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Abstrakt

V této préci se zabyvame skalarnimi reakéné-difuznimi rovnicemi s p-Laplacidanem v di-
fuznim clenu a riznymi typy spojitych reakci. V naSem obecném pojeti pripoustime,
aby mél difuzni koeficient (zavisly na hustoté) degenerace nebo singularity v ekvilibriich
0 a 1, jakoz i konetné mnoho skokovych nespojitosti mezi nimi. Za téchto predpokladu
studujeme existenci a vlastnosti postupnych vin, které propojuji stacionarni stavy 0 a
1. Zavedenim nového typu zobecnéného feSeni transformujeme tlohu druhého fadu na
realné ose pro neznamy profil a jeho rychlost na tlohu prvniho fadu na omezeném inter-
valu, kterou pak studujeme ve smyslu Carathéodoryho. Vysledky pro tuto ilohu prvniho
fadu maji samostatny vyznam vzhledem k jejich uplatnitelnosti i mimo ramec nasich
predpokladu pro tlohu druhého fadu.

Uvadime postacujici podminky pro existenci postupnych vin v piipadé bistabilni a
Klicovou roli v existenci ¢i neexistenci postupnych vin a jejich vlastnostech pritom hraje
spolecny vliv reakéniho a difuzniho ¢lenu. Za predpokladu mocninného chovéani téchto
¢lenu v blizkosti 0 a 1 pak studujeme, jak spolu s hodnotou p ovliviuji asymptotické
vlastnosti feSeni.

Hlavni ¢ast této prace vychazi z nasich tii publikovanych ¢lanku, vénovanych studiu
reakéné-difuznich rovnic bez konvekce, v nichZz jsme se zabyvali zvlast staciondrnimi
vlnami, postupnymi vlnami v bistabilnich rovnicich a postupnymi vlnami v monosta-
bilnich rovnicich. NaSe metody a vysledky prezentujeme jednotnym zpusobem, abychom
zduraznili jak spoleény zaklad vSsech zminénych ptipadu, tak rozdily mezi nimi.

Zavérecnd kapitola je vénovana uloze s konvekci a reakénim c¢lenem vyskytujicim
se v modelech spalovani. Existenci a neexistenci feseni zde dokazujeme za silnéjsich
predpokladu na reakéni a difuzni cleny nez u rovnice bez konvekce a primo tak zobecnujeme
znamé vysledky v pripadé difuze bez p-Laplacianu. N&as ¢lanek na toto téma je v soucasné
dobé recenzovan.

Klicova slova: reakéné-difuzni rovnice, postupné viny, profil viny, difuze s p-Laplacianem,
difuze se singularitami a degeneracemi, nespojita difuze, bistabilni reakce, monostabilni
reakce, nelipschitzovské diferencidlni rovnice, feseni ve smyslu Carathéodoryho, nehladky
profil, konvekce



Abstract

This thesis concerns scalar reaction-diffusion equations with p-Laplacian type diffusion
and different types of continuous reaction. In our general setting, the density-dependent
diffusion coefficient allows for degenerations and singularities at equilibria 0 and 1 as well
as finitely many jump discontinuities between them. Under these assumptions, we study
the existence and properties of travelling wave solutions which connect the steady states 0
and 1. Introducing a new concept of generalized solution, we transform the second-order
problem on the real line for the unknown profile and its speed into a first-order problem
on a bounded interval, which we then study in the sense of Carathéodory. The results
for this first-order problem are of independent interest due to their applicability outside
of our framework.

We present sufficient conditions for the existence of travelling wave solutions in the
case of bistable and monostable reaction, which extend the classical results obtained in
more regular settings. It is revealed to be the combined influence of the reaction and
diffusion terms which plays a key role in the existence and non-existence of travelling
waves as well as their properties. Assuming power-type behaviour of these terms near
0 and 1, we then study how they affect, together with the value of p, the asymptotic
properties of solutions.

The main part of this work is based on our three published papers, devoted to the
study of reaction-diffusion equations without convective effects, in which we focused sep-
arately on stationary waves, travelling waves in bistable equations and travelling waves
in monostable equations. We present our methods and results in a unified manner to
emphasize both the shared foundation and the differences among these cases.

The final chapter concerns reaction-diffusion-convection equation with combustion-
type reaction. Existence and non-existence results are derived under stronger regularity
assumptions on the reaction and diffusion terms than in the reaction-diffusion case, gen-
eralizing established results for density-dependent diffusion without the p-Laplacian. Our
findings have been submitted as a paper and are currently under review.

Keywords: reaction-diffusion equation, travelling waves, wave profile, p-Laplacian type
diffusion, singular and degenerate diffusion, discontinuous diffusion, bistable reaction,
monostable reaction, non-Lipschitz ODE, solutions in the sense of Carathéodory, non-
smooth profile, convection



Zusammenfassung

Diese Dissertation behandelt skalare Reaktions-Diffusionsgleichungen mit p-Laplace-Diffu-
sion und verschiedenen Typen stetiger Reaktionen. In unserer allgemeinen Einstellung
ermoglicht der dichtabhéangige Diffusionskoeffizient Degenerationen und Singularitaten an
den Gleichgewichtspunkten 0 und 1 sowie endlich viele Sprungunstetigkeiten dazwischen.
Unter diesen Annahmen untersuchen wir die Existenz und Eigenschaften von Wander-
wellenlosungen, die die Gleichgewichtszustande 0 und 1 verbinden. Durch Einfiihrung
eines neuen Konzepts der verallgemeinerten Losung transformieren wir das Problem zwei-
ter Ordnung auf der reellen Linie fiir das unbekannte Profil und seine Geschwindigkeit in
ein Problem erster Ordnung auf einem begrenzten Intervall, das wir dann im Sinne von
Carathéodory studieren. Die Ergebnisse fiir dieses Problem erster Ordnung sind aufgrund
ihrer Anwendbarkeit auflerhalb unseres Rahmens von unabhéngigem Interesse.

Wir préasentieren ausreichende Bedingungen fiir die Existenz von Wanderwellenlo-
sungen im Fall einer bistabilen und monostabilen Reaktion, die die in regelmafligeren
Einstellungen erzielten klassischen Ergebnisse erweitern. Es zeigt sich, dass der kom-
binierte Einfluss der Reaktions- und Diffusionsterme eine Schliisselrolle bei der Existenz
und Nichtexistenz von Wanderwellen sowie ihren Eigenschaften spielt. Unter Annahme
eines Potenzverhaltens dieser Terme nahe 0 und 1 untersuchen wir dann, wie sie zusammen
mit dem Wert von p die asymptotischen Eigenschaften der Losungen beeinflussen.

Der Hauptteil dieser Arbeit basiert auf unseren drei veroffentlichten Papers, die der
Untersuchung von Reaktionsdiffusionsgleichungen ohne konvektive Effekte gewidmet sind.
Dabei haben wir uns separat auf stationare Wellen, Wanderwellen in bistabilen Gleichun-
gen und Wanderwellen in monostabilen Gleichungen konzentriert. Wir prasentieren unsere
Methoden und Ergebnisse auf einheitliche Weise, um sowohl die gemeinsame Grundlage
als auch die Unterschiede zwischen diesen Fallen zu betonen.

Das abschlieBende Kapitel behandelt die Reaktions-Diffusions-Konvektionsgleichung
mit reaktionstypischer Verbrennung. Existenz- und Nichtexistenzresultate werden unter
starkeren Regularitatsannahmen fiir die Reaktions- und Diffusionsterme als im Fall der
Reaktions-Diffusionsgleichung abgeleitet und verallgemeinern etablierte Ergebnisse fiir
dichtedependente Diffusion ohne p-Laplace. Unsere Ergebnisse wurden als Artikel ein-
gereicht und befinden sich derzeit im Begutachtungsprozess.

Schliisselworter: Reaktions-Diffusionsgleichung, Wanderwellen, Wellenprofil, p-Laplace-
Diffusion, singulare und degenerierte Diffusion, diskontinuierliche Diffusion, bistabile Reak-
tion, monostabile Reaktion, nicht-Lipschitz ODE, Losungen im Sinne von Carathéodory,
nicht-glatte Profile, Konvektion
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Chapter 1

Introduction

The occurrence of wave phenomena in many natural reaction-diffusion processes has in-
spired the study of travelling waves almost a century ago and since then became an
essential part of the analysis of reaction-diffusion equations. Prototypes of such problems
arise from various fields of applications, such as population genetics, signal propagation,
combustion theory, insect dispersal models and others. Apart from providing a tool for
finding explicit solutions via comparison principles, the analysis of travelling waves is
significant also for the investigation of long-term behaviour of solutions.

Extensive studies of travelling waves in numerous types of equations inspired us to
consider a quasilinear reaction-diffusion equation on the real line

@ZQG@
ot Ox

It comprises as particular cases many of the above mentioned models, which will be
explored shortly in Section 1.1. Our assumptions on the functions d : [0,1] — R and
g : [0,1] — R are motivated by classical as well as more special instances that arise in
applications. Our aim is to provide a broad theoretical background for the mathematical
treatment of travelling waves in rather general models. Such task presents challenges
otherwise absent in more regular settings. Consequently, we focus exclusively on the

existence of travelling waves and their properties without delving into the study of initial
value problems or stability.

P72 du
%> +g(u), (r,t)eRxRT, p>1. (1.1)

@
ox

Customarily, a travelling wave is a non-constant bounded solution which maintains its
shape while propagating at a constant speed. This means that the shape of the wave,
referred to as wave profile or simply profile, remains constant over time, but it is not a
constant function itself. Since the speed of propagation does not change in time as well,
from a reference frame moving with the same speed this wave would appear stationary.
Expressing this mathematically, a travelling wave solution is of the form

u(z,t) =U(x —ct) =U(2), z=ux—ct, (1.2)

where U is the profile of the wave and ¢ denotes its wave speed. Both U and ¢ need to
be determined, making the task of finding travelling wave solutions akin to an eigenvalue
problem. The variable z is usually referred to as the moving coordinate or wave variable.
In accordance with the predominant modelling origins of reaction-diffusion equations, we
consider travelling waves only with nonnegative values.

Assuming ¢ > 0, the wave (1.2) moves in the positive z-direction, while waves moving
in the negative z-direction have the form u(z,t) = U(x + ct). Altering the usual notion



of speed to include negative values as well, both types of waves can be described by (1.2)
with the sign of ¢ now determining the direction. An example of a strictly monotone
travelling wave is depicted in Figure 1.1. Waves with ¢ = 0 are stationary solutions of the
partial differential equation under consideration and we will refer to them as stationary
waves.

u
u(x,t) =U(x — ct)
c>0
— _
c<0
0 x

Figure 1.1: Travelling wave with a speed of propagation ¢ € R

1.1 Motivation

In the pioneering work [24] from 1937, R. A. Fisher proposed a model for the spatial
spread of an advantageous gene in a population. He considered a population uniformly
distributed in a one-dimensional habitat and suggested that if a beneficial mutation oc-
curs, there will be a wave of increase in the frequency u of the mutant gene at the expense
of the allele previously occupying the same locus. Assuming that the parent allele is the
only one present, its frequency equals 1 — u. Using the analogy of physical diffusion,
Fisher considers that the rate of diffusion per generation across any boundary is given by

ou
—d%,

where d > 0. The frequency u then satisfies the differential equation

u 2u
% :d%—kmu(l—u). (1.3)
Here m > 0 denotes the intensity of selection in favour of the mutant gene, independent
of u. Fisher’s model specifies the simplest possible conditions, such as constant diffusion
coefficient d > 0, with respect to which variations might be discussed. The assumed
independence of u and m is attributed to the reasonable expectation that there is no
dominance in respect to the advantageous mutation. After suitable rescaling, the equation

(1.3) can be rewritten as
ou  0*u
5% = o2 +u(l —u).
Independently of Fisher’s work, Kolmogorov, Petrovsky and Piskunov [30] studied in
the same year travelling wave solutions to the semilinear equation

ou  O%*u
e + g(u), (1.4)



considering a class of suitable reaction terms g € C*[0,1]. They assumed

g(u) >0 for ue (0,1), ¢(0)=g(1)=0,
g(0) >0, ¢'(u)<g(0) forue(0,1),

of which Fisher’s reaction g(u) = u(1 — u) is a special case. In tribute to both of these
seminal works, the equation (1.4) is often regarded as the Fisher-KPP equation.

The genetical context envisaged by Fisher was later explored in detail by Aronson
and Weinberger [1]. The authors consider a population of diploid individuals and derive
equation (1.4) as a simplified model of the genetic processes. Assuming that a gene at
a specific locus in a specific chromosome pair occurs in two forms, denoted by a and
A, the population then consists of three different genotypes, denoted aa, AA and aA.
Homozygotes (aa or AA) carry only one kind of allele, while heterozygotes (aA) carry one
of each allele. The following three cases are distinguished based on the properties of the
function g € C'[0,1], g(0) = g(1) = 0. In the heterozygote intermediate case, the viability
of the heterozygote is between the viabilities of the homozygotes, and ¢ satisfies

g(u) >0 in (0,1), ¢'(0)>0.

This is the case that was considered in the classical studies mentioned above. Heterozy-
gote superiority occurs when the heterozygote is more viable than the homozygotes, the
relevant properties of g now being

g(u) >0 in (0,s.), g¢g(u) <0 in (s« 1) for some s, € (0,1)
g(0)>0, g¢(1)>0.

If, on the other hand, the viability of the homozygotes exceeds that of the heterozygote,
we have heterozygote inferiority. The characteristic features of g are

g(u) <0 in (0,s.), g¢g(u)>0 1in (s 1) for some s, € (0,1)

! (1.5)
9'(0) <0, /O g(u) du > 0.

As we can see, in the latter two cases g changes sign in (0, 1) exactly once.
Besides population genetics, equations of the form (1.4) are relevant in other contexts
as well. We mention the following notable examples, selected from the overview in [25].

The Newell-Whitehead equation or amplitude equation

ou  O*u )
E—@qu(l—u),

which arises in the study of thermal convection of a fluid heated from below.

The Zeldovich equation

ou  Pu
E—@—i—u(l—u)

which arises in combustion theory. The unknown u represents temperature and the reac-
tion term g(u) = u*(1 — u) corresponds to the generation of heat by combustion.



The Nagumo equation or bistable equation

ou  0*u
E_@+u(1—u)(u—s*), 0<s, <1,

suggested in [11] as a model for a nerve which has been treated with certain toxins. A
rescaled version has been used by Nagumo, Yoshizawa and Arimoto [39] as a model for
bistable transmission lines.

Combustion models with ignition thresholds

ou  O%u 0 for 0 <u < s,
P — _l’_
ot Ox? g(u) for s, <u<1

where g(u) > 0 for u > s, and g(s.) > 0. Such equations describe flame propagation with
one reactant involved in a single-step chemical reaction. Here u represents the normalized
temperature and s, is a critical temperature at which the reaction starts.

The applications motivate the typical sign conditions for the reaction term ¢, consid-
ered in the mathematical treatment of (1.4). The following terminology from [6] refers to
the general shape of a function and it can be used not only for the reaction g.

Definition 1.1. We shall say that a function a : [0,1] - R, a(0) =a(1) =0, is a

type A function if
a(s) >0 forall se(0,1),

type B function if there exists s, € (0,1) such that

a(s) =0 forall se€0,s., a(s)>0 forall se (s1),
type C function if there exists s, € (0,1) such that

a(s) <0 forall se€(0,s:), a(s)>0 forall se (s,]1),

see Figure 1.2.

type A type B type C

0 1 0] S 1 oN_"5 1
Figure 1.2: Classification of functions according Definition 1.1

In literature, other terminologies are commonly used for reaction terms satisfying
the conditions from Definition 1.1, which refer to their occurrence in classical models or
standard stability results for the equilibria 0 and 1. Specifically, reaction terms of type
A are also known as Fisher-KPP or monostable reactions, those of type B as combustion
or ignition type, and those of type C as Nagumo or bistable reaction. The notion of
monostable and bistable indicates whether one or both of the stationary points 0 and 1
are stable.



Some ambiguity regarding these notions might stem from the fact that, apart from the
general shape, the original works concerned a particular function g or a more specific set
of assumptions on its derivative as well. Later generalizations extended the results also to
less regular settings, but it is important to note that even minor differences might render
some standard techniques inapplicable. Therefore, it will be our understanding that all
of the above mentioned terminologies refer simply to the sign conditions and any other
assumptions will be stated explicitly if necessary. In Chapter 2, we will, for the purposes
of this work, redefine the notion of bistable reaction, which encompasses and generalizes
the concept of type B and type C functions.

Density-dependent dispersal has been observed in many populations, such as insects or
small rodents (cf. [38, 41]), due to biological and physical factors. Its introduction into the
derivation of the corresponding models leads to equations with a non-constant coefficient
d = d(u):

ou 0 ou

= d(u) = 1.6

5= o |15 + st (16)

where d = d(u) is a positive (or at least non-negative) function. An example from [38]
is a model with d(u) = wu, which foresees a dispersal of individuals to regions of lower
density becoming more rapid as the population gets more crowded. Diffusion coefficients
that vanish at some points, typically at 0, are called degenerate.
King and McCabe [29] study the equation
ou 0 [ _, Ou
u

%] +u(l —u), n>0, (1.7)

ot ox
as the simplest model of situations in which low concentration disperse very rapidly.
Notice that in this case, the diffusion coefficient is a decreasing function of the density
with a singularity at 0. A relevant (multi-dimensional) example arises from observations
concerning the dispersal of Palaeoindian peoples in North America, see [29] and the refer-
ences therein. The rapidity of the southward spread, suggested by archaeological records,
is not consistent with the predictions of the standard semilinear (Fisher’s) model. This
has lead to the suggestion that early Palacoindians adapted to low-density mate distri-
butions through exogamy and travelling large distances to find eligible mates, implying
that dispersal driven by mate searching is responsible for accelerating range expansion.
This phenomenon, represented in (1.7) by the singular diffusivity d(u) = «™, n > 0, is
in a certain sense opposite to the case n < 0 (degenerate diffusivity), which corresponds
to the avoidance of crowding.
From other fields of study, we mention the well known porous medium equation with
absorption or with a source term:

ou 0
ot Ox?
where m > 0 and ¢ > 0. This equation can be written in an equivalent form

R
ot Oz ox

(u™) F uf,

Without the last term on the right-hand side, it reduces to the linear heat equation in the
particular case m = 1. Berestycki [5] investigated a combustion model with a temperature-
dependent diffusion and a type B reaction, interpreted as deflagration wave problem for



a compressible reacting gas, with one reactant involved in a single step chemical reaction.
In [42], the authors consider discontinuous density-dependent coefficient which can be
used to describe phenomena involving a sudden change in the diffusion constant. Such
problems include polymer dynamics, in which the diffusivity drops abruptly by several
orders of magnitude beyond the gelation critical density, and processes related to hydrogen
storage as a source of energy, cf. [42] and the references therein.

More recently, reaction-diffusion equations involving the p-Laplacian operator

B (8up28u)
ur— — | |=—| =
oz

Ox \ |0z
have been considered in literature, see e.g. [2, 3, 22, 27]. The p-Laplacian operator arises
for example in models derived from the power-type Darcy’s law, cf. [4].

The selection of reaction-diffusion equations presented in this section is by no means
exhaustive. Our aim was to provide an overview of applications and historically notable
examples which motivated the study of travelling waves, as well as models which provide
reasonable foundation for the assumptions considered in this thesis. Before we proceed to
the existence results for reaction-diffusion equations relevant to our research, we briefly
mention problems with convection. In general, such equations usually take the form

o = o a5 + 5+ gt (19

where the second term on the right-hand side represents a convective or advective phe-
nomenon, with h = h(u) denoting the convective velocity function. Equivalently, this
problem can be written as

ou 0 ou|  OH(u)
a—akwap‘w

+ g(u),

where H = H(u) can be viewed as a convective flux function with H’ the corresponding
velocity. Various applications can be found in the monograph [25], which is dedicated to
the study of travelling wave solutions to (1.8) via integral equations. The introduction
of convective processes can significantly affect the usual results derived in the absence of
convection.

Although this thesis focuses primarily on the reaction-diffusion case, we discuss the
influence of the convective term on solutions to (1.1) with a type B reaction in Chapter
6. An overview of previously established results in the case p = 2 will be provided there.



1.2 State of the art

In this section, we mention some of the basic results concerning the existence of travelling
wave solutions to reaction-diffusion equations on the real line with standard types of
reaction, which are relevant to our research.

When looking for travelling wave solutions

u(z,t) =U(x —ct) =U(z), z=ux—ct, (1.9)

we have

ou dU  Ou dU

A, 1 - = —C—/,

Jdr dz ot dz
hence partial differential equations in x and t can be written as ordinary differential
equations in the wave variable z. For example, the semilinear reaction-diffusion

ou  0%*u
E = @ + g(u) (1.10)
becomes
U'+cU +g(U) =0, (1.11)

where primes denote differentiation with respect to z. The standard approach is to study
solutions of this problem in the (U, V') phase plane where

U=V, V=cV-g)
which gives phase plane trajectories as solutions of

v g(U)
v 4
Notice that if g = 0, (1.11) does not admit any solutions U that satisfy the conventional
requirements imposed on wave profiles. Indeed, in this case U takes the general form

U(z)=A+ Be™*, A BEeR,

i.e., it is unbounded or constant, and hence not considered a wave solution. The ap-
pearance of travelling waves is therefore tied to the presence and particular form of the
nonlinear reaction term. In this work, we focus on reaction terms that vanish at both
endpoints 0 and 1. This implies that v = 0 and v = 1 are stationary states of (1.10).
Consequently, it is natural to consider travelling waves which connect these states, i.e.,
as z — —oo they are at one steady state and at the other as z — +o00. For definiteness,
we may assume
U(—o0) = lim U(z) =1, U(4+o0):= lim U(z) =0.
T——00 T—r—+00

A fundamental result concerning the existence of such travelling waves is the following
(see [1, Theorem 4.2]):

If g € C'0,1], g(0) = g(1) = 0, is a type A function or it satisfies

g(s) <0 in (0,s4), g¢g(s) >0 in (s41) for some s, € (0,1),

/01 g(s)du >0 112

7



(notice that this condition contains functions of type B and C as particular cases), there
exists a travelling wave solution u(z,t) = U(x — ct), ¢ > 0, of (1.10). Moreover, the
travelling wave is strictly decreasing, i.e., U'(z) < 0 for finite z = x — ct. In fact, the
monotonicity property can be proven assuming only g € C'[0,1], g(0) = g(1) = 0, see
[23, Lemma 2.1].

