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disertačńı práce
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Abstrakt

V této práci se zabýváme skalárńımi reakčně-difuzńımi rovnicemi s p-Laplaciánem v di-
fuzńım členu a r̊uznými typy spojitých reakćı. V našem obecném pojet́ı připoušt́ıme,
aby měl difuzńı koeficient (závislý na hustotě) degenerace nebo singularity v ekvilibríıch
0 a 1, jakož i konečně mnoho skokových nespojitost́ı mezi nimi. Za těchto předpoklad̊u
studujeme existenci a vlastnosti postupných vln, které propojuj́ı stacionárńı stavy 0 a
1. Zavedeńım nového typu zobecněného řešeńı transformujeme úlohu druhého řádu na
reálné ose pro neznámý profil a jeho rychlost na úlohu prvńıho řádu na omezeném inter-
valu, kterou pak studujeme ve smyslu Carathéodoryho. Výsledky pro tuto úlohu prvńıho
řádu maj́ı samostatný význam vzhledem k jejich uplatnitelnosti i mimo rámec našich
předpoklad̊u pro úlohu druhého řádu.

Uvád́ıme postačuj́ıćı podmı́nky pro existenci postupných vln v př́ıpadě bistabilńı a
monostabilńı reakce, které rozšǐruj́ı klasické výsledky źıskané za silněǰśıch předpoklad̊u.
Kĺıčovou roli v existenci či neexistenci postupných vln a jejich vlastnostech přitom hraje
společný vliv reakčńıho a difuzńıho členu. Za předpokladu mocninného chováńı těchto
člen̊u v bĺızkosti 0 a 1 pak studujeme, jak spolu s hodnotou p ovlivňuj́ı asymptotické
vlastnosti řešeńı.

Hlavńı část této práce vycháźı z našich tř́ı publikovaných článk̊u, věnovaných studiu
reakčně-difuzńıch rovnic bez konvekce, v nichž jsme se zabývali zvlášť stacionárńımi
vlnami, postupnými vlnami v bistabilńıch rovnićıch a postupnými vlnami v monosta-
bilńıch rovnićıch. Naše metody a výsledky prezentujeme jednotným zp̊usobem, abychom
zd̊uraznili jak společný základ všech zmı́něných př́ıpad̊u, tak rozd́ıly mezi nimi.

Závěrečná kapitola je věnována úloze s konvekćı a reakčńım členem vyskytuj́ıćım
se v modelech spalováńı. Existenci a neexistenci řešeńı zde dokazujeme za silněǰśıch
předpoklad̊u na reakčńı a difuzńı členy než u rovnice bez konvekce a př́ımo tak zobecňujeme
známé výsledky v př́ıpadě difuze bez p-Laplaciánu. Náš článek na toto téma je v současné
době recenzován.

Kĺıčová slova: reakčně-difuzńı rovnice, postupné vlny, profil vlny, difuze s p-Laplaciánem,
difuze se singularitami a degeneracemi, nespojitá difuze, bistabilńı reakce, monostabilńı
reakce, nelipschitzovské diferenciálńı rovnice, řešeńı ve smyslu Carathéodoryho, nehladký
profil, konvekce



Abstract

This thesis concerns scalar reaction-diffusion equations with p-Laplacian type diffusion
and different types of continuous reaction. In our general setting, the density-dependent
diffusion coefficient allows for degenerations and singularities at equilibria 0 and 1 as well
as finitely many jump discontinuities between them. Under these assumptions, we study
the existence and properties of travelling wave solutions which connect the steady states 0
and 1. Introducing a new concept of generalized solution, we transform the second-order
problem on the real line for the unknown profile and its speed into a first-order problem
on a bounded interval, which we then study in the sense of Carathéodory. The results
for this first-order problem are of independent interest due to their applicability outside
of our framework.

We present sufficient conditions for the existence of travelling wave solutions in the
case of bistable and monostable reaction, which extend the classical results obtained in
more regular settings. It is revealed to be the combined influence of the reaction and
diffusion terms which plays a key role in the existence and non-existence of travelling
waves as well as their properties. Assuming power-type behaviour of these terms near
0 and 1, we then study how they affect, together with the value of p, the asymptotic
properties of solutions.

The main part of this work is based on our three published papers, devoted to the
study of reaction-diffusion equations without convective effects, in which we focused sep-
arately on stationary waves, travelling waves in bistable equations and travelling waves
in monostable equations. We present our methods and results in a unified manner to
emphasize both the shared foundation and the differences among these cases.

