially, which completes the proof. □

2.5  Outline of the proof

In this section we present an outline of our proof of Conjecture 1.7.1 for 𝑛 = 14. First,
we assume that there are no sets of size one and two and obtain a bound on the number
of 𝑘-sets for 𝑘 = 3, 4, 5, 6.

Description Constraint Using

Prove all cases contain-
ing non-isomorphic 3-uniform
families with 6 member sets.

∑
𝐴∈2𝑈

|𝐴|=3 

𝑥𝐴  ≤  5
Lemma 2.3.9
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Recursively prove a case con-
taining a 3-dominated 4-uni-
form family ℱ with 6 member

sets.

ℱ ∈ 𝒞,   ∑
𝐴∈ℱ

𝑥𝐴 ≤ |ℱ| − 1 Observation 2.3.11

Prove all cases containing
non-isomorphic 2-dominated
4-uniform families with 8

member sets.

∑
𝐴∈2𝑈

𝑎,𝑏 ∈𝐴
|𝐴|=4

𝑥𝐴 ≤ 7  ∀𝑎, 𝑏 ∈ 𝑈
Lemma 2.3.10

Prove all cases containing
non-isomorphic 1-dominated
4-uniform families with 7

member sets.

∑
𝐴∈2𝑈

𝑎∈𝐴 
|𝐴|=4 

𝑥𝐴 ≤ 6  ∀𝑎 ∈ 𝑈
Lemma 2.3.10

Prove all cases contain-
ing non-isomorphic 4-uniform
families with 6 member sets.

∑
𝐴∈2𝑈

|𝐴|=4 

𝑥𝐴 ≤ 5
Lemma 2.3.9

Recursively prove a case
containing the family
of sets ℱ = {{0, 1, 2, 3, 4},

{0, 1, 5, 6, 7},{2, 3, 5, 6, 8}}

ℱ ∈ 𝒞,   ∑
𝐴∈ℱ

𝑥𝐴 ≤ |ℱ| − 1 Observation 2.3.11

Recursively prove a case
containing the family
of sets ℱ = {{0, 1, 2, 3, 4},

{0, 1, 2, 5, 6},{0, 3, 5, 7, 8}}

ℱ ∈ 𝒞,   ∑
𝐴∈ℱ

𝑥𝐴 ≤ |ℱ| − 1 Observation 2.3.11

Recursively prove a case con-
taining a 4-dominated 5-uni-
form family with 6 member

sets.

ℱ ∈ 𝒞,   ∑
𝐴∈ℱ

𝑥𝐴 ≤ |ℱ| − 1 Observation 2.3.11

Prove all cases containing
non-isomorphic 3-dominated
5-uniform families with 12

member sets.

∑
𝐴∈2𝑈

𝑎,𝑏,𝑐 ∈𝐴 
|𝐴|=5 

𝑥𝐴 ≤ 11 ∀𝑎, 𝑏, 𝑐 ∈ 𝑈
Lemma 2.3.10

Prove all cases containing
non-isomorphic 2-dominated
5-uniform families with 10

member sets.

∑
𝐴∈2𝑈

𝑎,𝑏 ∈𝐴 
|𝐴|=5 

𝑥𝐴 ≤ 9 ∀𝑎, 𝑏 ∈ 𝑈
Lemma 2.3.10
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Prove all cases containing
non-isomorphic 1-dominated
5-uniform families with 9

member sets.

∑
𝐴∈2𝑈

𝑎 ∈𝐴 
|𝐴|=5 

𝑥𝐴 ≤ 8 ∀𝑎 ∈ 𝑈
Lemma 2.3.10

Prove all cases contain-
ing non-isomorphic 5-uniform
families with 7 member sets.

∑
𝐴∈2𝑈

|𝐴|=5 

𝑥𝐴  ≤  6
Lemma 2.3.9

Prove all cases contain-
ing non-isomorphic 6-uniform
families with 7 member sets.

∑
𝐴∈2𝑈

|𝐴|=6 

𝑥𝐴 ≤  6
Lemma 2.3.9

The rest of the proof is straightforward. We iteratively prove slightly stronger constraints
until we get that no sets of size less that 7 are present.

Description Constraint Using

Prove all cases contain-
ing non-isomorphic 3-uniform
families with 5 member sets.