In the case of type A (monostable) reaction terms g, the proof of this assertion can be
extended to show that if ¢’(0) > 0, there exists a travelling wave solution for every wave
speed ¢ > ¢*, where

24/¢'(0) < c¢* <2,/ sup @

se(0,1) S

In other words, there exists a half-line [¢*, +00) of admissible wave speeds for which (1.10)
admits a travelling wave solution. This was also proven by Kolmogorov, Petrovsky and
Piskunov [30] under the additional assumption ¢'(u) < ¢’(0) for u € (0, 1), and by Fisher
[24] in the case g(u) = u(1—wu). In the Fisher-KPP setting, a straightforward observation
yields that ¢* = 24/¢'(0).

For reactions g satisfying (1.12), the situation differs considerably. Instead of infinitely
many travelling waves with different wave speeds, there now exists only one wave with a
unique speed ¢ = ¢,, see e.g. [23, 28]. Equation (1.10) with this type of reaction may also
admit stationary wave solutions if fol g(u) du = 0 instead of f01 g(u)du > 0 (this excludes
functions of type B). In special cases the solution can be written down explicitly. For

example, if
1
(o) =s(1-5) (5 3).

there exists (cf. [40]) a decreasing stationary wave

u() = —% tanh (2%) 4

An important topic related to the study of travelling wave solutions is the behaviour
of solutions wu(z,t) of initial value problems for (1.10) as ¢ — 4o00. It was in fact shown
already in the early works by Kolmogorov et al. [30] in the monostable case and Kanel’ [28]
in the generalized bistable case that solutions to special initial value problems converge, in
a certain sense, to travelling wave solutions. The problem of determining conditions under
which a solution does or does not approach a travelling wave has since been subject to
extensive studies, from which we mention the now classical papers [1, 23] and [15] for more
recent findings. Despite the significance of this subject, we omit a more comprehensive
overview, as it is well beyond the scope of our research.

N | —

Considering a positive density-dependent diffusion coefficient instead of a constant one
does not affect the existence of travelling waves in a substantial way. In the wave variable
z, the equation (1.6) now reads

(AU +cU +g(U)=0 (1.13)

together with boundary conditions U(—o0) = 1, U(+o0) = 0. By means of suitable
change of variables, this problem can be reduced to the previous case with reaction given
by the product d(u)g(u). For functions g of type A with ¢’(0) > 0 and d € C*[0, 1] strictly



positive in [0, 1], Engler [21] and Hadeler [26] proved that (2.4) is solvable if and only if
c > c* where

s€(0,1) S

24/d(0)g'(0) <" < 2\/ sup M

Also in this case, each solution is strictly decreasing on R. Generalization of this result
is due to [31] where weaker regularity assumptions were imposed on the functions d and
g. In particular, the authors assume only d € C[0,1] and g € C]0, 1] and the existence
is guaranteed provided that the lower right Dini derivative D, (dg)(0) is finite, otherwise
there is no solution to (1.13).

In [35], existence result for the equation (1.13) with g satisfying (1.12) is obtained
assuming g € C[0,1] and strictly positive d € C'[0,1]. Similarly as in the constant
diffusion case, if

/0 d(s)g(s)ds >0

there exists a unique value of ¢, > 0 for which (1.13) admits a solution. However,
the profile U need not be strictly monotone on the whole real line R, only in the open
interval {z € R: 0 < U(z) < 1}, implying that both equilibria 0 and 1 can be attained.
This does not occur if the Dini derivatives D_(dg)(1) and D, (dg)(0) are finite, see [35,
Proposition 2].

An interesting phenomena associated with non-constant diffusion is the appearance of
new type solutions if d(0) = 0, which are referred to as “sharp-type”. More precisely, if
d(0) =0, d'(0) > 0 and g is of type A, then the travelling wave solution corresponding to
the minimal wave speed ¢* > 0 reaches 0 in a finite 2* € R with a negative slope U’'(z*) =
—c/d'(0), see e.g. [33]. For other values of ¢ > ¢*, the equilibrium 0 is not attained and the
solution is strictly decreasing on R. The first systematic treatment of degenerate diffusion
problems was given in [41] under rather strong regularity assumptions, generalized by
Marcelli and Malaguti [33]. In the particular case of d(s) = s and g(s) = s(1 — s),
s € [0, 1], Murray [38] calculates the value ¢* = 1/4/2 and finds the explicit solution

OIS (z\_@z) Pe (1.14)

0 z > 2",

depicted in Figure 1.3.

0

Figure 1.3: The solution (1.14) of a degenerate diffusion problem



The equation (1.1) with p > 1, which combines density-dependent diffusion coefficient
with the p-Laplacian operator, has been studied e.g. in [14, 22]. Some of the above
results for p = 2 extend also to the more general case p > 1. In particular, the number
of travelling waves obtained for monostable and generalized bistable reaction remains the
same. However, a complete analogy that takes into account also the properties of solutions
is not possible. Most notably, it is well known that solutions to problems involving the
p-Laplacian do not have second derivatives in general, hence we cannot expect U to be a
classical solution. Furthermore, the lack of uniqueness of the associated Cauchy problem
for U at 0 when p > 2 implies that the solution might reach 0 in a finite z.

In [22], the authors study an equivalent first-order problem to obtain a theory of
admissible wave speeds c¢. They then interpret the results in connection to the second-
order problem under stronger regularity assumptions than those required by the equivalent
problem, which allows them to generalize results derived by Marcelli and Malaguti [31, 33|
for monostable reaction to the case 1 < p < 2. The case of continuous type C reaction
and positive diffusion is studied in detail in [14].

The thesis is further organized as follows. Chapters 2-5 concern the study of travelling
and stationary waves for the reaction-diffusion equation (1.1) with two types of reaction.
Presented results and methodology are based on our published articles [17], [18] and [19],
which are now merged into a comprehensive study accompanied by further discussions
and more detailed reasoning. In Chapter 2 we introduce a new definition of a generalized
wave profile and show how the problem of finding travelling waves can be reduced to an
equivalent first-order boundary value problem. The investigation of this b.v.p. in Chapter
3 serves as the main tool for proving the existence and non-existence of travelling wave
profiles, which is summarized in Chapter 4. Asymptotic behaviour of profiles is discussed
in Chapter 5.

In Chapter 6 we present our recent findings concerning travelling waves to (1.1) with
an additional convective term and type B reaction. As in the previous case, we study the
existence of solutions via an equivalent first-order ODE. Our paper [20] devoted to this
subject is, at the time of submission of this thesis, under review.
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Chapter 2

Quasilinear reaction-diffusion
equation

We are concerned with travelling wave solutions to the quasilinear reaction-diffusion equa-
tion

—2
P72 0u

%> +g(u), (1) eRx[0,+00), p>1. (2.1)

ou_ 0 (4]0
ot Ox

(u) Oz

We study the existence and properties of these travelling waves under very general as-
sumptions on the reaction and diffusion terms, which comprise special cases arising in
applications.

Classical models with p = 2 typically deal with smooth functions d and ¢ that satisfy
certain sign conditions in [0, 1]. As mentioned in the previous chapter, existence results can
be obtained under weaker regularity assumptions as well by employing different techniques
of proof. Our approach allows us to relax these assumptions even further and treat
discontinuous diffusion coefficient d with possible degenerations as well as singularities
near 0 and 1. However, some properties of solutions such as “finiteness” and “sharpness”
cannot be recovered in general. To do so, we assume power-type behaviour of d and g in
the neighbourhood of 0 and 1, c¢f. Chapter 5.

2.1 The second-order ODE

First, let us specify our hypotheses on the diffusion coefficient d and the reaction term g.
We assume that

(H1) d : [0,1] — [0,400) is a lower semi-continuous function with d(s) > 0 for all
s € (0,1). There exist 0 = 59 < 51 < 89 < -++ < 8, < Sp41 = 1 such that d has
discontinuity of the first kind (finite jump) at s;, 7 =1,...,n, and

GC(SZ',SZ'_H), z:O,,n,

(86,8541)

(H2) ¢ :[0,1] — R is a continuous function (not necessarily smooth or Lipschitz) with
9(0) = g(1) = 0.

Note that d(0), d(1) are always defined and possibly zero, but we do not require d(0+) =
d(0), d(1—) = d(1). In particular, the limits d(0+), d(1—) may not exist or they may be in-
finite. Examples of admissible diffusion coefficients with qualitatively different properties
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Figure 2.1: Admissible functions d = d(s)

are shown in Figure 2.1. In particular, (H1) implies that if s € (0, 1) then lim,_,, d(c) > 0.
Therefore, the diffusion coefficient cannot exhibit the behaviour depicted in Figure 2.2.

0 1

Figure 2.2: Inadmissible function d = d(s)

Concerning the reaction term g, apart from (H2) we further assume that g = g(s)
satisfies either

g(s) <0 if s€(0,84), g(s.) =0, g(s)>0 if s€ (s41) (2.2)
for some fixed s, € (0,1), or
g(s) >0 forall s € (0,1). (2.3)

In what follows, we shall refer to these two alternatives as bistable and monostable case,
respectively. While (2.3) is also commonly known as the Fisher-KPP type reaction term,
the terminology for nonlinearity (2.2) is not established in literature. It contains as
particular instances the classical bistable reaction, which has exactly one intermediate
zero (at s,), and the combustion nonlinearity, when g(s) = 0 for s € [0, s,]. If distinction
should be necessary, we will adopt the terminology from Definition 1.1, represented in
Figure 1.2. Finally, let us point out that our general assumption g € C[0, 1] also allows
¢'(0+) and ¢’(1—) to be zero or infinite.

Both in the bistable and monostable case, constant functions ug = 0 and u; = 1 are
stationary solutions of (2.1) called equilibria. We look for travelling waves which connect
these equilibria, i.e., functions of the form u(x,t) = U(z — ct) with U : R — [0, 1] and
unequal limits U(£o0) € {0, 1}. The real parameter ¢ stands for the wave speed and it is
also an unknown parameter of the problem. Using the wave variable z = x — ct, we can
(formally) rewrite (2.1) as an ordinary differential equation on the real line

(AVE) WP U(R) + () +9(U() =0, =€R (2.4)
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where U(z) = U(x — ct) and ' denotes differentiation with respect to z. It is clear from
our assumptions on d = d(s) that we cannot expect (2.4) to hold pointwise except for
some special cases. Therefore, we introduce a new concept of solution based on the first
integral of (2.4).

Definition 2.1. We say that a function U € C(R) is piecewise C*', denoted U € (71(]1\2),
if there is a set Dy C R of isolated points such that U € C*(R\ Dy).

We are now ready to formulate our definition in which the term solution refers to the
unknown profile U. Recall, however, that we also deal with a problem to determine the
value (or values) of ¢ such that there exists a function U = U(z) which satisfies (2.4) in
the following sense.

Definition 2.2 (Definition of solution). Let U : R — [0,1], U € C'(R). We denote
My:={2€eR:U(z)=s;,i=1,2,....,n}, Ny:={2€R:U(z)=0o0r U(z) =1}
Then U is called a solution of (2.4) if the following holds:
(a) OMy UONy = Dy.
(b) For any z € OMy there exist finite one-sided derivatives U'(z—), U’(2+) and

L(z) = |U'(z=)]P 2 U (2=) lim d(U(€)) = |U"(z+)[" U'(24) Lim d(U(€)).

E—z— E—z+
(¢) Function v : R — R defined by
AU ) U (2)P2U(2), 2 ¢ dMy UINy,
v(z):=4 0, 2 € ONy,
L(Z), z € 8]\/[[]

is continuous and for any z,z € R

v(2) —v(z) +c(U(2) = U(2)) +/ g(U(&))d§ = 0. (2.5)
Moreover, lim wv(z) = 0 if either lim U(z) = 1 and lim U(z) = 0 or else
z—*+o0 z——00 z—+00
lim U(z) =0and lim U(z)=1.
Z—>—00 Z—r+00

Let us now explain the main idea behind the definition. Some technical details will
be addressed in the subsequent remarks. The profile U = U(z) is defined on the whole
real line and it is a non-smooth function in general. The lack of differentiability is caused
by the discontinuities of the diffusion coefficient and possibly also by its behaviour near
0 and 1. In particular, if the profile reaches one or both equilibria in a finite z, it can do
so with a non-zero slope. Therefore, we introduce the sets My, Ny to account for such
phenomena.

Observe that part (a) holds for any monotone profile, since both sets My and dNy
consist of isolated points. We will prove in the next section that if g is a monostable reac-
tion term and a solution U of (2.4) satisfies boundary conditions U(—o0) = 1, U(+o0) = 0,
then U is necessarily nonincreasing on R. As for the bistable reaction term, an analogous
result cannot be obtained in general. However, it is reasonable to expect some solutions
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to have this property, cf. [35, Proposition 2]. We will discuss this topic in more detail at
the end of this chapter.

For a more intuitive understanding of parts (b) and (c) of the definition, suppose for
now that ¢ = 0, i.e., let us look for non-constant stationary solutions u(x,t) = u(zx) of
(2.1), which satisfy the equation

(du@) W @2 (@)) = —glute)), zeR = O

= (2.6)

Since g € C|0, 1], it is natural to require that the function d(u(z))u/(z)|P~2u'(z) =: v(x) is
continuously differentiable. Hence it is sufficient to assume that only one-sided derivatives
of u = u(x) exist for x € IM, as long as they are properly “compensated” by the
discontinuities of d. The resulting product v then attains one value, but the individual
terms taken as one-sided limits can be unequal. In other words, the transition condition
[ (z=) [P ! (w=) Jim d(u(€)) = |/ (z4)["" ' (2+) Jim d(u(€))
E—x— E—a+
from part (b) of the definition must hold. To visualize this condition, let us assume for
simplicity that d has only one point of discontinuity s; € (0,1) with d(s;—) > d(s1+),
N, = () and the solution v = u(x) is a decreasing function. Then M, = {&}, u(&) = s;
and u/(§—) < u/(&+), as illustrated in Figure 2.3. The stationary case ¢ = 0 is special

|
6

Figure 2.3: Profile of a nonincreasing solution u = u(z) for d discontinuous at s;

in the sense that the continuous function v = v(z), defined in part (c) of the definition,
is indeed differentiable for all x € R, c¢f. Remark 2.4 below. A similar reasoning for

(AVE P2 U(2) + () = —9(U(2)

with ¢ # 0 becomes more involved due to the additional term c¢U’(z) on the left-hand
side, but the general idea remains the same, suggesting that at some points we can now
expect only the existence of one-sided derivatives v'(z=).

Finally, the requirement concerning limits v(400), provided certain boundary condi-
tions are satisfied, is motivated by the case of a smooth diffusion coefficient. According
to [22, Lemma 6.1], if g is a monostable reaction term and d € C'(0,1) is positive and
bounded, these limits are equal to zero. Since our diffusion coefficient d need not be
bounded, we incorporate this property explicitly into the definition.

We now proceed with some more detailed remarks concerning Definition 2.2.
Remark 2.3. Constant functions U(z) =k, z € R, where k € [0, 1] is such that g(k) = 0,
are solutions of (2.4). In particular, Uy = 0 and U; = 1 are solutions. Here My, = My, =

0, Ny, = Ny, = R. In the monostable case, those are the only constant solutions, while
in the bistable case we have at least one more constant solution, namely U, = s,.

14



Remark 2.4. Non-constant stationary solutions u(x,t) = u(x) of (2.1) satisfy the equa-
tion

(At 1) () + () = 0

in the sense of Definition 2.2 with ¢ = 0. In particular, the first integral (2.5) becomes

v(@) — v(z) + / " g(u(€))dé =0

for all z,z € R. Multiplying both sides of the above equation by % and passing to the
limit for A — 0, we obtain that v is continuously differentiable and

v'(z) + g(u(r)) =0
holds for all z € R.

Remark 2.5. Let z ¢ OMy UONy, 2 = z+ h, h # 0. Since My and 0Ny are closed
sets, we can choose |h| so small that 2 ¢ OMy U ONy. Divide (2.5) by h and let h — 0.
Then, by Definition 2.2, the derivative U’(z) exists and

V'(2) +cU'(2) + g(U(2)) = 0. (2.7)

In particular, v is differentiable in z ¢ My U ONy .
Proceeding similarly for z € OMy and taking the limits as h — 0— and h — 0+, we
obtain

V(z=) +cU'(z=) + g(U(2)) =0

and
v'(2+) + cU'(2+) + g(U(z)) = 0,

respectively. In particular, both v'(z—), v/(2+) exist and they are finite.

Remark 2.6. Let p =2, d = 1 and let U = U(z) be a solution of (2.4) in the sense of
Definition 2.2. Then My = () and U € C'(R \ dNy). It follows from Remark 2.5 that
v(z) = U'(2) is differentiable for any z ¢ ONy. In particular, if Ny = @ then U € C*(R)
and the equation (2.4) holds pointwise.

Remark 2.7. Let U = U(z) be a solution of (2.4) such that Ny # (). Clearly U'(z) =0
if z € int Nyy. The existence of U'(z) (and also U'(z—), U'(2+)) for z € ONy depends on
the behaviour of d near 0 and 1. In particular, if

liminfd(s) >0 and liminfd(s) >0

s—0+ s—1—
then it follows from the continuity of v that U’(z) = 0 for any z € ONy. On the other

hand, if lim,_,4 d(s) = 0 (lims_,1— d(s) = 0) then U’(z=£) need not be equal or even finite
for = € 9Ny such that U(z) =0 (U(z) = 1).

Remark 2.8. Since the equation (2.4) is autonomous, then if U = U(z) is a solution of
(2.4), given any fixed ¢ € R, the function z — U(z + &) is also a solution of (2.4).
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2.2 Monotonicity of solutions

Consider the boundary value problem (b.v.p. for short)

(dUE P V() +eU'(2) + 9(U(2)) =0, z€R
lim U(z)=1, lim U(z)=0. (28)
Z—>—00 z—+00

A typical result established for p = 2 states that each solution U = U(z) of (2.8) is
nonincreasing on R and strictly decreasing in the open interval J:={z e R: 0 < U(z) <
1}, see e.g. [23, 33, 35]. Moreover, the derivative of U does not vanish in J. As shown in
[16, Proposition 3.4] for monostable reaction, the profile U maintains this property even
if d € C(0,1) has integrable singularities near 0 and 1. Below we extend this result to the
case p > 1 within our functional setting.

Let U = U(z) be a solution of (2.8) with a monostable reaction term g. Passing to
the limit for 2 — —oo in (2.5) and writing z in place of 2, we obtain that

z

v(z)+c(U(z) — 1)+ / g(U(o))do =0 (2.9)

holds for any z € R. On the other hand, passing to the limit for Z — +o00 in (2.5), we

obtain that
+oo

o(2) + U () — / o(U(0)) do = 0 (2.10)

z

holds for any z € R. Taking now the limit for z — —o0 in (2.10) yields

—+00

- /g(U(a)) do

— 00

and it follows from g > 0 in (0,1) that ¢ > 0. Similarly, for the opposite boundary
conditions U(—o0) =0, U(+00) = 1 we would arrive at ¢ < 0.

Lemma 2.9. Let U = U(z), z € R, be a solution of the b.v.p. (2.8) with monostable
reaction term g € C[0,1] and assume & € Ny. Then the following two alternatives occur:

(i) if U(&) =0 then U(z) = 0 for every z > &;
(i) fU(&) =1 then U(z) =1 for every z < &.

Proof. (i) Let U(§) = 0 and assume that there exists & > ¢ such that U(&,) > 0. Taking
&, closer to ¢ if necessary, we may assume that also U(£,) < 1. Then ¢g(U(&,)) > 0 and
therefore f;oo g(U(o))do > 0. From the definition of v we get v(§) = 0 and from (2.10)
with z = £ we deduce f;roo g(U(0))do = 0, a contradiction.

(ii) Let U(§) = 1 and assume that there exists & < & such that U(&,) < 1. Taking &,
closer to 5 if necessary, we can guarantee also U(&,) > 0. Hence g(U(&)) > 0 and so
fg ))do > 0. From the definition of v we have v(£) = 0 and from (2.9) with z = ¢

we deduce f_goo g(U(o))do = 0, a contradiction. O
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Proposition 2.10. Let U = U(z), z € R, be a solution of the b.v.p. (2.8) with monostable
reaction term g € C[0,1]. Then U is nonincreasing on R and strictly decreasing in the
open interval J = {z € R: 0 < U(z) < 1}. Moreover, for z € J we have U'(z) < 0 if
z2& My and U'(2—) <0, U'(z4) <0 if z € My.

Proof. Clearly, the set J is open and from Lemma 2.9 we conclude that J = (2, z1) where
—00<zp <2z <400, U(zg) =11if zp € Rand U(z;) =0 if z; € R.