The final chapter concerns reaction-diffusion-convection equation with combustion-
type reaction. Existence and non-existence results are derived under stronger regularity
assumptions on the reaction and diffusion terms than in the reaction-diffusion case, gen-
eralizing established results for density-dependent diffusion without the p-Laplacian. Our
findings have been submitted as a paper and are currently under review.

Keywords: reaction-diffusion equation, travelling waves, wave profile, p-Laplacian type
diffusion, singular and degenerate diffusion, discontinuous diffusion, bistable reaction,
monostable reaction, non-Lipschitz ODE, solutions in the sense of Carathéodory, non-
smooth profile, convection



Zusammenfassung

Diese Dissertation behandelt skalare Reaktions-Diffusionsgleichungen mit p-Laplace-Diffu-
sion und verschiedenen Typen stetiger Reaktionen. In unserer allgemeinen Einstellung
ermöglicht der dichtabhängige Diffusionskoeffizient Degenerationen und Singularitäten an
den Gleichgewichtspunkten 0 und 1 sowie endlich viele Sprungunstetigkeiten dazwischen.
Unter diesen Annahmen untersuchen wir die Existenz und Eigenschaften von Wander-
wellenlösungen, die die Gleichgewichtszustände 0 und 1 verbinden. Durch Einführung
eines neuen Konzepts der verallgemeinerten Lösung transformieren wir das Problem zwei-
ter Ordnung auf der reellen Linie für das unbekannte Profil und seine Geschwindigkeit in
ein Problem erster Ordnung auf einem begrenzten Intervall, das wir dann im Sinne von
Carathéodory studieren. Die Ergebnisse für dieses Problem erster Ordnung sind aufgrund
ihrer Anwendbarkeit außerhalb unseres Rahmens von unabhängigem Interesse.

Wir präsentieren ausreichende Bedingungen für die Existenz von Wanderwellenlö-
sungen im Fall einer bistabilen und monostabilen Reaktion, die die in regelmäßigeren
Einstellungen erzielten klassischen Ergebnisse erweitern. Es zeigt sich, dass der kom-
binierte Einfluss der Reaktions- und Diffusionsterme eine Schlüsselrolle bei der Existenz
und Nichtexistenz von Wanderwellen sowie ihren Eigenschaften spielt. Unter Annahme
eines Potenzverhaltens dieser Terme nahe 0 und 1 untersuchen wir dann, wie sie zusammen
mit dem Wert von p die asymptotischen Eigenschaften der Lösungen beeinflussen.

Der Hauptteil dieser Arbeit basiert auf unseren drei veröffentlichten Papers, die der
Untersuchung von Reaktionsdiffusionsgleichungen ohne konvektive Effekte gewidmet sind.
Dabei haben wir uns separat auf stationäre Wellen, Wanderwellen in bistabilen Gleichun-
gen undWanderwellen in monostabilen Gleichungen konzentriert. Wir präsentieren unsere
Methoden und Ergebnisse auf einheitliche Weise, um sowohl die gemeinsame Grundlage
als auch die Unterschiede zwischen diesen Fällen zu betonen.

Das abschließende Kapitel behandelt die Reaktions-Diffusions-Konvektionsgleichung
mit reaktionstypischer Verbrennung. Existenz- und Nichtexistenzresultate werden unter
stärkeren Regularitätsannahmen für die Reaktions- und Diffusionsterme als im Fall der
Reaktions-Diffusionsgleichung abgeleitet und verallgemeinern etablierte Ergebnisse für
dichtedependente Diffusion ohne p-Laplace. Unsere Ergebnisse wurden als Artikel ein-
gereicht und befinden sich derzeit im Begutachtungsprozess.

Schlüsselwörter: Reaktions-Diffusionsgleichung, Wanderwellen, Wellenprofil, p-Laplace-
Diffusion, singuläre und degenerierte Diffusion, diskontinuierliche Diffusion, bistabile Reak-
tion, monostabile Reaktion, nicht-Lipschitz ODE, Lösungen im Sinne von Carathéodory,
nicht-glatte Profile, Konvektion
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Chapter 1

Introduction

The occurrence of wave phenomena in many natural reaction-diffusion processes has in-
spired the study of travelling waves almost a century ago and since then became an
essential part of the analysis of reaction-diffusion equations. Prototypes of such problems
arise from various fields of applications, such as population genetics, signal propagation,
combustion theory, insect dispersal models and others. Apart from providing a tool for
finding explicit solutions via comparison principles, the analysis of travelling waves is
significant also for the investigation of long-term behaviour of solutions.