∑
𝐴∈2𝑈

|𝐴|=3 

𝑥𝐴  ≤  4
Lemma 2.3.9

Prove all cases contain-
ing non-isomorphic 4-uniform
families with 5 member sets.

∑
𝐴∈2𝑈

|𝐴|=4 

𝑥𝐴  ≤  4
Lemma 2.3.9

Prove all cases contain-
ing non-isomorphic 5-uniform
families with 5 member sets.

∑
𝐴∈2𝑈

|𝐴|=5 

𝑥𝐴  ≤  4
Lemma 2.3.9

Prove all cases contain-
ing non-isomorphic 6-uniform
families with 5 member sets.

∑
𝐴∈2𝑈

|𝐴|=6 

𝑥𝐴  ≤  4
Lemma 2.3.9

Prove all cases contain-
ing non-isomorphic 3-uniform
families with 4 member sets.

∑
𝐴∈2𝑈

|𝐴|=3 

𝑥𝐴  ≤  3
Lemma 2.3.9

Prove all cases contain-
ing non-isomorphic 4-uniform
families with 4 member sets.

∑
𝐴∈2𝑈

|𝐴|=4 

𝑥𝐴  ≤  3
Lemma 2.3.9
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Prove all cases contain-
ing non-isomorphic 5-uniform
families with 4 member sets.

∑
𝐴∈2𝑈

|𝐴|=5 

𝑥𝐴  ≤  3
Lemma 2.3.9

Prove all cases contain-
ing non-isomorphic 6-uniform
families with 4 member sets.

∑
𝐴∈2𝑈

|𝐴|=6 

𝑥𝐴  ≤  3
Lemma 2.3.9

Prove all cases contain-
ing non-isomorphic 3-uniform
families with 3 member sets.

∑
𝐴∈2𝑈

|𝐴|=3 

𝑥𝐴  ≤  2
Lemma 2.3.9

Prove all cases contain-
ing non-isomorphic 4-uniform
families with 3 member sets.

∑
𝐴∈2𝑈

|𝐴|=4 

𝑥𝐴  ≤  2
Lemma 2.3.9

Prove all cases contain-
ing non-isomorphic 5-uniform
families with 3 member sets.

∑
𝐴∈2𝑈

|𝐴|=5 

𝑥𝐴  ≤  2
Lemma 2.3.9

Prove all cases contain-
ing non-isomorphic 6-uniform
families with 3 member sets.

∑
𝐴∈2𝑈

|𝐴|=6 

𝑥𝐴  ≤  2
Lemma 2.3.9

Prove all cases contain-
ing non-isomorphic 3-uniform
families with 2 member sets.

∑
𝐴∈2𝑈

|𝐴|=3 

𝑥𝐴  ≤  1
Lemma 2.3.9

Prove all cases contain-
ing non-isomorphic 4-uniform
families with 2 member sets.

∑
𝐴∈2𝑈

|𝐴|=4 

𝑥𝐴  ≤  1
Lemma 2.3.9

Prove all cases contain-
ing non-isomorphic 5-uniform
families with 2 member sets.

∑
𝐴∈2𝑈

|𝐴|=5 

𝑥𝐴  ≤  1
Lemma 2.3.9

Prove all cases contain-
ing non-isomorphic 6-uniform
families with 2 member sets.

∑
𝐴∈2𝑈

|𝐴|=6 

𝑥𝐴  ≤  1
Lemma 2.3.9
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Prove all cases contain-
ing non-isomorphic 3-uniform
families with 1 member set.

∑
𝐴∈2𝑈

|𝐴|=3 

𝑥𝐴  ≤  0
Lemma 2.3.9

Prove all cases contain-
ing non-isomorphic 4-uniform
families with 1 member set.

∑
𝐴∈2𝑈

|𝐴|=4 

𝑥𝐴  ≤  0
Lemma 2.3.9

Prove all cases contain-
ing non-isomorphic 5-uniform
families with 1 member set.

∑
𝐴∈2𝑈

|𝐴|=5 

𝑥𝐴  ≤  0
Lemma 2.3.9

Prove all cases contain-
ing non-isomorphic 6-uniform
families with 1 member set.