Let £ € J be such that U'(§—) = 0. Then it follows from Remark 2.5 (for both
alternatives z ¢ OMy and z € OMy) that

v(€=) = —g(U(g)) <0.

Since v(§) = 0, there exists a left neighbourhood U_(&) of the point £ such that for all
z € U_(§) we have v(z) > 0. Taking U_(&) smaller if necessary, we may assume that
Ny NU-_(§) = 0. Since d(U(z)) > 0, z € U_(E), from v(z) > 0 we deduce that for any
z € U_(&) we have also U'(z—) > 0, U'(z+) > 0. However, this implies that U(z) < U(¢),
z € U_(§). Since, by Definition 2.2, U'(¢+) = 0, we deduce similarly as above that there
is also a right neighbourhood U, () of £ such that U(z) < U(§), z € U (§). Therefore, &
is the point of strict local maximum for U. Since U(z) — 1 as z — —oo and U(§) < 1,
there is &, € (—00,&) such that U(§) < U(&) < 1. Let £* € &, €] be a global minimizer
for U over the compact interval [£,,&]. Then U(£*) < U(§) < U(&) < 1 and therefore
& € (&, €). In particular, £* is also a local minimizer for U. If £* ¢ OMy then U'(£*) exists
and hence U'(£*) = 0 (¢* is a local minimizer for U). We can prove as above that £* is a
strict local maximizer for U, a contradiction. Finally, if £* € OMy then from Definition 2.2
(b) and d(U(£*)) > 0 we conclude sgn U’(£*) = sgn U’(&7). But £* being local minimizer
for U implies that U'(¢*) < 0 and U'(¢%) > 0. Hence, U'(¢*) = U'(&) = 0, ie,
U’'(¢*) = 0 and we proceed as above. This concludes the proof. O

Remark 2.11. In the case of bistable reaction term g we are not able to prove Lemma 2.9
and Proposition 2.10 as it is possible for p = 2, smooth d and g, see e.g. [23]. The proof
relies on the uniqueness of the solution of the initial value problem for the second-order
equation in (2.8). However, in our general setting of the problem this uniqueness result is
not available. Therefore, in the bistable case we will always deal a priori with monotone
travelling wave profiles U = U(z) with properties from Proposition 2.10.

2.3 Reduction to a first-order problem

Let U = U(z) be a solution of (2.8) which is nonincreasing on R and there exists an open
interval (zp,21) C R, —00 < z5 < 21 < 400, such that U is strictly decreasing in (2o, z1),

lim U(z)=1 and U(z)

z—zo+

lim U(z)=0 and U(z)=0 if 2z <z < +oo.

Z—Z1—

1 if —oo<z< 2,

Moreover, My = {&1,&s, ..., &, where U(&;) = s, =1,2,...,n. In particular, int My =
() and My = OMy. For all z ¢ My U Ny we have U'(z) < 0 and for all z € My we have
U'(2—) <0 and U'(2+) < 0. The function U is continuous and piecewise C! in the sense
that U |(§i7§i+l) € C1(&,&41). Therefore, there exists a strictly decreasing inverse function
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U™ :(0,1) = (20,21), 2 = U L(U), such that U‘l\(%swl) € Cl(si,8i41),1=0,1,....n

and the limits
LY (SUCUA B O AT
Usssi— AU et dz T USs+dU - \smé- dz

exist finite, 1 = 1,2,...,n. Set
w(U) =v(2(U)), U € (0,1). (2.11)
Then w = w(U) is a piecewise C''-function in (0, 1),

S Cl(Si,SH_l), izO,l,...,n,

w (si,8i41)

with finite limits limy_,,,— w'(U), limy_s4+ @' (U), i = 1,2,...,n. Therefore, for any
z € (&,&11) and U € (s;,841), 1 =0,1,...,n, we have

d d dw p
Su(x) = Tu(U() = 75 (UE) U). (2.12)

From v(z) = —d(U(2)) |U'(2)|"~" we deduce that

L
Uie) =~ ‘d(U(z»

p'—1

R (2.13)

From (2.11), (2.12) and (2.13),

Qv o)
el AU ey

Therefore, the equation (2.7) for z € (&;,&;1+1) becomes

p’_l__d_w‘w(U) p'—1

U w(U) P
- ‘% - ‘% +g(U) =0, U € (si,sit1),
1 =0,1,...,n. This is equivalent to
’_ dw ’_ /_
jw]" au = ¢l L (dU) T g(U), (2.14)
or 1 d
S au [wl” = clwl” ™t = (@) g(U). (2.15)
Writing ¢ instead of U, we set
_1
ft) = (d(t)7 g(t) (2.16)

and y(t) = |w(t)|”". Then (2.15) becomes

y(t)=p" [cly®)r - f(t)] ;e (0,1)\ U{Si}- (2.17)
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From the boundary conditions in (2.8) and Definition 2.2 (¢) we deduce that v(z) — 0
as z — 2o+ or z — z;— which is equivalent to limy oy w(U) = limy_— w(U) = 0.
Therefore, y = y(t) satisfies the boundary conditions

y(0) = y(1) = 0. (2.18)
On the other hand, let us suppose that y = y(t), y € C[0, 1], is a positive solution of

1
(2.17), (2.18). Set w(s) := —(y(s))?". Then w satisfies (2.14) and (2.15). For U € (0,1)

set ;
2(U) = —/%

where w(s) = —(y(s))ﬁ Then the function z = z(U) is continuous strictly decreasing in
(0,1), z(%) = 0 and maps the interval (0,1) onto (2, 21), where —oo < z5 < z; < +00.
Let us denote by U : (29, 21) — (0,1) the inverse function to z = z(U). Then U(0) = 3,
U is continuous strictly decreasing,

_1
p—1

ds) |7 g (2.19)

w(s)

lim U(z)=1 and lim U(z)=0.
z—zo+ z—z1—
Let z € (&,&41),1=0,1,...,n, where U(&;) = s;, 0 =0,1,...,n,n+1. Then from (2.19)
we deduce )

((ii_g = dz:(I-U) = — ‘% y U e <8i,81'+1), (220)
ie, U e Cl(&,&q_l), U/(Z) < 0 and
—d(U(2)) dif) CCw(U(2) = u(z), (2.21)
h d dUpP?au|  d _dw dU(2)
— e || T = ) = (2.22)
From (2.14), (2.21) we deduce
= @) (el @)+ (@) g(0)
= —c+ [w(U)[" ((U))" " g(U)
. o —(-1'-1) -
= e+ () | @UE)Y ™ oU()
— et ‘d[f) (U2,
Let us substitute this into (2.22):
awen| [ = e |2 swen| S - - g,
d% d(U(2)) %p_ % cdziz) L gU() =0, 2€(€&m), i=01, . n.




It follows from (2.20) that

. w(s;) " .
| U’ = —|— =12 ...
vt (2) lim d(s)| PR Seh
s—s;+

Notice that lims s+ d(s) # 0 due to (H1). From (2.21) and the continuity of U we then
have

lim d(U(2))|U"(2)P 72U (2) = lim dU)|U' ()P 2U'(z) =0

z—rzo+ z—z1—

and the following one-sided limits are finite

lim d(U U U (2P U (z) = lim d(U(2) |U'(2)P U (2), i=1,2,...,n.

z2—Ei— z—E&i+
Since U is monotone decreasing in (2o, z1), we have

lim d(U(z)) = lim d(s) and lim d(U(z)) = lim d(s), i1=1,2,...

z—&i— §—8;+ z—&i+ S—>8;—

, M.

Therefore, U satisfies the transition condition

U U (&) Jim d(s) = U (&) U'(&+) Jim d(s), i=1.2,....n.

S—>S;—
We may summarize the above reasoning in the following equivalence.

Proposition 2.12. Let g be a monostable reaction term. Then U = U(z), U € CY(R)
is a unique solution (up to translation) of (2.8) if and only if y : [0,1] = R, y € C|0,1
is a unique positive solution of (2.17), (2.18).

Let g be a bistable reaction term. Then U = U(z), U € CY(R), is a unique (up to
translation) nonincreasing solution of (2.8) if and only if y : [0,1] = R, y € C[0,1] is a
unique positive solution of (2.17), (2.18).

|

Thanks to this proposition, we can study the first-order problem (2.17), (2.18) to
derive the existence and uniqueness of solution to the second-order b.v.p. (2.8). Let
us recall that there are two “unknowns” in this problem. Indeed, besides the positive
solution y = y(t) we also look for unknown speed of propagation ¢ > 0. Therefore, (2.17),
(2.18) is not overdetermined.

Next, we discuss the sign of the speed of propagation c¢. Let y(t) > 0, ¢t € (0,1) be a
positive solution of (2.17), (2.18). Integrating (2.17) and using (2.18) we obtain

0=u) =0 = [ W= e [ @ - [ sl

_ hswd (2.23)
S () dt’ '

where [ is given by (2.16). It follows immediately that the sign of ¢ is ultimately deter-

mined by the sign of
1 1 1
| swae= [ s g
0 0

justifying the following lemma.

and hence
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Lemma 2.13. Let us assume that

/ @) gt >0 (<0)

and BVP (2.17), (2.18) has a positive solution. Then ¢ > 0 (< 0).

Remark 2.14. Suppose that the following balanced condition holds

| s gty as = o.

Then ¢ = 0 and .
o) == [ @) g as, e 1) (2.24)

is a unique positive solution of (2.17), (2.18) with ¢ = 0 (c¢f. Theorem 3.10). The solution
given by (2.24) leads to the stationary wave. Its profile u = u(x) satisfies the equation

(d(u(x))]u'(x)|p’2u’(x))/ +g(u(x)) =0, xeR.

Remark 2.15. If we were to look for nondecreasing solutions instead of nonincreasing
ones, the procedure leading up to the first-order problem would be the same. Let us
denote the speed of propagation of a nondecreasing travelling wave by C. Since U'(z) > 0
whenever U’ exists and U'(z—) > 0, U'(z+) > 0 if z = &, i = 1,2,...,n, instead of
equation (2.15) we would arrive at

1 d p/ p/_l /_1
- _ — (d(L))P
sao v C fw] @dW))” " g(U),

where |w| = w. The corresponding first order equation can be written in the form (2.17)
if we set ¢ = —C. Therefore, the existence results regarding nonincreasing solutions also
hold for nondecreasing travelling waves which travel in the opposite direction.
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Chapter 3

The first-order ODE

In this chapter, we study the first-order boundary value problem

{y'<t> = [crr )7 - 1] te ),
y(0) = y(1) =0,

o575 ¢ € Riis a parameter, f € LY0,1) and y*(t) = max{y(t),0}.

For f(t) = (d(t )) -1 g(t), where d and g satisfy hypotheses (H1), (H2), respectively,
positive solutions of (3.1) correspond via Proposition 2.12 to nonincreasing solutions of
the second-order b.v.p. (2.8). However, it is important to note that the results presented
in this chapter apply to even more general functions f and are therefore of independent
interest. In particular, existence and uniqueness for the associated initial value problems
(cf. Section 3.1) hold for any f € L'(0,1). Specifying the sign conditions on f, we then
derive existence and non-existence results for the b.v.p. (3.1) in two qualitatively different
cases.

In [22], the b.v.p. (3.1) was studied for functions f € C10, 1] of types A, B and C with
f(0) = f(1) = 0. The lack of continuity of f in our setting requires the employment of
different techniques to establish fundamental results and consequently prove the existence
of solutions to (3.1). Due to the assumption f € L'(0,1), we consider solutions in the
sense of Carathéodory, i.e., functions which are absolutely continuous in [0, 1] and satisfy
the differential equation for a.e. ¢t € [0,1]. In what follows, we will refer to a solution in
the sense of Carathéodory simply as “solution”.

(3.1)

where p > 1, p/ = £

3.1 Initial value problems

Throughout this section we assume f € L'(0,1). For (¢,y,c) € [0,1] x R? we set

h(t,y,c) = [c (y+)% - f(t)}

and study the following two initial value problems on [0, 1], which depend on the parameter
ceR:

y'(t) = h(t,y(t),c), y(0) =0 (3.2)

and
y'(t) = h(t,y(t).c), y(1)=0. (3.3)
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Using the terminology from [16], (3.2) will be referred to as forward initial value problem,
while (3.3) will be referred to as backward initial value problem. Our aim is to determine
whether for some values of ¢ € R, the corresponding solution y. = y.(t), t € [0,1], of
either (3.2) or (3.3) also vanishes at the other endpoint of [0, 1].

First, let us note that f € L'(0,1) implies that h = h(t,y, c) satisfies Carathéodory
conditions, i.e., for almost every t € [0,1] fixed, h(t,-,-) is continuous with respect to y
and ¢ and for every y € R and ¢ € R fixed, h(-,y, ¢) is measurable with respect to t.

Lemma 3.1. For any ¢ € R there ezists at least one solution y. = y.(t) of the froward
i.v.p. (3.2) defined on the entire interval [0, 1]. The same holds for the backward i.v.p. (3.3).

Proof. Let ¢ € R and f € L'(0,1) be fixed. Since h = h(t,y, c) satisfies Carathéodory
conditions, then according to [43, §10.XVIII, p.121], it is sufficient to show that there
exists m € L'(0,1) such that |h(t,y,c)] < m(t) for (t,y) € [0,1] x R. However, the
function y — (y*)% is not bounded from above, hence we cannot apply this result directly.
Therefore, we first show that all solutions of (3.2), if they exist, are a priori bounded by
a constant K > 0.

Integrating (3.2), we obtain

y(o) =/ <c/0 (y*(r))? dr — /Oaf(f) dT> . oe(0,1). (3.4)

For t € (0,1) set

t) = .
o(t) max ly(o)|

It follows from (3.4) that for o € [0, ]

ol <o (1d [ ) dr+ 17l

and therefore

ot) < (\c\ mo [ ()} dr+ Hfup(o,l))

o€[0,t]

1 1
<y (\c\ [ max () ar+ Hf|rL1(0,1>)

o€[0,t]
1

<y <|c| (1 )" + Hf||L1<o,1>) = o/ (1l )% + 110

g

Since 1 < 1, the last inequality yields that there exists a constant K > 0 such that

p
o(t) < K for all t € [0, 1].

Let us set
h(t,y,c) for [y| < K,
Bty ) = o (k> = () fory> K,
—p'f(t) for y < —K.

Then solutions of the modified problem

y () = hit,y(t),e),  y(0) =0 (3.5)
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are bounded by the same constant K > 0. Indeed, following the same procedure as above,
we obtain

t) =
o(t) max ly(o)|

1 1
< llime [ @ arridma [ Kl

o€el0,t] a€(0,t]
{re(0,0): ly(m)|<K} {re(0,0):y(T)2K}

<y (|cr me [ (7 () ar+ anLl(o,l))

o€l0,t]

1 1
<y (|cr [ max (47 0) ar + ||fuL1<o,1>)

o€[0,¢]
1

</ (rc| (1 1) + ufHLl(o,U) = (1l @)% + o)

Therefore, o(t) < K for all t € [0, 1] and the set of solutions of the modified problem (3.5)
coincides with the set of solutions of (3.2). But h satisfies Carathéodory conditions and
there is a function m € L'(0,1) such that |h(t,y,c)| < m(t) for (¢,y) € [0,1] x R. Hence,

(3.5) (and thus also (3.2)) has at least one solution in [0, 1]. Similarly we proceed in the
case of the backward i.v.p. (3.3). O

Remark 3.2. The solution y. in the above lemma is not unique in general due to the
fact that the function

B =

y—=c(yh)r, yeR,
does not satisfy Lipschitz condition at 0. However, this function is nondecreasing for
¢ > 0 and nonincreasing for ¢ < 0. Therefore, it satisfies one-sided Lipschitz condition in

either case and we can derive uniqueness results separately for the forward and backward
initial value problems.

Lemma 3.3. If ¢ < 0, then the forward i.v.p. (3.2) has exactly one solution y. = y.(t),
€ [0,1]. If ¢ > 0, then the backward i.v.p. (3.3) has exactly one solution y. = y.(t),
te[0,1].

Proof. Since the idea of the proof is the same for both alternatives, we only prove the
latter. Let ¢ > 0 and y; = yi1(t), y2 = y2(t) be two solutions of (3.3) in [0, 1]. Set

3(t) = (n(t) — (1))’

Then 6(1) =0, §(¢t) > 0 and

0'(t) = 2 (11(t) — (1)) (y1(t) — wa(2))

1

=2/ [(u (1) — (s (1)7] (i (1) = a(t) > 0.

(the functions positive part and 1/p-th power are both nondecreasing). Hence §(t) = 0
for a.e. t € [0,1] and y; () = ya(t), t € [0, 1]. O

Thanks to the uniqueness result, we also have continuous dependence of solutions on
the parameter c.
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Lemma 3.4. Let ¢co > 0. Then ¢ — ¢cg > 0 or ¢ = 0+ if ¢ = 0 implies that solutions
Ye = Ye(t) of the backward i.v.p. (3.3) converge uniformly in [0,1] (i.e., in the topology of
C10,1]) to ye,- A corresponding statement holds for ¢y < 0 and the forward i.v.p. (3.2).

Proof. The proof follows from the uniqueness result in Lemma 3.3 and [9, Theorems 4.1
and 4.2 in Chapter 2]. O

In Section 2.2 we have shown that when looking for solutions U = U(z) of the
b.v.p. (2.8), monostable reaction term ¢ yields ¢ > 0. As for the bistable case, the
sign of the wavespeed c is given by the sign of

1
0

/0 F(t)dt = / (1) (1) dt,

cf. Lemma 2.13. Therefore, we further focus on parameters ¢ € [0, +00) and the backward
i.v.p. (3.3).

Let us introduce the notion of defect P.p of a function ¢ with respect to the differential
equation y' = h(t,y,c), see [43, §9.11, p. 90]:

P := @l(t) - h(t7 (p(t), C)'

The defect indicates “how close” is ¢ to being a solution of the differential equation. In
particular, the defect of a solution is 0. The following comparison argument is one of our
basic tools.

Lemma 3.5. Let ¢ > 0 and assume that the functions ¢, ¢ € ACI0,1] satisfy p(1) <
¥(1), Pup > Pap a.e. in [0,1]. Then ¢ < in [0,1].

Proof. Set w =1 — ¢. Then
w = = = Pap +pe(¥)r — Pep — ple(gt)r <ple ((W)% - (W)%) (3.6)

a.e. in [0, 1]. Assume that there is ty € (0, 1) such that w(ty) < 0. Let t; € (o, 1] be such
that w(t) <0, t € (to, t1]. It follows from (3.6) that w' < p’c[(@/ﬁ)% - (gp*)%] <0 a.e. in
(to, t1], ie., w(t;) < w(ty) < 0. By using the same argument repeatedly if necessary, we
conclude that w(1) < 0, a contradiction with ¢(1) < (1). O

Corollary 3.6. Let 0 < ¢ < co. Let y., and y., be the solutions of the backward
i.v.p. (3.3) with ¢ = ¢; and ¢ = ¢y, respectively. Then

Yor () = yer (1), T €]0,1].
In particular, y.,(0) > y.,(0).
Proof. We have

Pczycl = yél - h(t, Yeys 02) = yél - h(tv Yey s Cl) +h<t, Yeys Cl) - h(t7 Yey s 02)

J/

-

=0

<0=1y,, — h(t,Ye,» c2) = Poyye, a.e. in [0, 1].

D=

=p'(er —c2) (ua))

Since ye, (1) =y, (1) = 0, Lemma 3.5 yields that y., > vy, in [0, 1]. O
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So far we have shown that for each ¢ > 0 there exists a unique solution of (3.3) and
the solutions y. = y.(t) decrease (not strictly) with c¢. Note that these results hold for
any f € L'(0,1).

In order to prove the existence of solution to the b.v.p. (3.1), we restrict ourselves to
two cases according to the sign of the function f on [0, 1]. For simplicity, we denote these
cases as bistable and monostable, indicating which type of reaction term g will lead to

the desired properties of f given by f(t) = (d(t))ril g(t).
3.2 Bistable case
Let f € L'(0,1) have the following property: there exists s, € (0,1) such that

F) <0 ifte(0,s), f(t)>0 ifte (s,1). (3.7)

In this section, we prove that if (3.7) holds and

/1 f(t)dt >0, (3.8)

there exists a unique ¢, > 0 such that the b.v.p. (3.1) possesses a unique positive solution
Ye. = Ye. (1), t € [0,1]. More precisely, strict inequality in (3.8) leads to ¢, > 0, while in
the case of equality we obtain that ¢, = 0.

First, we mention the following two corollaries of Lemma 3.5.

Corollary 3.7. Assume that f € L'(0,1) satisfies (3.7) and f € L'(0,1) is such that

f(t) =0 forte(0,s,), f(t) = f(t) fort € (s1).

Let ¢ > 0 and g. = §.(t), t € [0,1], be a solution of the backward i.v.p. (3.3) with f
replaced by f. Then y. < . in [0, 1].

Proof. Set ﬁ(t,y,c) =7 c(y+(t))% — f(t)] Then h < h and so

chc = gé - h(tv gcv C) = gé - h(tv gcv C) +h(t7 gm C) - h(ta gca C) S 0= yé - h(tv Ye, C)

—_——
=0
= P.y. ae.in [0,1].
It then follows from Lemma 3.5 that y. < g. in [0, 1]. O

Corollary 3.8. Let f € L'(0,1) be such that (3.7) holds and f is lower semicontinuous
in (s«,1). Let y. = y.(t) be a solution of the backward i.v.p. (3.3) with ¢ > 0. Then
Ye(t) >0 fort € (s, 1).

Proof. We have
PO=0—h(t,0,c) =9 f(t) > 0=y, — h(t,y.,c) = Py, ae. in [s,]1].