Extensive studies of travelling waves in numerous types of equations inspired us to
consider a quasilinear reaction-diffusion equation on the real line

∂u

∂t
=

∂

∂x

(
d(u)

∣∣∣∣
∂u

∂x

∣∣∣∣
p−2

∂u

∂x

)
+ g(u), (x, t) ∈ R× R+, p > 1. (1.1)

It comprises as particular cases many of the above mentioned models, which will be
explored shortly in Section 1.1. Our assumptions on the functions d : [0, 1] → R and
g : [0, 1] → R are motivated by classical as well as more special instances that arise in
applications. Our aim is to provide a broad theoretical background for the mathematical
treatment of travelling waves in rather general models. Such task presents challenges
otherwise absent in more regular settings. Consequently, we focus exclusively on the
existence of travelling waves and their properties without delving into the study of initial
value problems or stability.

Customarily, a travelling wave is a non-constant bounded solution which maintains its
shape while propagating at a constant speed. This means that the shape of the wave,
referred to as wave profile or simply profile, remains constant over time, but it is not a
constant function itself. Since the speed of propagation does not change in time as well,
from a reference frame moving with the same speed this wave would appear stationary.
Expressing this mathematically, a travelling wave solution is of the form

u(x, t) = U(x− ct) = U(z), z := x− ct, (1.2)

where U is the profile of the wave and c denotes its wave speed. Both U and c need to
be determined, making the task of finding travelling wave solutions akin to an eigenvalue
problem. The variable z is usually referred to as the moving coordinate or wave variable.
In accordance with the predominant modelling origins of reaction-diffusion equations, we
consider travelling waves only with nonnegative values.

Assuming c > 0, the wave (1.2) moves in the positive x-direction, while waves moving
in the negative x-direction have the form u(x, t) = U(x + ct). Altering the usual notion
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of speed to include negative values as well, both types of waves can be described by (1.2)
with the sign of c now determining the direction. An example of a strictly monotone
travelling wave is depicted in Figure 1.1. Waves with c = 0 are stationary solutions of the
partial differential equation under consideration and we will refer to them as stationary
waves.

0 x

u

u(x, t) = U(x− ct)

c < 0

c > 0

Figure 1.1: Travelling wave with a speed of propagation c ∈ R

1.1 Motivation

In the pioneering work [24] from 1937, R. A. Fisher proposed a model for the spatial
spread of an advantageous gene in a population. He considered a population uniformly
distributed in a one-dimensional habitat and suggested that if a beneficial mutation oc-
curs, there will be a wave of increase in the frequency u of the mutant gene at the expense
of the allele previously occupying the same locus. Assuming that the parent allele is the
only one present, its frequency equals 1 − u. Using the analogy of physical diffusion,
Fisher considers that the rate of diffusion per generation across any boundary is given by

−d ∂u
∂x
,

where d > 0. The frequency u then satisfies the differential equation

∂u

∂t
= d

∂2u

∂x2
+mu(1− u). (1.3)

Here m > 0 denotes the intensity of selection in favour of the mutant gene, independent
of u. Fisher’s model specifies the simplest possible conditions, such as constant diffusion
coefficient d > 0, with respect to which variations might be discussed. The assumed
independence of u and m is attributed to the reasonable expectation that there is no
dominance in respect to the advantageous mutation. After suitable rescaling, the equation
(1.3) can be rewritten as

∂u

∂t
=
∂2u

∂x2
+ u(1− u).

Independently of Fisher’s work, Kolmogorov, Petrovsky and Piskunov [30] studied in
the same year travelling wave solutions to the semilinear equation

∂u

∂t
=
∂2u

∂x2
+ g(u), (1.4)
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considering a class of suitable reaction terms g ∈ C1[0, 1]. They assumed

g(u) > 0 for u ∈ (0, 1), g(0) = g(1) = 0,

g′(0) > 0, g′(u) ≤ g′(0) for u ∈ (0, 1),

of which Fisher’s reaction g(u) = u(1 − u) is a special case. In tribute to both of these
seminal works, the equation (1.4) is often regarded as the Fisher-KPP equation.

The genetical context envisaged by Fisher was later explored in detail by Aronson
and Weinberger [1]. The authors consider a population of diploid individuals and derive
equation (1.4) as a simplified model of the genetic processes. Assuming that a gene at
a specific locus in a specific chromosome pair occurs in two forms, denoted by a and
A, the population then consists of three different genotypes, denoted aa, AA and aA.
Homozygotes (aa or AA) carry only one kind of allele, while heterozygotes (aA) carry one
of each allele. The following three cases are distinguished based on the properties of the
function g ∈ C1[0, 1], g(0) = g(1) = 0. In the heterozygote intermediate case, the viability
of the heterozygote is between the viabilities of the homozygotes, and g satisfies

g(u) > 0 in (0, 1), g′(0) > 0.