∑
𝐴∈2𝑈

|𝐴|=6 

𝑥𝐴  ≤  0
Lemma 2.3.9

Now, the average size of the remaining sets is clearly greater than or equal 7, so we use
Observation 1.3.3 to conclude that all finite Union-closed families on at most 14 elements
have an abundant element.

2.6  Verification

We provide a way to verify our results from Section 2.5. When running our proof we save
the dual solution of each case, along with the constraints of the case. From this we are
able to verify each case as follows.

Let ℱ be a family and consider the case containing ℱ. We save the matrix 𝑨 together
with the vector 𝒃 and the dual solution 𝒚 of the case containing ℱ and show that we can
verify the non-negativity of the case containing ℱ without running the LP solver.

Lemma 2.6.1:  Let ℱ be a family of sets and let a case containing ℱ have an optimal
solution 𝒙. Let 𝒚 ∈ ℝ𝑚 be a vector of length 𝑚 where 𝑚 is the number of constraints in
the case containing ℱ. Let 𝑨𝒙 ≥ 𝒃 denote the constraints in the case containing ℱ and
denote 𝒄 the coefficients of the objective function. If  𝑨𝑇 𝒚 ≤ 𝒄  and  𝒃𝑇 𝒚 ≥ 0  then the
case containing ℱ has a non-negative optimal solution.

Proof:  The primal problem of the case containing ℱ is minimizing 𝒄𝑇 𝒙′ subject to con-
straints 𝑨𝒙 ≥ 𝒃. Recall from Section 1.8 that the dual problem the case containing ℱ is
maximizing 𝒃𝑇 𝒚′ subject to constraints 𝑨𝑇 𝒚′ ≤ 𝒄. It is immediate that 𝑨𝑇 𝒚 ≤ 𝒄 is test-
ing feasibility of 𝒚. Moreover, 𝒃𝑇 𝒚 ≥ 0 means that the objective value of 𝒚 is non-negative
in the dual problem. Now we can use the Weak duality theorem 1.8.6 from Section 1.8
and get that the objective value of any every feasible solution 𝒙′ of the primal problem is
at least 𝒃𝑇 𝒚 and thus 𝒄𝑇 𝒙′ ≥ 𝒃𝑇 𝒚 ≥ 0 for all feasible solutions 𝒙′ and therefore the case
containing ℱ has a non-negative optimal solution. □

For every non-negative case we save 𝑨, 𝒃, 𝒚 and are able to verify each case afterwards.
To this end we provide a verification program, that verifies any case in our proof in ac-
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cordance with Lemma 2.6.1. The verification program, data of each case and our proof
framework will all be publicly available shortly after this thesis when we publish our paper
on this topic.

2.7  Results

In Section 2.5 we provide an outline of a proof of Conjecture 1.7.1 for 𝑛 = 14, which can
be verified as discussed in Section 2.6.

Theorem 2.7.1:  The Union-closed sets conjecture holds for all finite union-closed fam-
ilies on at most 14 elements.

Using Theorem 1.7.3 by Lo Faro [11] we get that the Union-closed sets conjecture holds
for all families with at most 58 member sets.

Corollary 2.7.1.1:  The Union-closed sets conjecture holds for all finite union-closed
families with at most 58 member sets.

Recall from Section 1.4 the lattice formulations of the Union-closed sets conjecture. Our
results in Theorem 2.7.1 can be interpreted in terms of lattices by modifying the proof of
the equivalence of the lattice formulation to the Union-closed sets conjecture in [24] and
in [4].

Observation 2.7.2: If the Union-closed sets conjecture holds for all finite union-closed
families on at most 𝑛 elements, then the lattice formulation 1.4.3 holds for all finite
lattices with at least two elements and at most 14 join-irreducible elements.