It follows from Lemma 3.5 with 0 replaced by s, that y. > 0 in [s,,1]. We prove that
Yo > 01in (84, 1). Indeed, assume the contrary, i.e., there is ty € (s, 1) such that y.(¢y) = 0.
Since f is positive and lower semicontinuous in (s, 1), given arbitrarily small £ > 0 there
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exists o > 0 such that f(t) > o > 0 for all ¢t € [ty, 1 — £]. Integrating the equation in (3.3)
from to to t € (ty, 1 — €] and using y.(to) = 0, we get

yc@>::p'(c]£f<y:<f>)i<fr——]£ff<f>df>,

wlt) _ [, fo @) dr J fn)dr

= 3.9
t—t, t—t, t—t, (39)
Since ,
T)dr
) > o, (3.10)
t—t,
and, due to continuity of y. at ¢y also
Jio W (7))7 dr
lim =% — 0, (3.11)
t—to+ t— 1ty
we conclude from (3.9)—(3.11) that for ¢ and ¢, close enough,
t—ty
a contradiction. Therefore, y. > 0 in (s,,1). O

Below we present the main assertions of this section. In Theorem 3.9, we assume that
fol f(t)dt > 0, while Theorem 3.10 deals with the case of fol f(t)dt = 0. We refer to these
cases as unbalanced and balanced, respectively.

Theorem 3.9 (Unbalanced case). Let f € L'(0,1) be such that (3.7) holds, f is lower
semicontinuous in (S, 1) and

/le(t)dt>0.

Then there exists a number ¢, > 0 such that the b.v.p. (3.1) has a unique positive solution
if and only if ¢ = c,.

Proof. Let yo = yo(t) be the solution of the backward i.v.p. (3.3) with ¢ = 0. It follows
from our assumptions on f that

yo(t) = p'/1 f(s)ds >0 forall ¢t€l0,1). (3.12)

In particular, yo(0) > 0.
Set
e i =sup{c>0:y.(t)>0 forall te(0,1)}.

From (3.12), continuous dependence on parameter (Lemma 3.4) and Corollary 3.8, we
conclude that the set {¢ > 0: y.(t) > 0 for all ¢t € (0,1)} is non-empty and therefore ¢, >
0. Next we prove that ¢, < +o00. Indeed, if ¢, = +o00, then by the definition of ¢, there
exist ¢, — 400 and corresponding y., = ¥, (t) satisfying y., > 0 in (0,1). Let f and
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Yo = Yc(t) be as in Corollary 3.7. Since g, > y., in (0,1) by the same corollary, we have
e, > 01in (0,1) and ., satisfies

7 (t) = pen (G, (D)7, t€(0,5.), (3.13)
P =¥ |ea e, ()7 = F1)] s € (s.,1), (3.14)

Separating variables in (3.13) yields
(oo ()7 = (e, ()7 + calt —5.), T € (0,5.). (3.15)

On the other hand, from (3.14) we obtain

3 =

?Jcn(s*)zp’/ f(t)dt—p’c/ (g2 (1)) dt.

It follows that for all n € N
1
e, (84) < p'/ f(t)dt < +o0

and therefore for any ¢ € (0, s,) the right-hand side of (3.15) tends to —oo as n — +oo,
a contradiction. Hence ¢, < +o00.

Now we prove that y., (0) = 0 and y., (t) > 0, t € (0,1). By continuous dependence on
parameter (Lemma 3.4), Corollary 3.8 and the definition of ¢,, the function y., = y.,(t)
must vanish somewhere in [0, s.|. Let n € [0, s.] be the largest zero of y.,. If n > 0, then
for ¢ < ¢, and t € (0,7n] we have y.(t) > 0 and hence from

1

YD) = pe [0 = F(B)] = Pew®)r, te(O.m),

separating variables we deduce

1 1
v o

0 < (ge(t)?" < (ye(m))?" +c(t —n), te€(0,n). (3.16)
Since for ¢ — ¢, we have y.(n) — y..(n) = 0 by Lemma 3.4, for any fixed ¢ € (0,7) there
exists ¢ < ¢, (¢, — ¢) sufficiently small, such that

1
v

(Ye(n))?" +c(t —n) <0,

which contradicts (3.16). Therefore n = 0.

Finally, we show that positive solutions of the backward i.v.p. (3.3) do not vanish at
0 for other values of ¢ different from c¢,. Assume by contradiction that there exists ¢ # ¢,
such that y» = ya(t) > 0 and y»(0) = 0. It follows immediately from the definition of ¢,
that ¢ < ¢, and by Corollary 3.6 we have ya(t) > y.,(t), t € (0,1). Since

vilt) =7 [e(wel)? — £(0)] (3.17)
v (0) =1 e (e (0)F — £)] (3.18)

for ¢ € [¢, ¢.] we obtain
v) <9 [e(welt))? — 1(8)] (3.19)
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and X

Ye () 2 9" | (ye(t))r — f(T) (3.20)

1
7

>0, 20 = (y.,)” > 0. Then z; > z in (0,1) and it

=

for a.e. t € (0,1). Set z1 = (yz)?
follows from (3.19) and (3.20) that

2(t) <e— ﬁ : (3.21)
2(t) > ¢ — L% : (3.22)

(
for a.e. t € (0,1). Let us subtract (3.22) from (3.21) and restrict on the interval (0, s,)
where f(¢t) < 0. Then

(z21(t) — 2(t)) < —f(t) ( ! e ! 1)

and
1 1
(21(t) = 22(t)) ((t) — (1) < = f(1) ( - - 1> (21(t) = 22(t)) <0
(21(8)) 77 (z2(t))7
for a.e. t € (0,s,). Hence
Ld (z1(t) — 22(t))> <0 for ae. t € (0,s,) (3.23)
2dt - T '

Since z1(0) = 22(0) = 0, it follows from (3.23) that z1(t) = 23(t), t € (0, s4), i.e., ya(t) =
Ye.(t), t € (0,s.). Equations (3.17), (3.18) then hold for both ye, y.. on (0,s.) and by
subtraction we conclude that

0=7p(¢—c.) (Ye.(t)?, te(0,s,).

But this equality cannot hold unless ¢ = ¢,. Therefore c, is the unique value of ¢ for
which 4.(0) = 0 and y. > 0 in (0,1). The uniqueness of y., as a solution of the b.v.p.
(3.1) follows from the uniqueness result for the backward i.v.p. (3.3). This completes the
proof. O

hSA

Theorem 3.10 (Balanced case). Let f € L'(0,1) be such that (3.7) holds, f < 0 on (0,4)
for some § € (0,s,) and

/1 F(t)dt =0. (3.24)

Then the b.v.p. (3.1) has a unique positive solution if and only if ¢ = 0.

Proof. Let y = y(t), t € [0, 1], be a positive solution of (3.1). Integrating the equation in
(3.1) from 0 to 1 and using the boundary conditions together with (3.24), we obtain

0=s) =0 = [ W= e [ o) a- [ roa] =ve [ (o)

Hence ¢ = 0.

3=

dt.
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On the other hand, the backward i.v.p. (3.3) with ¢ = 0 has a unique solution

/f

It follows from our assumptions on f that y(¢) > 0 for all ¢ € (0,1) and y(0) = 0.
Therefore, it is also a unique positive solution of (3.1). O

Remark 3.11. Unlike in the unbalanced case, Theorem 3.10 does not require the as-

sumption of lower semicontinuity of f in (s, 1). On the other hand, f must now be

negative on some small neighbourhood of 0 to ensure that the integral of f is equal to

0 only when taken over the entire interval (0,1). Although properties (3.7) and (3.24)

imply that f must be negative on a set of non-zero measure, if f = 0 on (0,9), then
=7 ftl f(s)ds =0 (at least) on (0,9).

Remark 3.12. The result in Theorem 3.10 remains valid under the following (more
general) assumptions on f: (3.24) holds and there exist a, 8 € (0,1), a < 3, such that
f<0on (0,a), f<0on (a,8.), f>0on (sfF) and f >0 on (4,1). In particular, f
might be equal to zero on (a, f3).

3.3 Monostable case

We now consider the case when f > 0in (0,1). We formulate sufficient conditions under
which there exist positive solutions of (3.1) for a continuum of admissible values ¢ > 0.
We also present a nonexistence result, in which the behaviour of f near 0 plays a crucial
role.

The following result generalizes that from [22, Proposition 2].

Theorem 3.13 (Existence). Let f be lower semicontinuous, f(t) >0, t € (0,1), and

f(t)

0<p:= —
te(Ol)t

(3.25)

1
7

Then there exists a number ¢* € (0, (p')» p%,u
positive solution if and only if ¢ > c*.

1
7

7| such that the b.v.p. (3.1) has a unique

Proof. Tt follows from (3.25) that f is bounded in (0,1). In particular, f € L'(0,1). For
a solution y. = y.(t) of (3.3) with ¢ > 0 we have

P.0=0-nh(t,0,c) =p'f(t) > 0=19, — h(t,y.,c) = Py. a.e. in [0,1].

Then by Lemma 3.5 we have y. > 0 in [0,1]. The same argument as in the proof of
Corollary 3.8 applied on the entire interval (0, 1) yields that y. > 0 in (0, 1).

Next, using the estimates similar to [22, p.176], we prove that y.(0) = 0 provided
¢ is “large enough”. Set ¢.(s) = csv — s,¢> 0,5 € (0,¢). Then ¢, > 0 in (0,c"),
0c(0) = ¢o(c?) = 0, and ¢, attains maximum value M, := (Z—‘j)p/(p — 1) at the point

k = (i)p (0,¢). Elementary calculation yields that ¢ > (p/ )ip% ,ui if and only if
M. > p, ie., ¢.(k) > p, or equivalently we have
kv —pu>k. (3.26)
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Let s(t) := kt”. Then s(1) > 0 and thanks to (3.26),

P.s=5'(t) — h(t,s,c) = kp't" 7 — h(t,s,c) < (ck;% — M) P — [c(s(t))E — f(t)

< <ck:% — [L) prt— [c(s(t))E — ,utpl_l] =0=Py. ae. in [0,1].
Then again by Lemma 3.5 we have
0 < pelt) < s(t), te[o,1]

In particular,

To summarize, we have proved that for any fixed ¢ > (p/ )ip% ui there exists unique
positive solution y. = y.(t) of the backward i.v.p. (3.3) satisfying y.(0) = 0. In particular,
Ye = Yc(t) is a unique positive solution of (3.1).

By Corollary 3.6, y., (t) > ye, (), t € (0,1), y.,(0) =y, (1) =0,i=1,2,if ¢; < 5. Set

¢ :=inf{c > 0: (3.1) has a unique positive solution}.

Then from above we get ¢* < (p’)ﬁp%ui Let ¢, — ¢+, Y., = ¥, (1), t € [0,1], be
solutions of (3.1) with ¢ = ¢,. Then, according to Lemma 3.4, solutions y., converge
uniformly to a solution y. of (3.1) with ¢ = ¢*. Since ¢* > 0, we have y.-(t) > 0,
t € (0,1) by Corollary 3.8 applied on the entire interval (0,1). Hence (3.1) has a unique
positive solution if and only if ¢ > ¢*. For ¢ = 0 we have

Yo(t) =p’/t f(r)ydr, t€]0,1].

In particular, yo(0) > 0 and therefore ¢* > 0. O
We also have the following non-existence result.

Theorem 3.14 (Non-existence). Let f(t) >0, t € (0,1),

t
0 < v:=liminf f,( ) . (3.27)

t—0+ (Pl

d Nl 1L
0<c<(p)rprvv (3.28)

then the b.v.p. (3.1) has no positive solution. In particular, if

ft)

t—0+ tP'—1

= 400, (3.29)

then (3.1) has no positive solution for any ¢ > 0.

Proof. The case ¢ = 0 is obvious, see the end of the proof of Theorem 3.13. To prove the
rest of the statement, we proceed by contradiction. Let ¢ > 0 be fixed and satisfy (3.28).
Assume that (3.1) has a positive solution y. = y.(t) > 0, t € (0,1). Since ¥, is also a
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solution of the backward i.v.p. (3.3) and ¢ > 0, by Lemma 3.3 function ¥, is a also unique
solution of (3.1). For v € C[0, 1] fixed let u € C[0, 1] be such that

u(t) =p' /Ot [c (U+(7-))% — f(T)] dr.

Then u = T'(v) defines a monotone increasing operator from C[0, 1] into C[0, 1] and . is
a fixed point of 7. Indeed, let vy, vy € C|[0, 1], v1(t) < vo(t), t € [0,1]. Then

7)) = Te)(t) =7 [ [t - ()] ar <o,

Set yo(t) = c”'t*', t € [0,1]. Then

T(0)(t) = wolt) — / fir)dr < go(t), teo,1],

i.e., yo is a supersolution of 7' (see e.g. [13, Definition 6.3.15]). We consider the following
successive approximations

Yns1 =T (yn), m=0,1,2,...
Since T' is monotone increasing, we have
yo(t) = a(t) > > yn(t) > ... (3.30)
For any n € N, t
i) =T )= ' [ f7)dr

i.e., the sequence {y,}>°, is bounded below in C[0,1]. By [13, Theorem 6.3.16], this
sequence converges to the greatest fixed point of T'. Therefore,

Yol(t) = p(t) = - Zya(t) = --- 2 we(t) >0, £ €(0,1). (3.31)

It follows from (3.27), (3.28) that there exists 6 € (0,1] and v € (}% 1) such that

/pp,717
()= o=t forall ¢ e (0,6). (3.32)

Now, using (3.32) we deduce

Y c/Ot (v (7)? dT—/Otf(T>dT] —p {c/oth;/TZ;/ dT—/Otf(T)dT]

t t
_:| . p// ﬁCp/Tp/_l dr = Cp'tp/ . Dcp’tp/ _ Ctp/(l _ 17), t e (0, 6),
0 0

<

oy

Yy
~

N—
|

B
S

|
wo(t) =¥/ { / ) dr— [ dT}

0



Performing the iterative process, we get for k =1,2,... that

ye(t) < ap P for t e (0,0), (3.33)
where )
ap =1, ap = (ax_1)» — . (3.34)
It follows from (3.31), (3.33) that
0<ye(t) < - <ap?'t? <ap PtV <o <ar 't < (3.35)

fort € (0,0). Hence {ax}32, is a bounded and monotone decreasing sequence and therefore
there exists its finite limit a., := limy_,o agx. Then obviously a., < 1 and due to (3.35)
we infer a,, > 0. Passing to the limit for k¥ — oo in (3.34), we get

1

1
~ . ~ e /
(oo = abo — U, le., U =abk(l—ak).

1
Since the function x +— :E%(l —x7), x € (0,1), attains its maximum at the point

1
p'pP 1

a contradiction with the fact v € (% 1).

r = -, we necessarily have 7 < —L —
P pP

PP p'p =1
Therefore (3.1) cannot have a positive solution. In particular, if (3.29) holds then v = 400
and (3.28) yields that (3.1) has no positive solution for any ¢ > 0. O

Remark 3.15. Let i and v be defined as in Theorems 3.13 and 3.14, respectively. Then
we conclude from the existence and nonexistence results above that the minimal value of
the “critical” speed ¢* > 0 must satisfy

()

11 1 % IR .
"prvr < c S(p)p/pp/“v’_

bS]
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Chapter 4

Existence and non-existence of
travelling wave profiles

Combining the results from Chapters 2 and 3, we can now formulate existence and non-
existence results for the generalized profile U satisfying the second-order boundary value
problem

{(( (2)) | :(1)|p U'(2)) +cU'(z) +g(U(2)) =0, z€R, (1)

lim U(z) lim U(z) =0

Z——00 zZ2—+00

in the bistable unbalanced, bistable balanced and monostable cases. We also summarize
the properties of the profile U.

In each of the theorems below, we assume that the diffusion coefficient d and reaction
term ¢ satisfy the hypotheses (H1), (H2), respectively, introduced in Section 2.1.

4.1 Bistable case

Theorem 4.1 (Unbalanced case). Assume that g = g(s) satisfies

9(0) = g(s.) = g(1) = 0 for some s. € (0,1)
9(s) <0 if s €(0,5.), g(s) >0 if s € (ss1),
and let

/0 (d(s))77 g(s)ds > 0. (4.2)

Then there is a unique value of ¢ = ¢, > 0 such that the b.v.p. (4.1) has a unique
nonincreasing solution U = U(z), z € R. Moreover, U has the following properties:

(i) U(0) = s,

(ii) There ezist —o00 < 29 < 0 < z1 < 400 such that U(z) = 1 for z € (—o0, 29},
U(z) =0 for z € [z, +00).

(i) U is strictly decreasing in (zg, z1).

(iv) Fori=1,2,...,n let & € (20, 21) be such that U(&;) = si, & = 20, {ni1 = 21. Then
U e CYR),
U

(&,6it1) € Cl(£i>£i+1)7 1=0,1,...,n
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and the limits U'(§;—) = lim U'(z) and U'(&+) == lim U'(z) exist finite for all

i=1,2,....n

(v) For anyi=1,2,...,n, the following transition condition holds:

V()P U (6-) im d(s) = U6 U E+) Tim d(s)

§—8;—
(vi) U satisfies

lim d(U)|U' ()P U (2) = lim dU(2)) |U'(2)]P>U'(z) = 0.

z—z0+ Z—z1—

Proof. The assumptions on d and ¢ imply that f(t) = (d(t))z’i11 g(t) satisfies the hy-
potheses of Theorem 3.9, hence there exists a unique constant ¢ = ¢, > 0 such that the
b.v.p. (3.1) possesses a unique positive solution y., = y., (t) in the sense of Carathéodory.
Since f|(sl_7$i+1) € C(s4,8i41), 1 = 0,1,...,n, the solution y also satisfies (2.17) pointwise.
The proof then follows from Proposition 2.12 and Theorem 3.9. The properties of the
profile U follow from the reasoning in Section 2.3. Without loss of generality, the solution
can be normalized by U(0) = s,, cf. Remark 2.8. O

Remark 4.2. Property (ii) in the above theorem indicates that the solution U may not
actually attain the values 0 and 1, but if it does, then it must be constant outside of
(20, 21). Adopting the terminology from [34, Definition 1.1], we distinguish the following
types of solutions, illustrated in Figure 4.1: front-type if (2o, 21) = R; sharp of type I if
zo = —oo and z; € R; sharp of type I if zop € R and z; = +o00; sharp of type III if
20,21 € R.

1 ____________________________ 1 ____________________________
0 0 :
Z1
front-type sharp of type I
1 - Tt T T 0=
|
I
|
0 !
ZI'O IZO <1
sharp of type II sharp of type III

Figure 4.1: Classification of wave profiles based on the finiteness of zy, 21

Theorem 4.3 (Balanced case). Assume that g = g(s) satisfies

g(0) = g(ss) =g(1) =0 for some s, € (0,1)
g(s) >0 if s € (s41)
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and there exists 0 € (0, s,) such that
g(s) <0 if s€(0,9), g(s) <0 if se€(0,s.)
Let )
A(ﬂgyhg@yu:o. (4.3)

Then the b.v.p. (4.1) has a unique nonincreasing solution U = U(z), z € R, if and only
if c =0. Moreover, U has the properties (1)—(vi) from Theorem 4.1.

Proof. The proof can be derived using the same reasoning as in the proof of Theorem 4.1,
replacing the references to Theorem 3.9 with Theorem 3.10. [

Remark 4.4. Let us recall that solutions to (4.1) with ¢ = 0 are stationary solutions of
the partial differential equation (2.1), i.e., solutions of the form wu(z,t) = u(z), referred
to as stationary waves. According to Theorem 3.10, condition (4.3) is sufficient for the
existence of a monotone stationary wave solution, which is unique up to translation. On
the other hand, if ¢ = 0 in (4.1), it follows from Proposition 2.12 and Lemma 2.13 that this
condition is also necessary. To summarize, each pair of the following statements implies
the remaining one:

1 _1
(a) Jy (d(s))7= g(s)ds = 0;
(b) ¢=0;
(c) there exists a unique (up to translation) nonincreasing solution of (4.1).

Remark 4.5 (Non-monotone solutions). It follows from Lemma 2.13 and Remark 2.15
that the equation

@mg»waw”wm»ﬂgmmnza z€R (4.4)

possesses a pair of monotone stationary waves u; = uj(x), us = us(x), © € R, one
nonincreasing and the other nondecreasing, which satisfy the boundary conditions

lim u(x) =1, xl_l}gl_loo u(z) =0

T—r—00
and
x1—1>IPoo UZ(J:) - 0’ wEI—&l-’loo UQ(I) - 1’

respectively. If these waves are sharp of type III, we have many possibilities to “connect”
0 and 1 using suitable translations of u; and wus. Indeed, let zy, x1 be associated with
the nonincreasing solution u, uj(z) < 0 in (zg,x;), and assume that zo,z; € R. Then
Ty, T1, associated with the nondecreasing solution u, must be also finite and we have
uh(x) > 0 in (Zo, ). Utilizing the translation invariance, we can normalize u; and us so
that 21 < Zy. Consequently, we can construct a solution u as follows:

u(z) = uy(z) for (—oo,x1), u(x)=0 for (x1,7), u(zr)=wus(x) for (Zo, +00),
see Figure 4.2, which solves the equation (4.4) and satisfies boundary conditions

lim u(z) = lim u(z) =1.
T—>—00 T—>+00

By the same reasoning, we can further extend @ to obtain a non-monotone solution @ of
the b.v.p. (4.1), see Figure 4.3.
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z
z

Figure 4.3: Non-monotone stationary wave u satisfying u(—oc) = 1, u(+00) =0

4.2 Monostable case

In this section we assume that g = g(s) satisfies g(0) = ¢g(1) =0, g(s) > 0 for s € (0,1).
Theorem 4.6 (Existence). Let

0 < p:= sup W—_lf}(s) < +00. (4.5)

Then there ezists a number ¢* € (0, (p’)ip%ui] such that the b.v.p. (4.1) has a unique
solution U = U(z), z € R, if and only if ¢ > ¢*. Moreover, U(0) = % and U has the
properties (ii)—(vi) from Theorem 4.1.