This is the case that was considered in the classical studies mentioned above. Heterozy-
gote superiority occurs when the heterozygote is more viable than the homozygotes, the
relevant properties of g now being

g(u) > 0 in (0, s∗), g(u) < 0 in (s∗, 1) for some s∗ ∈ (0, 1)

g′(0) > 0, g′(1) > 0.

If, on the other hand, the viability of the homozygotes exceeds that of the heterozygote,
we have heterozygote inferiority. The characteristic features of g are

g(u) < 0 in (0, s∗), g(u) > 0 in (s∗, 1) for some s∗ ∈ (0, 1)

g′(0) < 0,

∫ 1

0

g(u) du > 0.
(1.5)

As we can see, in the latter two cases g changes sign in (0, 1) exactly once.
Besides population genetics, equations of the form (1.4) are relevant in other contexts

as well. We mention the following notable examples, selected from the overview in [25].

The Newell-Whitehead equation or amplitude equation

∂u

∂t
=
∂2u

∂x2
+ u(1− u2),

which arises in the study of thermal convection of a fluid heated from below.

The Zeldovich equation
∂u

∂t
=
∂2u

∂x2
+ u2(1− u)

which arises in combustion theory. The unknown u represents temperature and the reac-
tion term g(u) = u2(1− u) corresponds to the generation of heat by combustion.
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The Nagumo equation or bistable equation

∂u

∂t
=
∂2u

∂x2
+ u(1− u)(u− s∗), 0 < s∗ < 1,

suggested in [11] as a model for a nerve which has been treated with certain toxins. A
rescaled version has been used by Nagumo, Yoshizawa and Arimoto [39] as a model for
bistable transmission lines.

Combustion models with ignition thresholds

∂u

∂t
=
∂2u

∂x2
+

{
0 for 0 ≤ u < s∗

g(u) for s∗ ≤ u ≤ 1

where g(u) > 0 for u > s∗ and g(s∗) ≥ 0. Such equations describe flame propagation with
one reactant involved in a single-step chemical reaction. Here u represents the normalized
temperature and s∗ is a critical temperature at which the reaction starts.

The applications motivate the typical sign conditions for the reaction term g, consid-
ered in the mathematical treatment of (1.4). The following terminology from [6] refers to
the general shape of a function and it can be used not only for the reaction g.

Definition 1.1. We shall say that a function a : [0, 1] → R, a(0) = a(1) = 0, is a

type A function if
a(s) > 0 for all s ∈ (0, 1),

type B function if there exists s∗ ∈ (0, 1) such that

a(s) = 0 for all s ∈ [0, s∗], a(s) > 0 for all s ∈ (s∗, 1),

type C function if there exists s∗ ∈ (0, 1) such that

a(s) < 0 for all s ∈ (0, s∗), a(s) > 0 for all s ∈ (s∗, 1),

see Figure 1.2.

0 1

type A

0 1s∗

type B

0 1s∗

type C

Figure 1.2: Classification of functions according Definition 1.1

In literature, other terminologies are commonly used for reaction terms satisfying
the conditions from Definition 1.1, which refer to their occurrence in classical models or
standard stability results for the equilibria 0 and 1. Specifically, reaction terms of type
A are also known as Fisher-KPP or monostable reactions, those of type B as combustion
or ignition type, and those of type C as Nagumo or bistable reaction. The notion of
monostable and bistable indicates whether one or both of the stationary points 0 and 1
are stable.
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Some ambiguity regarding these notions might stem from the fact that, apart from the
general shape, the original works concerned a particular function g or a more specific set
of assumptions on its derivative as well. Later generalizations extended the results also to
less regular settings, but it is important to note that even minor differences might render
some standard techniques inapplicable. Therefore, it will be our understanding that all
of the above mentioned terminologies refer simply to the sign conditions and any other
assumptions will be stated explicitly if necessary. In Chapter 2, we will, for the purposes
of this work, redefine the notion of bistable reaction, which encompasses and generalizes
the concept of type B and type C functions.

Density-dependent dispersal has been observed in many populations, such as insects or
small rodents (cf. [38, 41]), due to biological and physical factors. Its introduction into the
derivation of the corresponding models leads to equations with a non-constant coefficient
d = d(u):

∂u

∂t
=

∂

∂x

[
d(u)

∂u

∂x

]
+ g(u), (1.6)

where d = d(u) is a positive (or at least non-negative) function. An example from [38]
is a model with d(u) = u, which foresees a dispersal of individuals to regions of lower
density becoming more rapid as the population gets more crowded. Diffusion coefficients
that vanish at some points, typically at 0, are called degenerate.