Proof:  Let (𝐿, ≼) be a finite lattice with at least two elements and at most 𝑛 join-irre-
ducible elements and denote 𝑆(𝑥) the set of all join-irreducible elements of 𝐿 that are less
than or equal to 𝑥. Clearly 𝑆(𝑥 ∧ 𝑦) = 𝑆(𝑥) ∩ 𝑆(𝑦) and therefore ℱ = {𝑆(𝑥) : 𝑥 ∈ 𝐿} is
intersection-closed and |ℱ| = |𝐿|. Moreover, the size of the universe of ℱ is at most 𝑛,
so we may assume that ℱ has a rare element 𝑥, then clearly 𝑥 is join-irreducible and is
contained in at most half of the sets in ℱ. Then for any 𝑦 ≽ 𝑥 clearly 𝑥 ∈ 𝑆(𝑦) and thus
the number of elements greater than or equal to 𝑥 is bounded by the number of sets in
ℱ containing 𝑥, which is at most 1

2 |𝐿|. □

Corollary 2.7.2.1:  Every finite lattice (𝐿, ≼) with at least two elements and at most 14
join-irreducible elements has a join-irreducible element 𝑒 such that at most half of the
elements of 𝐿 are greater than or equal to 𝑒.

Additionally, we restrict the graph formulation 1.4.5, proof of which can be found in [5]
and [4], and obtain a result for bipartite graphs.

Observation 2.7.3: If the Union-closed sets conjecture holds for all finite union-closed
families on at most 𝑛 elements, then the graph formulation 1.4.5 holds for all bipartite
graphs with each bipartition class containing at most 𝑛 vertices.

Proof:  Let 𝐺 be a bipartite graph with partition classes 𝑋, 𝑌  and let the size of each 𝑋, 𝑌
be at most 𝑛. By symmetry, it is sufficient to find a rare vertex in 𝑋. Denote ℱ the set of
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all maximal stable sets in 𝐺 and define the family ℋ ≔ {𝐴 ∩ 𝑋 : 𝐴 ∈ ℱ} by intersecting
member sets of ℱ with the partition class 𝑋. It is straightforward to check that ℋ is
intersection-closed. We note that 𝑈(ℋ) = 𝑋, since 𝑋 is a stable set in 𝐺. Assume that
all intersection-closed families on at most 𝑛 elements have a rare element, then ℋ must
have a rare element 𝑒, since |𝑈(ℋ)| = |𝑋| ≤ 𝑛. It is immediate that 𝑒 belongs to at most
half of the maximal stable sets in 𝐺 and that 𝑒 ∈ 𝑋, which completes the proof. □

Corollary 2.7.3.1:  Any bipartite graph 𝐺 with at least one edge. If the smaller biparti-
tion class of 𝐺 contains at most 14 vertices, then 𝐺 contains in each of it’s bipartition
classes a vertex that lies in at most half of the maximal stable sets of 𝐺.

Moreover, in Observation 2.7.2 and Observation 2.7.3 we can replace the assumptions of
Theorem 2.7.1 with the assumptions of Corollary 2.7.1.1 and get new results. The proofs
are otherwise identical.

Corollary 2.7.3.2:  The lattice formulation holds for all lattices of size at most 58.

Corollary 2.7.3.3:  The graph formulation holds for all bipartite graphs which have at
most 58 maximal stable sets.
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3  Conclusion
In this thesis, we studied the Union-closed sets conjecture and related partial results. We
discussed the assumptions of the conjecture, it’s equivalent formulations, Frankl-complete
families, recent breakthroughs and results regarding small families of sets.

We showed that the Union-closed sets conjecture holds for all union-closed families on
at most 14 elements, which is a new result improving upon the previously known bound
12 by Vučković a Živković [28] in 2017. Our proof is computer assisted. We formulate
a restriction of the Union-closed sets conjecture with a bound on the biggest set as an
integer linear programming problem. This problem is then relaxed and to compensate for
the relaxation we split the proof into multiple cases and introduce stronger constraints.
The whole proof can be readily verified through a provided verification program using
linear programming duality.

Our proof of the restriction of the Union-closed sets conjecture has corollaries in terms
of lattice and graph theory. We showed that every bipartite graph with each bipartition
class containing at most 14 vertices contains a vertex in each of it’s bipartition classes
which belongs to at most half of the maximal stable sets. We also showed that all lattices
𝐿 with at most 14 join-irreducible elements contain a join-irreducible element 𝑥 such that
at most half of the elements of 𝐿 a greater than or equal to 𝑥.

We believe that our results can be further improved using the methods from this
thesis. Increasing the bound in the restricted conjecture will result in each case taking
longer to compute and have lower objective value, which can be balanced by stronger
constraints and a faster computer.
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