Proof. The assumptions on d and ¢ imply that f(t) = (d(t))f'%l g(t) satisfies the hy-
potheses of Theorem 3.13, hence the boundary value problem (3.1) has a unique positive
solution in the sense of Carathéodory y = y(t), t € [0,1], if and only if ¢ > ¢*. Since
f|(5i78i+1) € C(s4,8i41), © = 0,1,...,n, the solution y also satisfies (2.17) pointwise. The
proof then follows from Proposition 2.12 and Theorem 3.13. The properties of U, here

normalized by U(0) = %, follow from Proposition 2.10 and the reasoning in Section 2.3.
O

Theorem 4.7 (Non-existence). Let

0 < v :=liminf (d(s))"7 g(s) : (4.6)

s—0+ sP'—1

If
1 1 1
0<ce<(p)prv?
then there is no solution U = U(z), z € R, of the b.v.p. (4.1). In particular, (4.1) has no
solution for any ¢ > 0 f

lim - = 400.
t—0+ sp'—1
Proof. The proof follows from Proposition 2.12 and Theorem 3.14. O
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Chapter 5

Asymptotic analysis of the wave
profile

With the existence and non-existence results established, we now turn our attention to
investigating the behaviour of solutions near 0 and 1.

Let us recall that the reduction to a first-order b.v.p., discussed in Section 2.3, relies on
the assumption that the profile U satisfying the b.v.p. (4.1) is strictly monotone whenever
0 < U(z) < 1. More precisely, we assumed that U = U(z) is nonincreasing on R and
strictly decreasing in the open interval (29,21) = {z € R: 0 < U(z) < 1}. This property
is granted in the monostable case, cf. Proposition 2.10.

Naturally, we are interested in whether the profile attains one, both or neither of
the values 0 and 1, and how this depends on the properties of the reaction g and the
diffusivity d. For instance, in the case of p = 2 and monostable reaction, degeneration
of the diffusion coefficient d at 0 might cause the appearance of a sharp profile, which
reaches 0 in a finite z € R with a negative slope. This phenomenon also depends on the
derivative of d at 0 and it only concerns the profile associated with the minimal wave
speed c*.

Due to our general assumptions on the functions d and ¢, a detailed discussion that
directly correlates the finiteness of zy and z; to specific properties of d or g, such as
degenerations, singularities or the speed of vanishing, is not feasible. We will show below
that the outcome is determined by the combined influence of the diffusion and reaction
terms as well as the value of p. For technical reasons, we will assume power-type behaviour
of d and g near the equilibria 0 and 1.

We proceed by examining the inverse function to the profile U = U(z), U(0) = 3:

U 1
2(U) = —/ %dt, Ue(0,1), (5.1)
3 (ve(t)?
as U — 1 and U — 0, respectively. In particular, we have
L(d(t))rT 2 (d(t))7T
20 = —/ %dt and 2 :/ %dt, (5.2)
3 () 0 (ye(t)?

where 3, is the positive solution of the equivalent first-order problem (3.1). In the case of
bistable reaction, the function z = z(U) is customarily normalized by z(s,) = 0 instead
of z(3) = 0. This modification will be implemented automatically.
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We focus separately on the bistable balanced, bistable unbalanced and monostable
case. Where possible, we also discuss the one-sided derivatives U’(zp+), U'(21—), pro-
vided zg,z1 € R, to obtain information about the smoothness of the solution at these
“transition” points. Throughout this chapter, we consider d and g with properties (H1)
and (H2), respectively, introduced in Chapter 2. For the sake of notational simplicity, in
what follows we will write

ha(t
hi(t) ~ hy(t) ast — to € R if and only if lim 10,
t—to ho(t)

€ (0,400).

5.1 Bistable balanced case

Let us start with the asymptotic analysis of solutions in the bistable balanced case. As-
sume that d and g satisfy the hypotheses from Theorem 4.3 and

/0 (d(5))7 g(s) ds = 0.

As discussed in Remark 4.4, the above condition is both necessary and sufficient for the
existence of monotone stationary waves u = u(z), characterized by zero wave speed c,
which satisfy

(d(u(@)) o' (@) /() + g(u(x)) =0, w€R,
1

Due to ¢ = 0, the unique solution y = y(t) of the first-order b.v.p. (3.1) can be
obtained via direct integration:

y(t) = —pf /Otf(s) ds, te01] (5.3)

It then follows from (5.1) and (5.3) that the inverse function to the profile v = u(z),
u(0) = s., is given by

(N (d(s))7 .
. <p) I (—f;<d<a>>¢1g<a>da)”pd

with 2y and x; now denoting the corresponding expressions in (5.2).

Assuming power-type behaviour of the reaction and diffusion terms, the asymptotic
analysis of z = x(u) as u — 0+ yields the following result for the stationary wave u = u(x)
as r — +o00.

Theorem 5.1. Let a >0, 8 € R and g(s) ~ (—s%), d(s) ~ s° as s — 0+. Assume that
s

— > —1.
a+p_1

(i) Ifa — B >p—1 then 1 = +oo. Moreover, for « — f =p — 1 we have
ux) ~e =04+  for x = 400
and for a« — B > p — 1 we have

u(z) ~ rFT@A = 0+ for x — +oo.
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(i) Ifa— B <p—1 then xy < 400 and for x — x1— we have
u(z) ~ (x1 — x)m.

As for the derivatives, we then have

d _a=f+1

(a) d_u ~ —(z1 — a:)%lj;ﬁ) —0 for x — x1— if a—p>—1,
x T=x1—
du 0 .

(b) L ~ —(r1—2) =2 k<0 for x—x— if a—p=-1,
T T=x1—
du _a—f+1 _ )

(c) — ~ —(r) — ) =B - —o0  for v —»x—  if a—fF < -1
de|,_, .

Proof. Let g(s) ~ (—s)%, d(s) ~ s” as s — 0+ for some a > 0, 3 € R. Then
B at B
f(s)=(d(s))r1g(s) ~ —=s“"p1T as s — 0+
and our assumption f € L'(0, 1) implies that the parameters o, 3 and p must satisfy

Since

for u — 0+ we can write

u i u Sx
sp-1 B _a__B 1 B=a=1
x(u) ~ —/ 7y ds = —/ sp=1"p p=D P ds :/ s » ds.  (54)
Sx (Sa—‘ri—‘rl) P Sx u

p—1
From (5.4), we derive the fundamental distinction between two qualitatively different
cases:
(i) fa— 8 >p—1then x; = +0c0.
(ii) f « — B <p—1 then 2y < 400.

Moreover, (5.4) provides additional insight into the asymptotic behaviour of =z = z(u),
and hence u = u(x), in both of these cases.

Case (i). Let @« — f = p — 1. Then (5.4) implies that
x(u) ~—Inu as u— 0+

and therefore
u(z) ~e " =0+ for z — +oo.

On the other hand, if « — 8 > p — 1, we have

Bra=1_ |  p-l-(a=p)
v(u) ~u r T=u @ as u — 0+
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and hence ,
u(x) ~ xr1==H — 0+  for x — 4o00.

Case (ii). Let « — 8 < p— 1. Then from (5.4) we conclude

p—1—(a=ph)
ry—x(u)~u v as u—0+.

An inverse point of view then yields

u(z) ~ (r; — 2)7 @B for @ — m —

Since m > 0, we have
du a—f+1
R ~ —(xl — x)p—l—(a—ﬂ)
de|,_, _
and the cases (a), (b) and (c) follow immediately. O

Notice that apart from determining conditions for the parameters «, § that guarantee
xr1 = +00, we are also able to distinguish whether the solution approaches 0 exponentially
or at a power rate. If x1 < 400, we obtain classification of profiles based on the one-sided
derivative u'(z1—). Since u/(z1+) = 0, the profile u is differentiable at x; only in case (a).
In the other two cases (b) and (c), it reaches 0 with a negative slope (finite or infinite).
The behaviour of u at x; is illustrated in Figure 5.1. The colours correspond to those
used to depict the sets By, By and Bs (see Remark 5.2 below) in Figures 5.2, 5.3.

Case (a) Case (b)
1 1
0 : 0 \
T g
Case (c)
1
u
0 \I
T

Figure 5.1: Behaviour of u = u(x) at z; € R

Remark 5.2. To visualize conditions from Theorem 5.1, we introduce the sets

L ={(a,f)eR*:a>0,a—=p—1},
B

AQ::{(a,ﬁ)€R2za>0,a+]:>—1,04—5>p—1}>
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corresponding to case (i), in which z; = 400, and
B ={(,f)eR?*:a>0, -1l<a—-p<p—1},
By ={(a,p) €ER?*:a>0,a—f3=—1},
Bs={(a,f) €eR?*:a>0,a— 3 < —1},

corresponding to case (ii), in which x; < +oo. For different values of p, these sets are
depicted in Figures 5.2, 5.3.

N
%//
/
o
N\
AN /
oK I >
/1N «
e 1
N\
AN
—1x QX A
I
/ \ <P 2
/ NN
/ AN
/ N \/

N
V4
Vs
R A
Ry o
Ay
Oé' Oé:
As
A2 4 ~J 9/6?
// \\ N ~
/ \\,]

Figure 5.3: Geometric interpretation for values p # 2

We observe that both z; = +00 and x; < 400 occur for singular as well as degenerate
diffusion coefficient d. In other words, the behaviour of d alone cannot be linked to a
specific type of solution. This is due to the fact that the speed of vanishing of g at 0 also
plays an important role. However, the smaller the value of p, the less likely becomes the
appearance of sharp solutions if d has a singularity at 0, i.e., when 5 < 0.
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Proceeding similarly as above, we derive the following result concerning the asymptotic
behaviour of u = u(x) near 1, i.e., for x — —o0.

Theorem 5.3. Lety >0, 5 € R and g(s) ~ (1—5)7, d(s) ~ (1—35)° as s — 1—. Assume
that

o
v+ ——>—L
p—1
(i) Ify—90 > p—1 then xg = —oo. Moreover, for v —§ = p — 1 we have
u(lz)~1—e"—>1—  forx— —oc0
and for v — 0 > p — 1 we have
u(z) ~1— \x|p*1*p<7*5> —1—  forz— —o0.
(ii) If vy —0 <p—1 then xg > —oo and for x — o+ we have
u(z) ~1—(z— :cg)pﬂ*p(vfﬁ.

As for the derivatives, we then have

d _y=+1

(a) < ~ —(z— a;o)PjH:*@ — 0 forx — xo+ if v—0>-—1,
dz =20+
du 0 ,

(b) — ~ —(x—x0)” > k<0 forz— xo+ if v—0=-1,
de|,_, .
du y=3+1 ,

(c) T ~ —(r—x0)P =00 = —o0  forx —xo+  if y—0<—L1.

X r=x0+

Proof. The proof mirrors that of Theorem 5.1, now focusing on the behaviour of the
inverse function x = x(u) as u — 1—. In particular, since

x(u)w—/ (1—8)5_ “ds as u— 1—

we derive the same conditions for v and ¢ as previously for o and 3, distinguishing
between the cases xg = —oo and xg > —oo. The asymptotic properties of x = x(u), and
consequently u = u(x), follow again from elementary calculations. O

Remark 5.4. Visualizing the conditions from Theorem 5.3 in the (v, §)-plane yields the
same geometric interpretation as in Figures 5.2, 5.3. In [17] we performed the asymptotic
analysis for nondecreasing solutions, obtaining the same conditions for «, £, v, é and p
as in Theorems 5.1 and 5.3.

Remark 5.5 (Classification of stationary waves). Combining the results from Theorems
5.1 and 5.3, we arrive at the following classification of solutions, using the terminology
from Remark 4.2. For the reader’s convenience, below we include Figure 5.4 illustrating
the basic characteristics (without taking into account the derivatives at zy and z;). The
stationary wave u = u(x) is
front-type ifa—p>p—1,v=0>p—1,
sharp of typel fa—-FB<p—-1,vy—0>p—1;
sharp of type II ifa—08>p—1,v—d<p—1;
sharp of type IIl ifa—fF<p—1,y—d<p—1.
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O 0 T
Z1
front-type sharp of type I
1 T -~ Tt T T =
|
I
|
I
0 : :
20 <1
sharp of type II sharp of type III

Figure 5.4: Classification of wave profiles from Remark 4.2

5.2 Bistable unbalanced case

Let us now assume that d and ¢ satisfy the hypotheses of Theorem 4.1. In particular, we
consider g € C'[0, 1] such that

g(0) = g(ss) = g(1) =0 for some s, € (0,1)
g(s) <0if s €(0,s,), g(s)>0if s € (s41).

If (4.2) holds, then there exists a unique ¢, > 0 such that the b.v.p. (4.1) possesses a
unique monotone solution U = U(z), U(0) = s, with U’'(z) < 0 in (2, 21).
In order to perform the asymptotic analysis of

‘ -

AU) = — /U O™ 4 e .1), (5.5)

as U — 0+ and U — 1—, we first need to examine the behaviour of the unique solution
Ye. = Ye,(t) of the b.v.p. (3.1) as t — 0+ and t — 1—. Because of this, the analysis
becomes more involved and less precise than in the stationary case ¢ = 0, where we
obtained the solution in a closed form. Our method consists in finding suitable upper and
lower solutions of the initial value problems (3.2) and (3.3), which we use to estimate the
values zg and z; with respect to foc.

5.2.1 Asymptotics near 1

For the purposes of this section, we first formulate a particular version of Lemma 3.5,
which is essential for the upcoming proofs. We recall the notion of defect P.p of an
absolutely continuous function ¢ with respect to the differential equation in (3.1):

Pap = ¢(t) =1/ [elp™ () = £(8)] .

Lemma 5.6. Let y., = y.,(t) be the solution of (3.1) with ¢ = ¢, and consider a function
et)=r(l—=1)*, k>0, w>0.
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(i) If P.,po > 0 a.e. in [p,1], 0 < o < 1, then ¢ <y, in [o,1].
(i) If P.,p <0 a.e. in[p,1], 0 < o <1, then ¢ > y., in [0, 1].

Proof. Observe that both y., and ¢ are absolutely continuous on [0, 1] and recall that
P..y.. = 0. Since ¢(1) = y.,(1) = 0, the statements (i) and (ii) follow immediately from
Lemma 3.5. U

Assuming power-type behavior of the reaction and diffusion term, we obtain the fol-
lowing results.

Theorem 5.7. Let v >0, 5 € R and g(t) ~ (1 —t)7, d(t) ~ (1 —1)° ast — 1—. Assume

that 5 .
-1< — < — 5.6
L i (5.6)
If
—0+1
u<1
p
then zp > —oo. If
7—5+121
p

then zg = —oo0.

Proof. Set f(t) = (d(t))p%g(t). Then f(t) ~ (1—t)7+1%1 ast — 1— and since f € L'(0,1),
we have the following necessary condition for the parameters v, § and p:

0
v+ — > -1
p—1

i.e., the first inequality in (5.6).
Due to our assumptions on d and g, there exists # > 0 (small enough) such that both
d and g are continuous in (1 — #,1). Therefore, f = f(t) is also continuous in (1 — 6, 1)

and hence f(t) ~ (1 — 25)7“6Tl is equivalent to

Ft) =n()A— )71, e (1-6,1),

where 1 = n(t) is a continuous function in (1 — 6, 1) with lim,,;_ n(t) € (0, +00).

Let—1<'y—|—p%1§p%l. For k > 0 we set

ye(t) = k(1 — )Tt te[1-6,1].

Clearly v + % + 1 > 0 and hence y,(1) = 0. Next we calculate the defect P, y,:

Poye =t = [ (07 = £(0)

- <7 + Ll * 1) (1—t)* o

1Jrl

{C*m (1—1t)" (1 — t)%‘sl]

o)
Ttp—1 ! 1

==t [ (1) ] - a0 e,
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te (1—6,1). Our assumption v + 1% < ]ﬁ implies

5 v+ 41
VoS :
- p
+p%+1
and therefore the power (1 — t)7+r) T dominates the power (1 — t) near 1. It then

follows from (5.7) that we may distinguish between two cases:
(i) There exists k < 1 so small that P. .y, > 0 a.e. in [1 —6,1].
(ii) There exists & > 1 so large that P. .y < 0 a.e. in [1 — 6, 1].

Case (i). Let %T‘EH < 1. Tt follows from Lemma 5.6 with o =1 — 0, ¢(t) = y,(t) that

Ye. (t) > Y (t)a n [1 - 07 1] (58)

From (5.5) and (5.8) we conclude that there exists ¢; > 0 such that

I ) Y G () i
dt > / (yc*@))%dt /19 dt

Case (ii). Let V_T‘f“ > 1. It follows from Lemma 5.6 with o =1 — 0, ¢(t) = y=(t) that
yer () < ylt) i [1—0,1] (5.9)

From (5.5) and (5.9) we conclude that there exists ¢y > 0 such that

1

o= [ /Hmdt_/;wdt

-
[

Ve (1))7 (1) (y=(t))”
() b=y
< — 1 dt_CQ 5 dt
B / (ye. (1))7 /wH” i
_ [y A
/s* (ye. (1))7 / '

]

Theorem 5.8. Let v >0, 5 € R and g(t) ~ (1 —1)7, d(t) ~ (1 —1)° ast — 1—. Assume

that 5 .
_ 5.10
v+ - e p— (5.10)

If v < 1 then zy > —o0. If v > 1 then zy = —o0.
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Proof. We proceed similarly as in the proof of Theorem 5.7. In particular, thanks to our
assumptions on d and g we have

F(t) = ()7 g(t) = n(t)(L — ) 71, te(1-6,1),

where 7 = n(t) is a continuous function in (1 — @, 1) with lim, ,;_ n(t) € (0, +o0).
Let7+—>— For k > 0 we set

ye(t) = w(1 — )P0 55) | e 1 —0,1).

%1) > 0 and hence y,(1) = 0. As for the defect P.,y,, we now have
p

Clearly p (»)/ +
Py =y — 1 [C* (y,{)i - f(tﬂ
= —Kp <fy + Ll) (1— t)p(v-&-p‘%l)—l
o [eub (0 -

e ey [ e R ] (s

(5.11)

€ (1 -40,1). Our assumption y(p — 1) + 3 > 1 implies v + z% <p (7 + I%) — 1 and

now the power (1 — t)twrv T dominates the power (1 —t)” P(155) 1 pear 1. It follows from
(5.11) that we may distinguish between two cases:

(i) There exists k < 1 so small that P. .y, > 0 a.e. in [1 — 0, 1].
(ii) There exists & > 1 so large that P. . yz <0 a.e. in [1 —6,1].
Case (i). Let v < 1. It follows from Lemma 5.6 with 0 =1 —0, ¢(t) = y,(?) that
Ye (1) > y,(t), in[l—0,1],

and we conclude that there exists a constant c¢3 > 0 such that

e e
Y p s p 1-0

. (1)) o (e (1) 1— )"
) [ .
B / (ye, ()7 « 3/1_9 @t~

Case (ii). Let v > 1. From Lemma 5.6 with ¢ = 1 — 6, ¢(t) = y,(t) we obtain
Ye.(t) < ys(t) in [l —0,1].

Hence there exists ¢4 > 0 such that

Jun

= (d() T L)
20 < — —dt — ——dt
/8* (Ye, (1)) /1—9 (yr(t))7
B ) LV L
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Remark 5.9. To visualize conditions from Theorems 5.7 and 5.8, we introduce the sets

) 1
- R? : -1 < ~N—§41>
"41 {(775)6 ’7>0, <7+p_1_p_17’7 + _p7
) 1
2._ R%2:~>1 _ >
A {(%5)6 LRk R e

B} = {(7,5) € R*:

Then 2y = —oo if (7,0) € A} UA? and zy > —o0 if (v,0) € B} U B?. For different values
of p, theses sets are depicted in Figures 5.5 and 5.6.

N A
/
\\ 9 //\//
N <0//
\ 7
N
N B% e
N /
N
1+ il
/ 2
, Aj
N 1 y
\\| Bl 7 N
I\ Ll
—1 N 1 Y
N
N
N
—1
SN -Ai
/ N }
\
// \ X }X
7 NI g
’ AR N\
s SN 7
/ N7

— _ 3
\\ A(S 5 // “5 /,/N/q,
\ 704 Y7
\ D7 A
62 /// ~ 2 // '\/
\ 1 A\ s ~ B
~ 1 7
\ 1" /7 ~ ,
/ ~
~ 7/
\ / N1 v 9
\ 7 ’
\ P 1 ’ A
\ v > Bl
"\ /' "l ~ 1 |
NN 1 72 ¥ - !
\ 7/ LIRS T >
| B[ , BN Bl
\\ ,41 174 -~
~
| d o~ 'A%
\\ , \\\
7/ ~
—24 A% 7 RS
7/ \ 7/ \\
// \ 7/ \\
/7 \ ~<

Figure 5.6: Geometric interpretation for values p # 2
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It is interesting to observe how the value of p affects the layout of these sets and
consequently types of solutions for given v, . For large values of p, there exists a solu-
tion for almost any combination of v and §. Notice that sharp-type solution are always
produced only by non-Lipschitz reaction g. As p increases, the regions corresponding to
finite 2o (depicted in red and yellow) expand further below the y-axis. In other words, the
parameter p helps to compensate singularity of d and the sharp-type solutions become
more frequent.