King and McCabe [29] study the equation

∂u

∂t
=

∂

∂x

[
u−n ∂u

∂x

]
+ u(1− u), n > 0, (1.7)

as the simplest model of situations in which low concentration disperse very rapidly.
Notice that in this case, the diffusion coefficient is a decreasing function of the density
with a singularity at 0. A relevant (multi-dimensional) example arises from observations
concerning the dispersal of Palaeoindian peoples in North America, see [29] and the refer-
ences therein. The rapidity of the southward spread, suggested by archaeological records,
is not consistent with the predictions of the standard semilinear (Fisher’s) model. This
has lead to the suggestion that early Palaeoindians adapted to low-density mate distri-
butions through exogamy and travelling large distances to find eligible mates, implying
that dispersal driven by mate searching is responsible for accelerating range expansion.
This phenomenon, represented in (1.7) by the singular diffusivity d(u) = u−n, n > 0, is
in a certain sense opposite to the case n < 0 (degenerate diffusivity), which corresponds
to the avoidance of crowding.

From other fields of study, we mention the well known porous medium equation with
absorption or with a source term:

∂u

∂t
=

∂2

∂x2
(um)∓ uq,

where m > 0 and q > 0. This equation can be written in an equivalent form

∂u

∂t
=

∂

∂x

[
mum−1∂u

∂x

]
∓ uq.

Without the last term on the right-hand side, it reduces to the linear heat equation in the
particular casem = 1. Berestycki [5] investigated a combustion model with a temperature-
dependent diffusion and a type B reaction, interpreted as deflagration wave problem for
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a compressible reacting gas, with one reactant involved in a single step chemical reaction.
In [42], the authors consider discontinuous density-dependent coefficient which can be
used to describe phenomena involving a sudden change in the diffusion constant. Such
problems include polymer dynamics, in which the diffusivity drops abruptly by several
orders of magnitude beyond the gelation critical density, and processes related to hydrogen
storage as a source of energy, cf. [42] and the references therein.

More recently, reaction-diffusion equations involving the p-Laplacian operator

u 7→ ∂

∂x

(∣∣∣∣
∂u

∂x

∣∣∣∣
p−2

∂u

∂x

)

have been considered in literature, see e.g. [2, 3, 22, 27]. The p-Laplacian operator arises
for example in models derived from the power-type Darcy’s law, cf. [4].

The selection of reaction-diffusion equations presented in this section is by no means
exhaustive. Our aim was to provide an overview of applications and historically notable
examples which motivated the study of travelling waves, as well as models which provide
reasonable foundation for the assumptions considered in this thesis. Before we proceed to
the existence results for reaction-diffusion equations relevant to our research, we briefly
mention problems with convection. In general, such equations usually take the form

∂u

∂t
=

∂

∂x

[
d(u)

∂u

∂x

]
+ h(u)

∂u

∂x
+ g(u), (1.8)

where the second term on the right-hand side represents a convective or advective phe-
nomenon, with h = h(u) denoting the convective velocity function. Equivalently, this
problem can be written as

∂u

∂t
=

∂

∂x

[
d(u)

∂u

∂x

]
+
∂H(u)

∂x
+ g(u),

where H = H(u) can be viewed as a convective flux function with H ′ the corresponding
velocity. Various applications can be found in the monograph [25], which is dedicated to
the study of travelling wave solutions to (1.8) via integral equations. The introduction
of convective processes can significantly affect the usual results derived in the absence of
convection.

Although this thesis focuses primarily on the reaction-diffusion case, we discuss the
influence of the convective term on solutions to (1.1) with a type B reaction in Chapter
6. An overview of previously established results in the case p = 2 will be provided there.
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1.2 State of the art

In this section, we mention some of the basic results concerning the existence of travelling
wave solutions to reaction-diffusion equations on the real line with standard types of
reaction, which are relevant to our research.

When looking for travelling wave solutions

u(x, t) = U(x− ct) = U(z), z = x− ct, (1.9)

we have
∂u

∂x
=

dU

dz
,

∂u

∂t
= −cdU

dz
,

hence partial differential equations in x and t can be written as ordinary differential
equations in the wave variable z. For example, the semilinear reaction-diffusion

∂u

∂t
=
∂2u

∂x2
+ g(u) (1.10)

becomes
U ′′ + cU ′ + g(U) = 0, (1.11)

where primes denote differentiation with respect to z. The standard approach is to study
solutions of this problem in the (U, V ) phase plane where

U ′ = V, V ′ = cV − g(U)

which gives phase plane trajectories as solutions of

dV

dU
= −c− g(U)

V
.

Notice that if g ≡ 0, (1.11) does not admit any solutions U that satisfy the conventional
requirements imposed on wave profiles. Indeed, in this case U takes the general form

U(z) = A+Be−cz, A,B ∈ R,

i.e., it is unbounded or constant, and hence not considered a wave solution. The ap-
pearance of travelling waves is therefore tied to the presence and particular form of the
nonlinear reaction term. In this work, we focus on reaction terms that vanish at both
endpoints 0 and 1. This implies that u ≡ 0 and u ≡ 1 are stationary states of (1.10).
Consequently, it is natural to consider travelling waves which connect these states, i.e.,
as z → −∞ they are at one steady state and at the other as z → +∞. For definiteness,
we may assume

U(−∞) := lim
x→−∞

U(z) = 1, U(+∞) := lim
x→+∞

U(z) = 0.

A fundamental result concerning the existence of such travelling waves is the following
(see [1, Theorem 4.2]):

If g ∈ C1[0, 1], g(0) = g(1) = 0, is a type A function or it satisfies

g(s) ≤ 0 in (0, s∗), g(s) > 0 in (s∗, 1) for some s∗ ∈ (0, 1),
∫ 1

0

g(s) du > 0
(1.12)
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(notice that this condition contains functions of type B and C as particular cases), there
exists a travelling wave solution u(x, t) = U(x − ct), c > 0, of (1.10). Moreover, the
travelling wave is strictly decreasing, i.e., U ′(z) < 0 for finite z = x − ct. In fact, the
monotonicity property can be proven assuming only g ∈ C1[0, 1], g(0) = g(1) = 0, see
[23, Lemma 2.1].

In the case of type A (monostable) reaction terms g, the proof of this assertion can be
extended to show that if g′(0) > 0, there exists a travelling wave solution for every wave
speed c ≥ c∗, where

2
√
g′(0) ≤ c∗ ≤ 2

√
sup

s∈(0,1)

g(s)

s
.

In other words, there exists a half-line [c∗,+∞) of admissible wave speeds for which (1.10)
admits a travelling wave solution. This was also proven by Kolmogorov, Petrovsky and
Piskunov [30] under the additional assumption g′(u) ≤ g′(0) for u ∈ (0, 1), and by Fisher
[24] in the case g(u) = u(1−u). In the Fisher-KPP setting, a straightforward observation
yields that c∗ = 2

√
g′(0).

For reactions g satisfying (1.12), the situation differs considerably. Instead of infinitely
many travelling waves with different wave speeds, there now exists only one wave with a
unique speed c = c∗, see e.g. [23, 28]. Equation (1.10) with this type of reaction may also

admit stationary wave solutions if
∫ 1

0
g(u) du = 0 instead of

∫ 1

0
g(u) du > 0 (this excludes

functions of type B). In special cases the solution can be written down explicitly. For
example, if

g(s) = s(1− s)

(
s− 1

2

)
,

there exists (cf. [40]) a decreasing stationary wave

u(x) = −1

2
tanh

(
x

2
√
2

)
+

1

2
.

An important topic related to the study of travelling wave solutions is the behaviour
of solutions u(x, t) of initial value problems for (1.10) as t → +∞. It was in fact shown
already in the early works by Kolmogorov et al. [30] in the monostable case and Kanel’ [28]
in the generalized bistable case that solutions to special initial value problems converge, in
a certain sense, to travelling wave solutions. The problem of determining conditions under
which a solution does or does not approach a travelling wave has since been subject to
extensive studies, from which we mention the now classical papers [1, 23] and [15] for more
recent findings. Despite the significance of this subject, we omit a more comprehensive
overview, as it is well beyond the scope of our research.

Considering a positive density-dependent diffusion coefficient instead of a constant one
does not affect the existence of travelling waves in a substantial way. In the wave variable
z, the equation (1.6) now reads

(d(U)U ′)′ + cU ′ + g(U) = 0 (1.13)

together with boundary conditions U(−∞) = 1, U(+∞) = 0. By means of suitable
change of variables, this problem can be reduced to the previous case with reaction given
by the product d(u)g(u). For functions g of type A with g′(0) > 0 and d ∈ C1[0, 1] strictly
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positive in [0, 1], Engler [21] and Hadeler [26] proved that (2.4) is solvable if and only if
c ≥ c∗ where

2
√
d(0)g′(0) ≤ c∗ ≤ 2

√
sup

s∈(0,1)

d(s)g(s)

s
.

Also in this case, each solution is strictly decreasing on R. Generalization of this result
is due to [31] where weaker regularity assumptions were imposed on the functions d and
g. In particular, the authors assume only d ∈ C[0, 1] and g ∈ C[0, 1] and the existence
is guaranteed provided that the lower right Dini derivative D+(dg)(0) is finite, otherwise
there is no solution to (1.13).