On the other hand, small values of p seem to have the opposite effect. The lower
dashed boundary line is getting less steep and, in the limit for p — 1+, aligns with the
~v-axis. Therefore, admissible singularities of d, which might still produce a solution, are
more restricted and typically yield a front-type profile.

Remark 5.10. Let (v,d) € Bl UB?, ie., zp > —oo. Then it follows from Remark 2.7
that for 6 < 0 we have lim,_,,,+ U'(2) = 0. This implies that the wave profile U = U(z)
is a C'-function in a neighbourhood of z; € R. The estimates in the proofs of Theorems
5.7 and 5.8 allows us to extend this result also for § > 0 in the following way.

Let (v,0) € B;. Then
Yo (t) <R — )Tt e [1-0,1),

and, therefore, there exist a constant c¢5 > 0 such that

1 )
p—1 1— p—1
Z(1-) = lim ;j—é = lim —w < —¢5 lim ( ({361“
U—1- U—1— (yc* (U))P U—1- (1 B U) p;l
1; 1-U a0+l
R S

e, Ulz+)=0if 6 <y +1.
Let (v,0) € B;. Then

ye(t) <F(L— PO te[1-0,1),

and, therefore, there is a constant cg > 0 such that

1 5
d p-1 1-U)»1
Z(1-) = Uh—>Hll— £ = Uh—>n11_ — & < —cg lim_ %
(yc*(U))P U—1 (1 _ U)’Y p—1
= —¢g lim (1 -U)" = —o0,
U—1—

ie, Ul(z+)=0if v > 0.
To sum up the above discussion, the wave profile U is a C'*-function in a neighbourhood
of zg € R for any (v, ) € Bl U B3

5.2.2 Asymptotics near 0

Let us now investigate the asymptotic behaviour of the profile U near 0. In order to
employ the same technique used for asymptotics near 1, where we derived estimates for
2o using upper and lower solutions in the form of suitable power functions, we first need
to establish an analogue of Lemma 3.5 for functions with prescribed values at 0.
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The main challenge arises from the lack of uniqueness for the forward i.v.p. (3.2) when
¢ > 0. In particular, according to [43, Theorem §10.XXII},the forward i.v.p. (3.2) has
a maximal solution y* and a minimal solution y, in [0,1] and for ¢, € AC|0, 1], the
following holds true:

¢ < h(t, o(t),c) ac in[0,1], ¢(0) <0 = ¢ <y in [0,1]

' > h(t,)(t),c) ae. in[0,1], (0)>0 = ¢ >y, in [0,1]
and y, <y < y*in [0, 1] for every solution y. Observe that the need to work with minimal
and maximal solutions is not convenient for our purposes, and we are not able to compare

functions ¢ and 1 relative to each other. However, special form of the equation in (3.2)
guarantees uniqueness in the set of solutions which are positive in (0, s, ).

Lemma 5.11. Let f be as in Theorem 3.9. Then the forward i.v.p. (3.2) with ¢ > 0 has
a unique positive solution in (0, s).

Proof. Let y = y(t), t € (0, s,), be a solution of the forward i.v.p. (3.2) with ¢ > 0, cf.
Lemma 3.1. Then

Y =1 [e(y" ()" — ()] 20, te(0s)
and therefore .
y(t) = y(0) +/0 J(0)do >0, te(0,s).

Assume that there are two positive solutions y; = y1(t), yo = y2(t), t € (0,s,) of (3.2).
1 1
Then z; = (y1)? > 0, z2 = (y2)? > 0 solve the forward initial value problem

ft)

2i(t) =c— ——— forae. t€(0,s,),
(z:(t)) 71

for i = 1,2. It then follows that

/ 1 1
Z1 t) — Z9 t == —f t 1 1
A== " ((zl(t))’” (Zz(ﬂ)f”)

and

1 1
21(t) — 22(t) T (21(t) — 20(8)) = —f(¢ — — — | (z1(t) — (1)t
(21(t) = 22(t)) " (21 () — 22(2)) ()<(zl(t))P1 (22@)?1>( (t) — 22(1))

for a.e. t € (0,s.). Since f(t) <0, t € (0,s,), it follows from here that
1d

= () — () T]* <0, ac in (0,s,). (5.12)
2dt
But 21(0) = 22(0) = 0 and (5.12) imply z;(¢) < 25(t). Similarly, we prove that z5(t) <
z1(t). Therefore, y1(t) = yo(t) for t € (0, s.). O

Remark 5.12. It follows from Lemma 5.11 that the restriction of the unique positive
solution y., = y.,(t), t € [0,1], of the b.v.p. (3.1) to the interval (0, s,) is also the unique
solution of the forward i.v.p. (3.2) with ¢ = ¢, on (0, s.).
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Thanks to the uniqueness result, we have the following comparison argument.

Lemma 5.13. Let f € L'(0,1) be as in Theorem 3.9, 0 < 6 < s.. Assume that the
functions ¢, € ACI0, 0] are positive in (0,60) and satisfy p(0) = (0) =0,

' (t) < h(t, o(t), c.), P'(t) > h(t,(t),c.) forae. te€]0,6],

i.e., P.,p < 0 and P..Ybp > 0 a.e. in [0,0]. Let y., = y..(t), t € [0,1], be the unique
solution of the b.v.p. (3.1). Then

o(t) <y, (t) < 0(t), tel0,6].

Proof. The proof follows from [43, Theorem §10.XXII| combined with Lemma 5.11 and
Remark 5.12. N

We can now employ similar reasoning as in Section 5.2.1 to prove the following results.

Theorem 5.14. Let a >0, 3 € R and g(t) ~ (—t), d(t) ~ t# ast — 0+. Assume that

l<a+ b < !
T T |
If
— 1
a— [+ <1
p
then 2y < +oo. If
a—ﬂ+121
p

then z1 = +o00.

Proof. The assumptions on d and ¢ imply that for 6 such that 0 < # < min{s,, s;} the
function f(t) = (d(t))ﬁg(t) is continuous in (0, 6) and f(t) ~ T s equivalent to

F(t) = —n(@®) 71, 1€ (0,0),

where 7 = n(t) is a continuous function in (0,6), lim; oy n(t) € (0,+00). Since f €
L'(0,1), the parameters a, 3 and p must satisfy

a—l—i>—1.
p—1

Let —1<a+}%§ﬁ. For k > 0 we set
8
Yo(t) =t o1t € 0,4).

Clearly o + -2 +1 > 0, 4,(0) = 0 and y, > 0 in (0,6]. Then

at 21
Py =k (04 + il + 1) taJr% — p/ [C*/{;tppl + n(t)taJr%
p_
(5.13)
= a+% ﬁ / L%H , 1
=1k Oé—l——1—|—1 —]977(75) —t P pcykP
p_
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for a.e. t € [0,6]. The assumption a + 1% < 17 implies

B
5 <OJ+E+1
p—17— D

o+

8
8 at—=—=+1
and therefore the power t**7=1 dominates the power ¢ 5
(5.13) that we may distinguish between two cases:

near 0. It then follows from

(i) There exists k < 1 so small that P. .y, <0 for a.e. t € [0,0].
(i) There exists & > 1 so large that P. .y > 0 for a.e. t € [0, 6].
From Lemma 5.13 we then conclude
Ys(t) < e (t) S yalt), t€0,0],

where y,, is the solution of the b.v.p. (3.1).
Case (i). Let Q_Téﬂ < 1. Then there exists ¢; > 0 such that

) O (d(t))7 S (d(t))7T
Zl—/o —( ;dté/o—dt—l—/e ————dt

) ?(d(t)7 S (d(t)7T

O

Theorem 5.15. Let a > 0, 3 € R and g(t) ~ (—t), d(t) ~ t# ast — 0+. Assume that

15} 1
—_ > —.
a+p_1 p—1

If B >2—p then zy < +o0. If B <2 —p then z; = +00.
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Proof. As in the proof of Theorem 5.14, we conclude that there exists 0 < 6 < min{s., 1}
such that

1 ot B
F(t) = (d())7 g(t) = n(t)t* 71, t € (0,0),
where n = n(t) is a continuous function in (0, 6), lim; 04 n(t) € (0, +00).
Leta+%>]ﬁ. For k > 0 we set

ye(t) = wt?, te]0,6).

Clearly y,(0) = 0 and y,(t) > 0 for t € (0,6]. Then

Py, =rpt" 1 —p/ |:C*/£117t11)7 + n(t)t(”p%
(5.14)
1 1 B
= (/{p' — p'c*/i5> tr—1 — p'n(t)t* o1,
for a.e. t € [0,60]. The assumption « +559> 59 — implies that the power #71 dominates
t°+5°1 near 0. It follows from (5.11) that we may distinguish between two cases:
(i) There exists k < 1 so small that P. .y, <0 for a.e. t € [0,0].
(ii) There exists & > 1 so large that P. .yz > 0 for a.e. t € [0,6).
From Lemma 5.13 we then conclude
yﬁ(t) S Ye, (t) S yﬁ(t)a le [Oa 0]7
where y., is the solution of the b.v.p. (3.1).
Case (i). Let § > p — 2. Then there exists c3 > 0 such that
0 1 Sx _ 0 B s _1
d(t))r= d(t))r—1 tr-1 * (d(t))r—1
Zlg/—((»ldt—i—/ (())1dt§03/ o dt+/ —(())ldt
0 (ys(t))” 0 (y *<t))P 0 tw o (ye. (1))
Sx dt p— 1
o trr Jo (yc*(t))P
Case (ii). Let f < p —2. Then there exists ¢, > 0 such that
0 1 s 1
d(t))r—T *(d(t))r T
a2/<<»1&+/<<»1&
0 (y=(t))? 0 (Ye(t))?
[% s 1
dt *(d(t))rT
0 tr1 0 (Y (t))r
O
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Remark 5.16. To visualize conditions from Theorems 5.14 and 5.15, we introduce the

sets
| 2 b !
Ab=4(a,p)eR*:a>0,-1<a+——<——a—-B+1>py,
p—1"p—1
| 2 b !
By =<(a,8)eR*:a>0,-1<a+——<——a—-F+1<py,
p—1"p—1
2 2 B 1
A2=dpferR a>0a+ > "~ 5<2-p!,
p—1 p-—1
2 2 B 1
By =<(a,0) eR*: x> 0,0 + > B>p—27¢.
p—1 p—1

Then z; = +o0 if (o, ) € AJU A3 and 21 < +o0 if (o, ) € Bj UBE. For different values
of p, theses sets are depicted in Figures 5.7 and 5.8.

A A \,/'
N b 4
/

7/
AN O,/

Figure 5.8: Geometric interpretation for values p # 2
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Let us briefly discuss some interesting observations. While the sets A} and B} are
complete analogues of A] and Bj, the sets A2 and B3 differ significantly, with B2 now
being the most prominent, see Figures 5.7 and 5.8 below. In contrast to the asymptotics
near 1, sharp-type solutions reaching 0 in a finite z; are very common and not restricted
to non-Lipschitz reactions. For p = 2, degenerate diffusion (5 > 0) always leads to sharp-
type profiles. Strictly positive diffusion (8 = 0) yields front-type solutions provided g is
Lipschitz.

As p increases, the set B2 expands below the a-axis, meaning that singular diffusion
with 0 < 8 < 2 — p gives rise to sharp-type solutions independently of a. Conversely,
smaller values of p shift the blue and green regions above the a-axis. Consequently,
degenerate non-Lipschitz diffusion results more frequently in front-type solutions rather
than sharp-type. However, the horizontal line dividing A% and B2 cannot ascend beyond
B = 1. This implies that degenerate Lipschitz diffusion produces sharp-type profiles
independently of both p and «.

Remark 5.17. Let (a,8) € B2. The estimates on 2; from Theorem 5.15 provide addi-
tional information about the smoothness of the profile as it reaches 0. In particular, we
have

Ye.(t) > wt”, € [0,0]

and, therefore, there exist a constant c; > 0 such that

0>2'(0+) = lim dz lim — <d—1
U—o+dU  U—0+ (ye. (U))>

_B_

. Ur1 ) B-1

> —c5 lim — = —¢g5 lim Ur-T.
U—0+ U% U—0+

Hence we are able to distinguish the following cases:
(i) If # > 1 then 2/(04) = 0 and hence U'(z;—) = —oc.
(ii) If 8 =1 then 0 > 2/(04) > —c¢; and hence 0 > U'(z;—) > —oc.

In either case, the wave profile U is not smooth at z; € R.

As we can see, the above estimate for 2z/(0+) cannot provide any information about
the existence of profiles with U'(z;—) = U’(z1+) = 0. In particular, a smooth profile
might appear if (o, 8) € B2 and 8 < 1, or if (a, 3) € By.

For p = 2, regions corresponding to the cases (i) and (ii) are highlighted in Figure 5.9.
The light yellows part of B2 indicates where no further classification based on the value
of U'(z;—) is available.

Finally, let us recall the discussion from Remark 5.16 to make an interesting observa-
tion. The closer p is to 1, the narrower the indeterminate region becomes, as the upper
boundary line of A2 approaches the threshold 8 = 1. Therefore, the likelihood of ob-
taining a smooth profile is diminished significantly when considering a Lipschitz reaction
(a > 1). This is another major difference compared to the behaviour near 1. Whenever
the profile reaches the equilibrium 1, it does so with a zero derivative.

Remark 5.18 (Classification of profiles). Let us consider the following particular case of

the equation (2.1):
ou 9 Ou | du
89 B —w) gu (1 —u)(u — s, L <1 1.
T 8x(u( ) >+u( u)(u—s.), 0<s, <1, p>

oz ox
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Figure 5.9: Visualization of the sets Aj, A2 and B, B3 for p = 2

Here d(s) = s?(1 — 5)° and g(s) = s*(1 — 5)7(s — s,), s € [0,1], are the diffusion and
reaction terms, respectively, with o > 0, v > 0 and 3,0 € R. If

1
/ s*(1—5)7(s — s.)ds >0,
0

then also (4.2) holds true and Theorem 4.1 guarantees the existence of monotone nonin-
creasing profile with ¢, > 0.

Combining the results from Theorems 5.7, 5.8 and 5.14, 5.15 together with the notation
from Remarks 5.9 and 5.16, we arrive at the following classification of travelling wave
profiles u(z,t) = U(x — ¢t) = U(z). The unique profile U = U(z) is

e AfUA3 and

front-type if B) (7,6)
,B) e BfuB: and (’y,é)eAlUA
B) (7,0)
&) (7,0)

sharp of type I if
e AfUA3 and

(
(
sharp of type IT if (
( e BbuB: and

sharp of type III if

In this example, the diffusion coefficient is continuous in (0,1), i.e., My = 0. It follows
from Remarks 5.10 and 5.17 that profiles which are sharp of type II are C'-functions on
R, and sharp of type III profiles are generally of class C'(R \ {z}).

5.3 Monostable case

Finally, we address the case of monostable reaction term g € C[0, 1], characterized by the
property g(0) = g(1) =0, g(s) > 0 for s € (0,1). Let us recall that under the assumptions
of Theorem 4.6, there exists a half-line of admissible wave speeds ¢ € [¢*, +0), ¢* > 0.
Unlike in the previous case, we now need to take into account also the non-existence result
from Theorem 4.7, which concerns the behaviour of d(s) and g(s) as s — 04. While the
asymptotic analysis near the equilibrium 1 is not affected by this and hence similar to
that in the bistable unbalanced case, the analysis near 0 becomes less detailed and an
additional assumption on ¢ must be imposed in order to refine some of the estimates.
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5.3.1 Asymptotics near 1

Let us start by examining the behaviour of solutions U = U(z) as z — —oo. The means
of the proofs are basically the same as in the bistable case, except for the fact that the
assumption (4.5) yields a different necessary condition for the involved parameters.

In what follows, we assume that ¢ € [¢*, +00) is arbitrary but fixed.

Theorem 5.19. Lety >0, § € R and g(t) ~ (1—1)7, d(t) ~ (1—1)° ast — 1—. Assume

that
0<~+ d < L (5.15)
Syt o ST :
If
—0+1
p
then zp > —oo. If
7—(5—1—121
p

then zg = —o0.

Proof. Set f(t) = (d(t))y%lg(t). Then f(t) ~ (1 — t)w”zf%l as t — 1— and we observe that
due to the assumption (4.5) from Theorem 4.6, we have the following necessary condition

for the parameters v, 6 and p:
o

Y+ ——2>0,
p—1
i.e., the first inequality in (5.15).
Our assumptions on d and g yield the existence of § > 0 such that f(t) = (d(¢))?~T g(t)

is continuous in (1 — 6, 1). Hence f(t) ~ (1 — t)wp%l is equivalent to
F(0) = O =075, e (1-0,1),

where 1 = n(t) is a continuous function in (1 — 6, 1) with lim,,;_ n(t) € (0, +00).
The rest of the proof is then carried out in the same way as in the proof of Theorem 5.7,
using upper and lower solutions of the form

ye(t) = k(1 — )T k>0, te[l—6,1]
[
Theorem 5.20. Lety > 0,5 € R and g(t) ~ (1—1)7, d(t) ~ (1—1t)° ast — 1—. Assume
that
N J - 1
e R
If v < 1 then zp > —oo. If v > 1 then zg = —o0.

Proof. The proof follows the same reasoning as in the proof of Theorem 5.8, employing
upper and lower solutions of the form

ye(t) = (1 — 1P 0T50) . k>0, te[l—6,1].
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Remark 5.21. To visualize conditions from Theorem 5.19 and 5.20, we introduce the

sets

1 9 ) 1

Al =3 (1,0) R :7v>0,0<yv+ —< —— 7v—=30+1>p,,
p—1 " p—1

1 9 1) 1

Bl =9(10)eR:y>00<y+ —< ——,v—0+1<p,,
p—1"p—1

AQ.: (75)6R27>17+ 0 >;

L ’ = p—1" p—-1]J"

Bl ={(7,0)eR*:0<y<1 +L>—1

Then zy = —o0 if (7,8) € A} UA? and 25 > —cc if (v,0) € B} U B3,

Notice that the sets A} and B are the same as in the bistable case, while A} and
Bi differ only in the lower bound for v + p%l. Therefore, in the geometric interpretation
(see Figures 5.10 and 5.11), the lower boundary line of the corresponding regions always
intersects the origin.

AN A(S \ ,
N /
N ////
\\ ///

\\ :\/

\
\ B% //
\ 1F 4
N ’
N ’
N /
\
/ 2
\\ Bl // Al
\
N 1 / i
1 Y
s
e }x ‘A% }x
—1x N d‘\
’ A \/
/ o

Figure 5.10: Visualization of the sets Aj, A? and Bj, B} for p =2

As for the derivative U’(zp+), the same reasoning as in Remark 5.10 applies also in
the monostable case. In particular, for any (v, d) € B} U B?, the wave profile U = U(z) is
a C'l-function in the neighbourhood of z; € R.

5.3.2 Asymptotics near 0

In this section, we adopt a different approach from the previous cases. We proceed directly
with the reasoning and summarize it in the main theorem at the end.

Let us assume that g(t) ~ t* and d(t) ~ t# as t — 0+ for some a > 0 and 8 € R. It
follows from Theorem 4.7 that
1

B — 5.16
CH_p—l_p—l ( )
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Figure 5.11: Geometric interpretation for values p # 2

must hold, otherwise there is no solution of (4.1).
The proof of Theorem 3.13 suggests a method to determine when z; = +o00. Indeed,
there we showed that
0 <y.(t) < kt’, te(0,1),

with k = (p) Together with the expression for z; from (5.2), the above inequality yields
that there exists a constant ¢; > 0 such that

1 1 1 B 1
3 (d(t))7T 3 = = 3 s
zlz/g%dt>/2((l))p, dt201/2 dt_c1/2t§—1dt.
0 (ye(t))? 0 krtr 0 tiT 0

From the last integral we conclude that z; = +o00 if and only if § < 2 — p. The values
of a and [ for which this situation occurs are depicted in Figure 5.12 for p = 2. The
boundary lines of this region are generally given by the expressions 5§ =1— (p — 1)a and
B = 2 — p, suggesting how the layout changes for different values of p.

However, this estimate is far from being optimal. Indeed, we can refine the asymptotics
of y. near 0 in the case of power-type behaviour of g and d near 0 and prove z; = +00
under more general assumptions on « and f.

Notice that (5.16) is equivalent to pa + p'S > p’ and set w := pa + p'B, y.(t) := Kt*,

€ (0,1), with k > 0. Let

fi:= sup M (5.17)

te(0,1) t“*

It follows from (5.16) and (4.5) that pu < f; < +o0. In particular, (5.17) yields

F(t) < At = fuits, teo,1).

Therefore, we have

1

Py = yL(t) — 1/ [c (yu(t))? — f(t)} < Wit — plervts +p fit7
=t» <cmt€ —p’cn% —|—p’fl> , te]lo,1],

29



v

21 = +o0
Q
X
N
N\
~/

Figure 5.12: Visualization of conditions leading to z; infinite

withe =w—1— % > 0. Since t € [0, 1], the following inequality

wk — plerr +pfi <0 (5.18)
would imply that P.y, <0 a.e. in [0,1]. Notice that (5.18) is equivalent to
L wntrfi

—— =: H(k), k> 0. (5.19)
pE?