In [35], existence result for the equation (1.13) with g satisfying (1.12) is obtained
assuming g ∈ C[0, 1] and strictly positive d ∈ C1[0, 1]. Similarly as in the constant
diffusion case, if ∫ 1

0

d(s)g(s) ds > 0

there exists a unique value of c∗ > 0 for which (1.13) admits a solution. However,
the profile U need not be strictly monotone on the whole real line R, only in the open
interval {z ∈ R : 0 < U(z) < 1}, implying that both equilibria 0 and 1 can be attained.
This does not occur if the Dini derivatives D−(dg)(1) and D+(dg)(0) are finite, see [35,
Proposition 2].

An interesting phenomena associated with non-constant diffusion is the appearance of
new type solutions if d(0) = 0, which are referred to as “sharp-type”. More precisely, if
d(0) = 0, d′(0) > 0 and g is of type A, then the travelling wave solution corresponding to
the minimal wave speed c∗ > 0 reaches 0 in a finite z∗ ∈ R with a negative slope U ′(z∗) =
−c/d′(0), see e.g. [33]. For other values of c > c∗, the equilibrium 0 is not attained and the
solution is strictly decreasing on R. The first systematic treatment of degenerate diffusion
problems was given in [41] under rather strong regularity assumptions, generalized by
Marcelli and Malaguti [33]. In the particular case of d(s) = s and g(s) = s(1 − s),
s ∈ [0, 1], Murray [38] calculates the value c∗ = 1/

√
2 and finds the explicit solution

U(z) =




1− exp

(
z − z∗√

2

)
z < z∗,

0 z > z∗,

(1.14)

depicted in Figure 1.3.

0

1

z∗

c = c∗

Figure 1.3: The solution (1.14) of a degenerate diffusion problem
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The equation (1.1) with p > 1, which combines density-dependent diffusion coefficient
with the p-Laplacian operator, has been studied e.g. in [14, 22]. Some of the above
results for p = 2 extend also to the more general case p > 1. In particular, the number
of travelling waves obtained for monostable and generalized bistable reaction remains the
same. However, a complete analogy that takes into account also the properties of solutions
is not possible. Most notably, it is well known that solutions to problems involving the
p-Laplacian do not have second derivatives in general, hence we cannot expect U to be a
classical solution. Furthermore, the lack of uniqueness of the associated Cauchy problem
for U at 0 when p > 2 implies that the solution might reach 0 in a finite z.

In [22], the authors study an equivalent first-order problem to obtain a theory of
admissible wave speeds c. They then interpret the results in connection to the second-
order problem under stronger regularity assumptions than those required by the equivalent
problem, which allows them to generalize results derived by Marcelli and Malaguti [31, 33]
for monostable reaction to the case 1 < p ≤ 2. The case of continuous type C reaction
and positive diffusion is studied in detail in [14].

The thesis is further organized as follows. Chapters 2–5 concern the study of travelling
and stationary waves for the reaction-diffusion equation (1.1) with two types of reaction.
Presented results and methodology are based on our published articles [17], [18] and [19],
which are now merged into a comprehensive study accompanied by further discussions
and more detailed reasoning. In Chapter 2 we introduce a new definition of a generalized
wave profile and show how the problem of finding travelling waves can be reduced to an
equivalent first-order boundary value problem. The investigation of this b.v.p. in Chapter
3 serves as the main tool for proving the existence and non-existence of travelling wave
profiles, which is summarized in Chapter 4. Asymptotic behaviour of profiles is discussed
in Chapter 5.

In Chapter 6 we present our recent findings concerning travelling waves to (1.1) with
an additional convective term and type B reaction. As in the previous case, we study the
existence of solutions via an equivalent first-order ODE. Our paper [20] devoted to this
subject is, at the time of submission of this thesis, under review.
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Chapter 2

Quasilinear reaction-diffusion
equation

We are concerned with travelling wave solutions to the quasilinear reaction-diffusion equa-
tion

∂u

∂t
=

∂

∂x

(
d(u)

∣∣∣∣
∂u

∂x

∣∣∣∣
p−2

∂u

∂x

)
+ g(u), (x, t) ∈ R× [0,+∞), p > 1. (2.1)

We study the existence and properties of these travelling waves under very general as-
sumptions on the reaction and diffusion terms, which comprise special cases arising in
applications.