Obviously, H(k) > 0, k € (0,400) and lim, 04 H (k) = lim,10 H(k) = +00. The
global minimum of H over (0, +00) is attained at

(p’)zf
~—=h
Rmin = .
w
and, due to w > p/,
N1_2 L1 o 1 Nl 1L
H(kmin) = () "7 p? f7 wr 2> (p)) p? f1. (5.20)

R
7

It follows from (5.18)—(5.20) that for & = K and all ¢ > (p')» p% f# we have that
P.yz < 0= P.y, a.e. in [0, 1] and since yz(1) > 0, by Lemma 3.5, we get yz(t) > y.(t) for
t € [0,1]. In particular, we deduce

1 1B

1 1 1 — =
zlz/Q%th/ZMdtZ@/”pw dt = 400
0 (ye(t))” 0 Rrtr ot

with some ¢y > 0 if and only if

which is equivalent to o > 1.
On the other hand, let ¢ € [¢*, +00) be fixed. Since d and g are strictly positive in

(0,1) and f(t) ~ 19755 as t — 0+, there exists 0 < fo < 400 such that

ﬂwzmwﬂzﬁﬂ,tehﬂ.
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We set y,(t) = kt“, t € [0, 1], where
o (3)-(5)
K:=min4 2%y ( = ), [ — .
2 c

1

Py = hlt) = ' [ (us(0))7 = F(8)] = wrt*™ = pewrt? + p/fot?

Then yﬁ(%) < y.(3) and

1
2

w 1 1
> p'te <f2 - cg?) > 0= Py, in {0, 5] :

By Lemma 3.5 we conclude y,(t) < y.(t), t € [0, 3]. In particular, we conclude

1 1 B

3 (d(t))7T 3 (d(t)) 7T 2 it
z1=/ “lex/ %dtgcg/ At < 400
0 (ye(t))? 0 v 0ot

with some c3 > 0 if and only if

which is equivalent to o < 1.

We can summarize the asymptotics of y. near 0 as follows.

Theorem 5.22. Let a > 0, B € R and g(t) ~ (—t%), d(t) ~ t% ast — 0+. Let f be as
in (5.17) and assume that
+ P > !
at+=>—-.
g p—1
(i) Let c>c*. If B <2 —p then zy = +00. If 0 < a < 1 then z; < +o0.

(il) Let ¢ > (p)Y7 pb/» 17 If o > 1 then 2 = +oo.

Remark 5.23. To visualize conditions from Theorem 5.22, we introduce the following
sets:

AO::{(a,ﬁ)GRQ:aZLOz-l—iZL},
1

By:=4(a,8)eR*:0<a<l,a+ > — >
p—1"p—1

see Figures 5.13 and 5.14 for geometric interpretation.

If (a, ) € By and ¢ > ¢*, then z; < 400. On the other hand, if (o, ) € Ay and
c> (p))\/¥ pi/r fll/p/, then z, = 4+00. Without the restriction ¢ > (p/)"/? p!/» fll/p/ (notice
that fi > u), we only know that z; = 400 if (, 5) € Ag and § < 2 — p. This horizontal
line is highlighted in Figure 5.14 and it coincides with the a-axis in Figure 5.13. It is
important to note that for ¢ € [c*, (p/)¥/? p'/P fll/p/), the type as well as the smoothness
(see Remark 5.24 below) of the wave profile U might be very different for (o, 8) € Aj and
g >2—np.

For example, in view of the results from [33, Theorem 2] and [22, Theorem 6.3|, one
should expect that for 1 < p <2, a > 0, § =1 and ¢ = ¢*, the profile U reaches zero
in z; < +oo and with U’(z;—) < 0. Since U'(z;+) = 0, U is not a C'-function in the
neighbourhood of z; € R.
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N By

Ao

v

Figure 5.13: Visualization of the sets Ay and By for p = 2

:r _3

\ By By
Ao N AO

Figure 5.14: Visualization of the sets Ag and By for p # 2

Remark 5.24. (o, 3) € By, i.e., 21 < 400. Then it follows from Remark 2.7 that for
B <0 we have lim, ., U'(z) = 0, i.e., the travelling wave profile U is a C'-function in a
neighbourhood of z; € R. Notice, however, that («, 3) € By with § < 0 occurs only for
1<p<2.

Fortunately, we are able to improve this result provided c¢ is “large enough”. Let
¢ > (p)VP pUP £V and y=(t) = Rt“ be as above. Then y.(t) < ®t7, t € [0,1], and there
exists ¢4 such that

1 1 B
p—1 p—1 p—1
Z(0+) = lim %: lim —&S— lim %S—Q lim Uﬂ
U—o+dU  U—0+ (yo(U)) > U0+ Epl/p U—0+ [J»
= —c4 lim U™% = —o0,
U—0+

if « > 0. Hence U'(z;,—) = 0, i.e., the travelling wave profile U is a C'-function in a
neighbourhood of z; € R for any (o, 8) € By and ¢ > (/)7 p\/p f1/7".
As we mentioned in the previous remark, the results from [33] and [22] suggest that a
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different outcome can be expected at least when 1 <p <2, =1 and ¢ = ¢*.

Remark 5.25 (Classification of profiles). Let us consider the following particular case of
the equation (2.1):

ou 0
- B(1 _ ,\0
ot Oz (u (1—u)

—2
P72 0u

- (] — )7
8x>+u<l u)?’, p>1.

%
ox

Here d(s) = s®(1 — s)° and g(s) = s*(1 — 5)?, s € [0, 1], are the diffusion and reaction
terms, respectively, with a > 0, v > 0 and 3,0 € R.

Combining the results from Theorems 5.19, 5.20 and 5.22 together with the notation
from Remarks 5.21 and 5.23, we arrive at the following classification of travelling wave
profiles u(z,t) = U(x — ct) = U(z).

Let ¢ > ¢*. The profile U = U(2) is

front-type if (a,8) €Ay, 3<2—p and (7,d) € Al U A%
sharp of type I if («a,8) € By and (v,0) € Alu A%
sharp of type IT  if (a,8) € Ag, 3<2—p and (v,0) € Bj UB%;
sharp of type III if («a, 8) € By and (v,0) € Bl U B?

If ¢ > (p/)V/¢' pt/p fll/p,, we obtain front-type and type II sharp solutions for all (o, 8) € Aj,
i.e., also for g > 2 — p.

Since d € C(0,1), we have U € C%(zp,2) and it follows from Remark 5.21 that
front-type solutions as well as sharp of type II solutions are differentiable for all z € R.
Moreover, if ¢ > (p/)\/*' p!/» fll /P /, we conclude from Remark 5.24 that all types of profiles
are C''-functions on R. Therefore, in this case, Figure 5.4 depicts accurately the derivatives
of U at zy and z;.
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Chapter 6

The influence of convection in the
case of combustion nonlinearity

In this chapter, we present our most recent results concerning the appearance of travelling
waves in a scalar reaction-diffusion-convection equation with p-Laplacian type diffusion
and combustion-type reaction.

The notation in this section mostly coincides with that used in the previous text except
for some minor changes. The diffusion coefficient is denoted D instead of d to empha-
size the fact that different assumptions are considered for the problem with convection.
Finally, for convenience reasons, the analogue of interval (2, z1) is now denoted as (21, z2).

6.1 Reaction-diffusion-convection equation

Let us consider the reaction-diffusion-convection equation

ou 0
% [D(U)

Here p > 1, D is a density-dependent diffusion coefficient with D > 0 in (0,1), H rep-
resents a nonlinear convective flux function, and ¢ is a combustion-type reaction term,
ie.,

@
ox

+ g(u). (6.1)

"7 Ou | OH(u)
ox ox

g(s)=01in [0,s, g(s)>0 in (s 1), g¢g(1)=0 (6.2)

for some s, € (0,1). Our assumptions on the regularity of these functions will be specified
in the next section.

We are concerned with the existence and properties of travelling wave solutions u(x,t) =
U(z — ct), ¢ € R, which connect the stationary states 0 and 1. Clearly, if H is constant,
equation (6.1) reduces to the previously discussed reaction-diffusion equation (2.1). Our
aim is to investigate how the additional transport term H affects the existence of travelling
waves.

Let us start with a brief summary of results in the case p = 2, which can be found in
[37]. There, the authors assume H € C*[0, 1], strictly positive D € C*[0, 1] and different
types of reaction g € C[0,1]. For further details and discussions, we refer to the papers
[31, 36, 32], on which the survey [37] is based.

For monostable equations, i.e., when ¢ is a type A function, the presence of convective
processes does not affect the existence of a continuum of admissible wave speeds. Instead,
it simply causes a “shift” of the threshold value ¢*, which, consequently, need not be
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positive. In the bistable case, the situation might change considerably compared to the
case without convection. In particular, if ¢ is a type C function, it was shown in [36]
that it is possible to have connections from 0 to s, and from s, to 1 with the same wave
speed, which causes the disappearance of the travelling wave connecting 0 and 1. This
phenomenon depends on the behaviour of the product D(s)g(s) at s.. In particular,
it occurs when the derivative of this product vanishes at s,. Otherwise, there exists a
unique wave speed ¢, (as in the absence of convection), but this value might be again
shifted due to the convective term. Finally, if ¢ is a type B function, i.e., it satisfies (6.2),
the travelling wave solution might also disappear, but for a different reason than in the
case of type C functions. Now, this phenomenon is linked to the threshold value s, and
the convective term H. In particular, if H(s,) is “large” with respect to the terms D and
g (cf. Section 6.3), no travelling waves exist.

Let us also mention the case of degenerate diffusion D € C'[0, 1] in monostable equa-
tions. In [34], the existence of travelling waves is proved assuming D(0) = 0 and D(1) > 0,
instead of D > 0 in [0, 1]. Furthermore, the authors also investigate “sharpness” of the
wave profiles (cf. Remark 4.2), providing detailed classification for cases D’(0) # 0 and
D'(0) = D’(1) = 0. In the absence of convection, the profiles are either of front-type (when
¢ > ¢*) or sharp of type I (when ¢ = ¢*), regardless of whether D(1) > 0 or D(1) = 0.
In other words, the possible degeneracy at 1 does not cause any other sharpness phe-
nomenon. However, the same is not true for reaction-diffusion-convection equations. Now
the double degeneracy can determine the appearance of solutions which are sharp of type
IT or III.

In this chapter, we study how the results for p = 2 and combustion nonlinearity (6.2)
extend to equations with p-Laplacian type diffusion. Furthermore, we impose weaker
assumptions on D and ¢ than those in [32], although, for technical purposes, less general
than the assumptions made in Chapter 2, cf. Remark 6.6.

6.2 Preliminaries

We consider the equation (6.1) with p > 1 and assume that the functions D, H and g
have the following properties: D € C*(0,1), D > 0in (0,1), H € C'0,1], g € C[0,1]
is Lipschitz continuous in [s., 1) and satisfies (6.2). Notice that the diffusion coefficient
D might degenerate or have a singularity at one or both endpoints 0, 1. Without loss of
generality, we further assume that H(0) = 0 and write

where h(U) = L H(U), U € [0,1], is the convective velocity.
Formally substituting u(z,t) = U(z) with z = o — ¢t into (6.1) yields the ordinary

differential equation
(DU )P2U'(2)) + (e + RU))U'(2) + 9(U(2)) =0, =z €R,

where primes denote differentiation with respect to the wave coordinate z. This equation
is autonomous, hence its solutions are invariant under translations and we can normalize
them by U(0) = s.. As in the pure reaction-diffusion case, we look for travelling wave
profiles U which satisfy boundary conditions U(—o00) = 1, U(+00) = 0, i.e., we consider
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the following boundary value problem on the real line

{(D(U)!U’IP‘QU’) +<c+h<U)): +g(U) =0, (6.3)

zEIPoo U(z) =1, leﬁnoo U(z)=0

Equations involving the p-Laplacian need not have classical solutions, as the second

derivative may not exist in general. They are also known for their finite property, meaning

that the solution of (6.1) might reach 0 in finite time. Apart from this fact, possible

degenerations and singularities of the diffusivity D also require us to adopt a more general
concept of solution U to (6.3).

Definition 6.1. Let Iy = {z €¢ R: 0 < U(z) < 1}. A continuous function U : R — [0, 1]
is a solution of (6.3) if

(a) U € C'(Iyy) and the equation in (6.3) holds at every point of Iy;

(b) the function z — D(U(2))|U’(2)|P~2U’(z) is continuous on R and

DUNU'(2)P2U'(2) =0 as U(z) =0 and U(z) — 1;

(¢) (boundary conditions) U(z) — 1 as z — —oo and U(z) — 0 as z — +00.

Remark 6.2. It is not difficult to see that the above definition is a simpler form of
Definition 2.2 in Chapter 2 with My = (). In addition, it explicitly contains the boundary
conditions from (6.3). Below we will show that [y is in fact an open interval and that
U(z) <0forall z € Iy. f p=2, D € C'0,1] and g is a Lipschitz function in [0, 1], then
Iy =R and U € C%(R) is a classical solution, cf. [32].

Similarly as in the absence of convection, we would like to establish equivalence of the
b.v.p. (6.3) with a first-order one on a bounded interval. To do so, we first derive the
following analogue of Proposition 2.10.

Proposition 6.3. Let U be a solution of (6.3). There exist —oo0 < z1 < z3 < 400 such
that U = 1 in (—o00, 1], U =0 in [z2,+00) and U'(z) < 0 for any z € (21, 22).

Before proceeding to the proof, we note that it relies on two auxiliary lemmas, which
are presented afterward for the sake of clarity in exposition.

Proof. First we show that the derivative of a solution to (6.3) does not vanish in the set
Iy. Indeed, let zy € Iy be such that 0 < U(zg) < 6. If U'(29) = 0 then it follows from
Lemma 6.4 that the boundary conditions in (6.3) are not satisfied, a contradiction. Now
consider zy € Iy, s. < U(zg) < 1 with U'(zy) = 0. Then

(DU (2)P~2U"(2))

= —g(U(2)) < 0.
2=z
It follows from Lemma 6.5 that zy must be the point of strict local maximum of U and
therefore lim U(z) # 1, again a contradiction.

zZ——00
Next we prove that U'(z) < 0 for all z € Iy, i.e., the solution cannot “switch” from 0
to 1 and back again finitely many times (while still satisfying the boundary conditions).
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To this end, we observe that ¢ > —H(1) is a necessary condition for the existence of
solution to (6.3). Indeed, integrating the equation in (6.3) we obtain

DUV (2)P*U" () = DUE)IU' ()P (2) + c(U(2) — U(2))

+HU(2) - HUE) + /Zg(U(f)) d—0, 2:cR

Passing to the limits z — 400, 2 — —oo and taking into account parts (b) and (c) of
Definition 6.1 yields
+o0
e+ H)~1(0) = [ oU(e) de

Since H(0) = 0 and the integral on the left-hand side is positive, we conclude that
c>—H(1).

Suppose that there exist z,Z € R such that U(z) = 0, U(Z) = 1 and U'(z) > 0 for
all z € (z,z). Integrating the equation in (6.3) from z to z and employing the same
arguments as above, we arrive at

c+HO) = [ Cg(U(€)) de <0,

z

i.e., ¢ < —H(1), a contradiction.
Therefore, there exist —oo < 21 < 29 < +00 such that U =1 in (—o00, 2|, U =0 in
[29, +00) and U'(z) < 0 for any z € (21, 22). This concludes the proof. O

The following lemmas were used in the proof of Proposition 6.3.

Lemma 6.4. Let U € C'(R) be a solution of the initial value problem

(6.4)

(DOU'P2U") = = (e +hU) U,
U(Zo) = U() S (07 1), UI(Z()) = 0.

Then U does not verify part (c) of Definition 6.1.

Proof. Integrating the equation in (6.4) and using the initial conditions yields
DU U (2)|P2U(2) = c(Uy — U(2)) + H(Uy) — H(U(z2)), z€R. (6.5)

Put
S,(v) = |[v|P?v for v #£0, S,(0) =0, p>1.

Since S, is the inverse function to S,, equation (6.5) is for D(U(z)) # 0 equivalent to

V() = Sy (m e(Us — U()) + H(Uy) — H<U<z>>1) | (6.6)

If 1 < p <2 then, due to D € C*(0,1) and H € C'[0,1], the right-hand side of (6.6)
is Lipschitz continuous in U. Hence U(z) = Uy, z € R, is a unique solution of (6.4) in R,
and therefore does not verify part (c) of Definition 6.1.

If p>2 ie,1<p <2, then the right-hand side of (6.6) is not Lipschitz continuous
only at one point U = Uy, but it is one-sided Lipschitz continuous there. Therefore,
either U(z) = Uy, z € (—00, 29] is a unique solution of (6.4) in (—o0, zo|, or U(z) = U,
z € |29, +00), is a unique solution of (6.4) in [zg, +00). In either case, part (c) of Definition
6.1 is not satisfied. O
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Lemma 6.5. Let U be a solution of (6.3) and let zo € R be such that U(z) € (0,1),
U'(20) =0 and
(DU ()20 (2)))

z2=2z0

Then U has a strict local mazimum at zg.

Proof. We have

B dD , »
T U (20)|7|

U=U(z) ~—~—"

0> (DU () 2U'(2)))

+ D(U(20)) (IU'(2)I"*U"(2))

2=2z0
Since D(U(zp)) > 0, we get (|U’(z)]p_2U’(z))/‘Z:ZO < 0, and therefore, |U'(2)[P72U’(2) is
strictly decreasing in 2o and equal to 0 at z = zp. Since the power S,(v) = |v|P72v is
strictly increasing, U’(z) is strictly decreasing at z = z5. Hence z; is the point of strict
local maximum of U. [

It follows from Proposition 6.3 that Iy = (21, 22), i.e., Iy is an open interval, bounded
or unbounded. As in Section 2.3, we now follow the substitutions from [22] and set

—w(U) = D(U)|U'|P~2U". (6.7)

Since U'(z) < 0 for all z € (21, 23), we have w = w(U) > 0 in (0,1) and w satisfies
1 d w(U)\7 ™!

—————uw’ (U) — h(U)) | == U)=0, Ue/(0,1).

S )~ e o) (B ) e =0 ve

where p’ = p%l is the exponent conjugate. Put

/

y(U) =w? (U) >0

and write ¢ instead of U. Then y = y(t) solves

J(0) =1 [+ rO) W)~ F0)]. te ), (6.8
where f(t) :== DY ~1(t)g(t). In terms of g, part (b) of Definition 6.1 translates to
y(0) =y(1) = 0. (6.9)
It follows from (6.7) that
d= _ (D)
v (w(U))
and therefore
o= [T (PONT e [T D
(U) /s (w(s)) d /S (y(s))% ds, U € (0,1). (6.10)
Since z = z(U) maps (0,1) onto (z1, z2), we have
2 =— 1 Mds and 2y = ) Mds. (6.11)
A;(M$ﬁ J (v(s))*
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It follows from the above calculations that the existence of a monotone solution to (6.3)
implies the existence of a positive solution to (6.8), (6.9) which, in addition, satisfies
(6.11). Actually, it is possible to show that these problems are equivalent, cf. Section 2.3.
This allows us to derive existence and non-existence results for (6.3) by investigating
existence and non-existence of positive solutions to (6.8), (6.9).

Remark 6.6. Let us note that the results presented in the following sections could be
derived under weaker assumptions on D and g. In particular, we may assume D € C(0, 1)
and g € C[0,1]. By appropriately modifying Definition 6.1, functions D and h with jump
discontinuities in (0, 1) could also be considered. However, the assertion in Proposition 6.3
would not hold due to the lack of uniqueness of the associated Cauchy problem. Therefore,
as in Section 2.3, we would need to assume the monotonicity property of solutions in order
to transform the second-order problem (6.3) into a first-order one.

6.3 Non-existence results

In what follows, we denote

Ry = min h(s),
2

and assume that the integral
1
| o) g as
0
exists finite.

Theorem 6.7 (Non-existence). Let

1 1/p'
H(ss) > Suhy, + (p’/ (D(s))7Tg(s) ds) : (6.12)
0
Then the b.v.p. (6.3) has no solution for any ¢ > —hy,. If strict inequality holds in (6.12),

there is no solution for any ¢ > —h,,.

Proof. 1t suffices to show that the first-order b.v.p. (6.8), (6.9) does not admit positive
solutions for the given values of c.

Assume by contradiction that ¢ > —h,, and y. = y.(t) is a positive solution of (6.8),
(6.9). Integrating the equation (6.8) over (s, 1) and using (6.9) yields

yels.) = —p / (c+ h(r)) (ge(r)} dr +p/ / f(rydr <y / f(rydr,  (6.13)

where f(t) = Dﬁ(t)g(t). On the other hand, since f =0 on (0, s,) the equation (6.8) is
separable on (0, s,). Using (6.9) we obtain

1
ol

(Ye(54))? = cSu + H(s4). (6.14)

It follows from (6.13), (6.14) and the condition (6.12) that

(p’/olf(r) dT) e (We(s.))7 = csu+ H(s,) > —hoss + H(s.) > (p//olf(f) dT) 1/p"
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a contradiction.
Assuming strict inequality in (6.12) and ¢ > —h,,, we would arrive at

(p'/olf(T) dT) " > (ye(52))7 = s+ H(s2) > —hms. + H(s.) > (p’/olf(T) dT) W’

again a contradiction. This concludes the proof. ]

We notice that
¢ > —h(0) (6.15)
is a necessary condition for the existence of a positive solution of (6.8), (6.9). Indeed, if
¢ < —h(0) then, by the continuity of h, there exists § > 0 such that ¢ < —h(u) for all
U € [0,9]. Integrating the equation (6.8) over [0,4] and using y.(0) = 0 together with
¢+ h(u) < 0in [0, 9], we arrive at

5 1
0ed) = o' / (e + h(r) (i (r))F dr <0,

a contradiction with the positivity of solution y. = y.(t).
Taking into account the necessary condition (6.15) in Theorem 6.7, we obtain the
following corollary, which addresses the non-existence of a wave profile for any ¢ € R.

Corollary 6.8. If strict inequality holds in (6.12) and h,, = h(0), then (6.3) has no
solution for any c € R.

6.4 Existence results

Let )
Fll—l if 1< p < 2,
1 ifp=2,
k=k(p) = 2 — ifp>2. (6.16)
p—1+ 149/ (0 =) P =2 4 (p'=1) P =2
1 P
1+(p’*1)”/_2>
\
Then k = k(p) is a continuous function in (1, +00) and
lim k(p) =0 and  lim k(p) = -
im = an im =_.
p—14+ p p—+o00 p 2

Theorem 6.9 (Existence). Let

() < o+ (Kp) [ (DG 19(5) 05 " (617

Then there exists a unique ¢ = ¢, > —h,, such that the b.v.p. (6.3) has a unique (up to
translation) solution U = U(z). Moreover, the solution U is strictly decreasing on Iy and
Cy satisfies

1
Cy < —

*

(v [ enraas) v H<s*>] ~ ho (6:13)
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Proof. We first prove the statement of Theorem 6.9 assuming that h,, = H%(i)rh h(s) =0,
se|0,

i.e., we will show that if

1/p'

1w < (k) [ DE)Fre)as)

then there exists a unique positive value ¢ = ¢* for which (6.3) admits a solution. This
result can then be applied to the case of a more general h € C[0, 1] with h,,, # 0 by means
of a suitable shift, discussed at the end of the proof.

Thanks to the equivalence established in Section 6.2, we proceed by investigating the
initial value problem

{yg<t> P |(e+ RO @) — Fm)]. te o),
Ye(1) = 0.

(6.19)

Let ¢ > 0. Since ¢+ h(t) > 0 for all ¢ € [0, 1], the function
v (e hD)yh)r, te0.1],

satisfies one-sided Lipschitz condition and it follows from Lemma 3.1, where we replace ¢
by ¢+ h(t), that (6.19) has a unique global solution y. = y.(t) defined on [0, 1]. Our aim
is to show that there exists ¢ > 0 such that y.(¢) > 0 for ¢t € (0,1) and y.(0) = 0.

First, let us observe that f(¢) > 0 in (s, 1) implies that

ye(t) >0 for t € (s4,1), (6.20)

and
ve(54) = —p'/ (c + h(r))(we(7))F dT—i—p// F(r)dr < p//o £(r)dr. (6.21)

According to Lemma 6.12 (see the end of this section), for any p > 1 we have

1
7

(yo(s+))?" > H(s.). (6.22)

In particular, yo(s.) > 0 and hence there exists 0 < § < s, such that y.(t) > 0 for
t € (s« —0,84). Since f =0 on (0,s.), Yo = yo(t) solves the equation

S =

Yo(t) = P'R(t)(yo(1))7, € (5. —9,5.).

Separating variables, we obtain for t € (s, — 0, s)

[~

S

(Yo(s:))" = (yo(1))” = H(s.) = H(),

~

ie.,
1 1
7

(yo(t))?" — H(t) = (yo(s.))” — H(s.) >0
by (6.22). It follows that 0 = s, and

=

(yo(t))? >0 for all t € [0, s.].
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Therefore,
yo(t) >0 forall te]0,1). (6.23)

Set
¢ =sup{c>0:y.(t) >0 forall t € (0,1)}.

It follows from (6.20), (6.23) and the continuous dependence of the solution to (6.19) on
the parameter ¢ that the set {¢ > 0: y.(¢t) > 0 for all ¢ € (0,1)} is non-empty and ¢, > 0.
If ¢, = 400 then there exist ¢, — +oo and corresponding y., = v.,(t) > 0, t € (0,1),
which satisfy
Yeo (t) = P'(cn + (1)) (Ye, (1))7, € (0,5.).
Separating variables yields
1 1

(Wer ()7 = (Wen ()7 4 calt — 5.) + H(t) = H(s.), T € (0,5.), (6.24)

and from (6.21) we get
1
() <8 [ F(r)dr < v
0

Therefore, the right-hand side in (6.24) tends to —oo, a contradiction. Hence

0<ece < +o0.

Next we prove that y..(t) > 0, t € (0,1), y..(0) = 0. Indeed, by the continuous
dependence of (6.19) on the parameter ¢ and the definition of ¢,, the solution y., = ¥, (t)
must vanish somewhere in the interval [0, s,]. Let n € [0, s.] be the largest zero of y.,. It
follows from the comparison argument that solutions of (6.19) decrease with ¢. This can
be easily shown as in Lemma 3.5 and Corollary 3.6 by replacing ¢ with ¢+ h(t). If n > 0
then for ¢ < ¢, we have y.(t) > 0 on (0,7) and hence from

=

yo(t) = p'(c+ h(t)(y(t))?, te€(0,n),

we again deduce

1 RS
7 7

0 < (e(t)”" = (ye(n))” + c(t —n) + H(t) = H(n). (6.25)

Since for ¢ — ¢, we have y.(n) — y..(n) = 0 by continuous dependence on parameter, for
any fixed t € (0,7n) there exists ¢ < ¢4, (¢, — ¢) sufficiently small, such that

1
o

(Ye(n) 7 +c(t —n) + H(t) = H(n) <0

(hm = 0 implies that H is nondecreasing), which contradicts (6.25). Hence n = 0.

Finally, we show that positive solutions of (6.19) do not vanish at 0 for values of ¢ # c,.
Assume by contradiction that there exists ¢ # ¢, such that y, = ya(t) > 0 solves (6.19) in
(0,1), y2(0) = 0. The definition of ¢, yields ¢ < ¢,. Separating variables in the equation
in (6.19) on (0, s,), we obtain

and also
(er(52))7 = caso + H(s.). (6.26)



Hence ya(s:) < ye,(s4). On the other hand, the comparison argument applied to (6.19)
yields ya(t) > v.,(t), t € [0,1]. This follows from Corollary 3.6 with ¢; = ¢ + h(t) and
¢y = ¢ + h(t). In particular, ya(s.) > v, (S«), a contradiction.

It follows from (6.26) together with (6.21) that

Sy Sy

&= — ({527 = H(s)) < — [(p / (D) gt ds) " H(s*>] ,

i.e., (6.18) holds. This concludes the proof for h,, = 0.

If h,, # 0, we can consider a new convective velocity h(s) = h(s) — hm, s € [0, 1].
Then Ay, = mingep h(s) = 0 and H(U) = fOU h(s)ds = H(U) — h,,U is a nondecreasing
function. Setting ¢ := ¢ + h,,, the equation in (6.3) becomes

(DOU'P2U") + (E+ h(U)U' +g(U) =0

and we can apply the above reasoning to prove the existence of a unique positive value ¢,

assuming that
/v

1 < (k) [ (D905 05

Since H(1) = H(1) — hy,, we immediately see that condition (6.17) yields a unique value
Cy = Cy — hyy > —h,y, corresponding to the problem with convective velocity h, and the
estimate (6.18) holds. O

Notice that if h,, < 0, from Theorem 6.9 we immediately see that the unique wave
speed c¢* is positive. The following result addresses the existence of a positive wave speed
in the case h,, > 0.

Theorem 6.10 (Positive wave speed ¢). If h(s) > 0 for s € [0,1] and
1 ) 1/p
H) < (ko) [ (DE)Prg(s)ds) (627
0
then c* >0 > —h,,.

Proof. If h,, > 0, the proof can be carried out exactly as in the case h,, = 0. In particular,
statements concerning the i.v.p. (6.19) remain valid and the positivity of h justifies the
use of Lemma 6.12. Therefore, if (6.27) holds we conclude that ¢* > 0 > —h,,. O

To establish the inequality (6.22) in the proof of Theorem 6.9, we employ the following
lemma.

Lemma 6.11 (Technical inequalities). Let a > 0, b > 0. Then

(i) forr > 2 we have
a" +ra” b+ b < (a+b)";

(ii) for 1 <r <2 we have
a +ra o+ b < k(r)(a+b),

where ) )
Cltr(r =14 (r— 1)

K= (1+(r—1)fz)r
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Proof. We put t = % > (0 and write the inequality in an equivalent form

o ldrtt
0=~y

<k(r),

where we set k(r) = 1 for r > 2. Then the optimal choice for k(r) would be k(r) =
max;>o f(t), if this maximum exists. Indeed, it does. Namely, f is a continuously dif-
ferentiable function on [0, +o00) satisfying f(0) = 1 = limy,,o f(£). An elementary
calculation yields that ¢t; = (r — l)i is the only stationary point of f in (0,400).

Part (i). It is clear that equality holds for r = 2. Let r > 2. Then f(1) = - < 1.
Hence t; = (r — 1)%2 is the point of global minimum of f, 0 < f(¢;) < f(1) < 1 and
therefore max;>o f(t) = f(0) = 1.

Part (ii). Let 1 < r < 2. Then f(1) = 2 > 1 and hence ¢, is the point of global
maximum of f in [0, +00) with

]

Lemma 6.12 (Inequality (6.22)). Assume that h(t) > 0 in [0,1] and let yo = yo(t) be a
solution of the i.v.p. (6.19) with ¢ =0. If

HWnsumAUwa, (6.28)

where k = k(p) is given by (6.16), then

1
v

(yo(s+))7

Proof. We proceed by contradiction, that is, we assume that

> H(s,).

1
o

(Yo(s:))?" < H(sy).

Since f > 0on (s, 1), it follows from the equation in (6.19) that yo(t) > 0 for allt € (s, 1).
1

Set z(t) == (yo(t))?. Then z(t) > 0 in (s, 1), 2(1) =0,

2(s¢) < H(sy) (6.29)
and z = z(t) satisfies the equation
() = PR =PI, tE (s0,1), (6.:30)
or, equivalently,
Z'(t) = h(t) — z?’#fzt)’ t € (s4,1). (6.31)

Integrating (6.30) and using the mean value theorem, we obtain
1 , 1

2P (s,) = 2 (1) —p’/ h(t)FHt)dt+p | f(t)dt

S * (6.32)

/

= ) (HO) - H) 4 [ f)
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for some tg € (s4,1). From (6.31) we have

2(tg) — 2(ss) = / 0 h(t)dt — / ’ pr_(fzt) dt < H(ty) — H(s.)

and hence
z(to) < z(sx) + H(1) — H(s,) (6.33)

thanks to the monotonicity of H (in particular, h > 0 implies that H is nondecreasing).
It follows from (6.32), (6.33) together with (6.29)

HY (s.) > —p/ (H(s.) + [H(1) = H(s.)))" " (H(1) = H(s.)) +p’/0 f@yde. (6.34)

Next we proceed separately for p =2, 1 <p <2 and p > 2.
Case 1: p = 2. Since p' = 2, (6.34) becomes

H%Q>—MH@%HHM—H@MMHM—H@M+2Af@ﬁ-
Reorganizing the terms in the above inequality and using (6.28), we obtain
0> —H?(s.) = 2H(s.)(H(1) = H(s.)) = (H(1) = H(s.))" = (H(1) — H(s.))’

+2/0 f(t)dt = —Hz(l)—(H(l)—H(s*))z—l—Q/O f(t)de

- (/Olf(t)dt—H2(1)> >0,

a contradiction.

Case 2: 1 < p < 2. Since p’ > 2, we use the inequality
(a+b)" <2 Ya" +0b"), a,b>0, r>1,

with a = H(s,), b= H(1) — H(s.), r =p' — 1 in (6.34) and obtain
HY (s,) > =p (H(s.) + [H(1) = H(s,)])" "' (H(1) = H(s.)) +p’/0 f(t) dt
> 2 (lefl(s*) +H(1) - H(S*)]p/_1> (H(1) — H(s.)) +p'/0 f(t)dt.
Hence

—H@»—ﬂWQuﬂn—H@mﬂ+ﬁAJVMt
= HY(s.) — P HY " (s,) (H(1) — H(s.)) — (H(1) — H(s.))"
(L= P2 A (H(L) — Hs) + (0 — p2 ) HP (s.)(H(1) — H(s.))

+p’/0 f(t)dt

0> — HY(s,) — p'2" 2H? "1(s,)(H(1)
)
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and, using the inequality from Lemma 6.11 (i) with a = H(s,), b = H(1) — H(s,) and
r=p,

0> —(H(s.) + (H(1) = H(s.)" + (1 —p'2 ) (H(1) — H(s,))"
0 =Y ) ) H)) 0 [ Fo

Then 0 < H(s.) < H(1) implies

0> —HY (1) + (1= p'2"2)HY (1) + (¢ — p'2" ) HY (1) +p’/0 f(t) dt

and from (6.28) we conclude
/ / 1
0> —p'(2" "' = 1)H" (1) +p// f(t)dt >0,
0

a contradiction.

Case 3: p > 2. Since 1 < p’ < 2, we now use the inequality
(a+b)"<ad 40", ab>0, 0<r<l,

with a = H(s,), b= H(1) — H(s.), r =p — 1 in (6.34) and obtain

0> —H"(s.) —pf (H”'_l(s*) +[H(1) - H(S*)]p/A) (H(1) — H(s.)) +p’/0 f(t)dt

ie.,

0> —HY (s,) = p' H' " (s.) (H(1) = H(s.)) = p/ (H(1) = H(s.))" +p’/0 f(t)de

or equivalently

/

0> —HY(s.) — p'H" ' (s.) (H(1) — H(s.)) — (H(1) — H(s.))"

(5 — 1) (H() — H(s.)) +7/ / £(t) dt.

Lemma 6.11 (ii) below. We apply it with a = H(s,), b= H(1) — H(s.), r =p":

For a > 0,b > 0, 7 € (1,2) we have a” + ra"'b 4+ b" < k(r)(a + b)" by the technical

0> —k(p') (H(s.) + (H(1) = H(s.)))" = (o' = 1) (H(1) = H(s.))" +p’/0 f(t) dt

But (6.28) yields

0> ~(h) + 0 - H )+ [ at o,

a contradiction. ]
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6.5 Asymptotic analysis of the wave profile

In this section, we discuss asymptotic behaviour of the solution U = U(z) to (6.3) as
z — t00. Our aim is to determine whether the solution attains 0 and/or 1 (or neither of
them). To this end, we study the convergence of the integrals from (6.11), and hence the
finiteness of the values z1, zo. For technical reasons, we assume power-type behaviour of
D and g near equilibria 0 and 1.

In what follows, we consider H(U) > 0, U € (0, 1], and profiles with ¢, > 0. For the
sake of brevity, we will use the following notation, introduced in Chapter 5: for s € R
we write

d1(s) ~ Pa(s) as s = s¢ if and only if  lim O1(s)

s—S0 ¢2(S) < <O’ +OO).

Asymptotics near 0

Let us assume that D(t) ~ t* as t — 0+ for some o € R. Thanks to f =0 in [0, s.], we

have X
(ye. (1)) = it + H(t), te€(0,0),

and due to the assumption H € C*(0,1], H > 0 together with ¢, > 0, we have (y.(¢))? ~
t ast — 0+. Let us recall that

1

e [P g
0 (e (0)

[

Since

U L U ' U

D(t))7=1 e’ —1) o1

/ CIO)EIFN / —di = / £t as U — 04, (6.35)
0 (ye.(t))? o ¥ 0

we conclude that the following two cases occur:

(a) zo = +oo if and only if p + a < 2;
(b) 2o < 400 if and only if p + o > 2,

see Figure 6.1 for geometric interpretation.

Observe that for any « > 1, the profile U = U(z) is always sharp of type I (cf.
Figure 4.1), i.e., 20 € R, U = 0 in [29,400). If @« = 0 and 1 < p < 2, the profile does
not attain 0 for any finite z. This result is consistent with that from [32] for p = 2 and
D € C'0,1] strictly positive in [0, 1].

In case (b), we can also study the one-sided derivative U’(zo—). In particular, differ-
entiating (6.10) yields

d d (Y (D)7 D(U))r 1
éz_@ %dt:—%, U e (0,1).
se (Ye (B))7 (ye. (U))7
Since D(U) ~ U®, y(U) ~ U? as U — 0+, we have
d 0 if a>1
il ~ —U?T — { const. < 0 if a=1 asU—=0+.
AU [—o+
- —00 if a<l
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Z9 < 400

(\]
/
/
Qv

Figure 6.1: Visualization of cases (a) and (b), leading to z finite or infinite

Employing an inverse perspective, we obtain the following classification for the profile

U="U(2):

—00 it a>1,
U'l(zg—) =< const. <0 if a=1,
0 if a<l.

Therefore, if p+a > 2 and a < 1 we have U'(20—) = U'(22+) = 0.

Asymptotics near 1

Let us assume that D(t) ~ (1 —t)® and g(t) ~ (1 — )Y as t — 1— for some 8 € R, v > 0.
Since the equation (6.8) is not separable on (s, 1), the asymptotic analysis becomes
more involved than in the previous case. However, we can apply the same reasoning as
in Section 5.2.1, where we investigated asymptotic properties of solutions near 1 in the
absence of convection. In fact, this technique yields the same results also when h(t) > 0
instead of h = 0. Replacing ¢ by ¢ + h(t) in the proofs of Theorems 5.7, 5.8, we derive
the same conditions leading to z; = —o0 and z; > —oo. In our current notation, these
theorems read as follows.

Theorem 6.13. Let 8 € R, v > 0 and D(t) ~ (1 — )%, g(t) ~ (1 —t)Y as t — 1—.
Assume that

1
—-1< — < —
7+p—1_p—1
If
— 1
&<17
D
then z; > —oo. If
7—5+12L
p

then z; = —o0.
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Theorem 6.14. Let B € R, v > 0 and D(t) ~ (1 —t)%, g(t) ~ (1 —t)7 as t — 1—.
Assume that
g 1

_—
7+p—1 p—1

If v <1 then zy > —oo. If v > 1 then z; = —o0.

For geometric interpretation, we refer to Figures 5.5 and 5.6 in Section 5.2.1, where
we used 0 instead of 5. As in the case of h = 0 discussed therein, the profile U = U(z) is
a C'-function in the neighbourhood of z; € R, cf. Remark 5.10.
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Conclusion

In this thesis, we studied travelling waves to a class of reaction-diffusion equations on the
real line with a density-dependent diffusion involving the p-Laplacian. Our assumptions
on the diffusion and reaction terms were motivated by applications as well as their math-
ematical generalizations, which were previously considered in literature. An overview of
relevant models together with basic existence results was provided in Chapter 1.

The aim of our research was to generalize the well-known theory of admissible wave
speeds for monostable and bistable equations by proving the existence of travelling waves
under weakest possible assumptions. To this end, we developed a broad theoretical back-
ground in Chapter 2. A new definition of a continuous, generally non-smooth, travelling
wave profile was introduced in Section 2.1, allowing us to consider a piecewise continuous
diffusion coefficient with degenerations or singularities at 0 and 1. In the case of monos-
table reaction, we have shown in Section 2.2 that the profile is necessarily nonincreasing
on R and strictly decreasing in some maximal interval. Restricting our attention to mono-
tone solutions also in the bistable case, we were then able to follow the substitutions from
[22] and reduce the second-order problem to a first-order one (Section 2.3).

Chapter 3 was devoted to the investigation of the equivalent first-order problem in
the sense of Carathéodory, which in turn yields the existence of travelling waves to the
original problem, presented in Chapter 4. The properties of wave profiles were further
explored in Chapter 5, assuming power-type behaviour of the reaction and diffusion terms.
Our findings on this topic also constitute one of the main contributions of our work. We
derived conditions for the involved parameters which guarantee that the profile reaches
(or does not reach) 0 and/or 1. The most detailed classification, which also specified the
derivatives at the points of transition from the steady states, was obtained for stationary
waves in Section 5.1. Travelling wave profiles were examined in Sections 5.2 and 5.3 for
bistable and monostable reactions, respectively. Using suitable upper and lower solutions,
we were able to provide a similar classification with less precise information about the
smoothness of profiles when reaching 0. Interestingly, if a travelling wave profile reaches 1,
it does so with a zero derivative, which is not the case for stationary waves.

In Chapter 6, we explored the effect of convective term on the existence of travelling
waves to equations with a special type of nonlinear reaction arising in combustion. Our
main results, presented in Theorems 6.7 and 6.9, reveal that if convection dominates over
the reaction and diffusion (in the sense of condition (6.12)), the equation ceases to admit
travelling wave solutions. Conversely, when the convective term is “weak” compared
to diffusion and reaction (in the sense of condition (6.17)), a unique wave speed and
corresponding profile exist, akin to the pure reaction-diffusion case.

While the general approach employed in this thesis enabled us extend the results
obtained in more conventional settings and treat different types of reaction in a largely
unified manner, it is, in a sense, too “coarse” to provide more detailed information about
solutions. Some of the issues may possibly be addressed via different techniques, yet we
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expect some inherent complexity to hinder a more comprehensive study.

Despite this, there are many interesting directions for future research. Perhaps the
most straightforward task is to study problems with convection and p-Laplacian type
diffusion with other than combustion nonlinearities. Our general results derived for the
first-order problem also suggest the possibility of considering a discontinuous reaction,
which appears in some combustion models [5]. Recently, sign-changing diffusivity has
been investigated in the case p = 2, see [7, 8], the inspiration for it being drawn from the
modelling of collective movements, namely of vehicular flows and crowds dynamics. An-
other possible extension is to consider equations with diffusion driven by the ¢-Laplacian

operator:
ox Ox

where ¢ : R — R is an increasing homeomorphism with ¢(0) = 0, see e.g. [12, 10].
Particular examples are for instance the classical p-Laplacian or the relativistic curvature

operator
v

V1I—0?'
Finally, an interesting and important topic is the study of initial value problems for
the equation (1.1). In general settings like ours, it may be too ambitious to prove the

convergence of a solution u(z,t) to a travelling wave as t — +o0o0. However, even numerical
experiments might be of great help in gaining valuable insights.

¢(v) =
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