Classical models with p = 2 typically deal with smooth functions d and g that satisfy
certain sign conditions in [0, 1]. As mentioned in the previous chapter, existence results can
be obtained under weaker regularity assumptions as well by employing different techniques
of proof. Our approach allows us to relax these assumptions even further and treat
discontinuous diffusion coefficient d with possible degenerations as well as singularities
near 0 and 1. However, some properties of solutions such as “finiteness” and “sharpness”
cannot be recovered in general. To do so, we assume power-type behaviour of d and g in
the neighbourhood of 0 and 1, cf. Chapter 5.

2.1 The second-order ODE

First, let us specify our hypotheses on the diffusion coefficient d and the reaction term g.
We assume that

(H1) d : [0, 1] → [0,+∞) is a lower semi-continuous function with d(s) > 0 for all
s ∈ (0, 1). There exist 0 = s0 < s1 < s2 < · · · < sn < sn+1 = 1 such that d has
discontinuity of the first kind (finite jump) at si, i = 1, . . . , n, and

d|(si,si+1)
∈ C(si, si+1), i = 0, . . . , n;

(H2) g : [0, 1] → R is a continuous function (not necessarily smooth or Lipschitz) with
g(0) = g(1) = 0.

Note that d(0), d(1) are always defined and possibly zero, but we do not require d(0+) =
d(0), d(1−) = d(1). In particular, the limits d(0+), d(1−) may not exist or they may be in-
finite. Examples of admissible diffusion coefficients with qualitatively different properties
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0 1 0 1 0 1

0 1 0 1 0 1

Figure 2.1: Admissible functions d = d(s)

are shown in Figure 2.1. In particular, (H1) implies that if s ∈ (0, 1) then limσ→s d(σ) > 0.
Therefore, the diffusion coefficient cannot exhibit the behaviour depicted in Figure 2.2.

0 1

Figure 2.2: Inadmissible function d = d(s)

Concerning the reaction term g, apart from (H2) we further assume that g = g(s)
satisfies either

g(s) ≤ 0 if s ∈ (0, s∗), g(s∗) = 0, g(s) > 0 if s ∈ (s∗, 1) (2.2)

for some fixed s∗ ∈ (0, 1), or

g(s) > 0 for all s ∈ (0, 1). (2.3)

In what follows, we shall refer to these two alternatives as bistable and monostable case,
respectively. While (2.3) is also commonly known as the Fisher–KPP type reaction term,
the terminology for nonlinearity (2.2) is not established in literature. It contains as
particular instances the classical bistable reaction, which has exactly one intermediate
zero (at s∗), and the combustion nonlinearity, when g(s) = 0 for s ∈ [0, s∗]. If distinction
should be necessary, we will adopt the terminology from Definition 1.1, represented in
Figure 1.2. Finally, let us point out that our general assumption g ∈ C[0, 1] also allows
g′(0+) and g′(1−) to be zero or infinite.

Both in the bistable and monostable case, constant functions u0 ≡ 0 and u1 ≡ 1 are
stationary solutions of (2.1) called equilibria. We look for travelling waves which connect
these equilibria, i.e., functions of the form u(x, t) = U(x − ct) with U : R → [0, 1] and
unequal limits U(±∞) ∈ {0, 1}. The real parameter c stands for the wave speed and it is
also an unknown parameter of the problem. Using the wave variable z = x − ct, we can
(formally) rewrite (2.1) as an ordinary differential equation on the real line

(
d(U(z)) |U ′(z)|p−2

U ′(z)
)′

+ cU ′(z) + g(U(z)) = 0, z ∈ R, (2.4)
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where U(z) = U(x − ct) and ′ denotes differentiation with respect to z. It is clear from
our assumptions on d = d(s) that we cannot expect (2.4) to hold pointwise except for
some special cases. Therefore, we introduce a new concept of solution based on the first
integral of (2.4).

Definition 2.1. We say that a function U ∈ C(R) is piecewise C1, denoted U ∈ Ĉ1(R),
if there is a set DU ⊂ R of isolated points such that U ∈ C1(R \DU).

We are now ready to formulate our definition in which the term solution refers to the
unknown profile U . Recall, however, that we also deal with a problem to determine the
value (or values) of c such that there exists a function U = U(z) which satisfies (2.4) in
the following sense.

Definition 2.2 (Definition of solution). Let U : R → [0, 1], U ∈ Ĉ1(R). We denote

MU := {z ∈ R : U(z) = si, i = 1, 2, . . . , n}, NU := {z ∈ R : U(z) = 0 or U(z) = 1}.

Then U is called a solution of (2.4) if the following holds:

(a) ∂MU ∪ ∂NU = DU .

(b) For any z ∈ ∂MU there exist finite one-sided derivatives U ′(z−), U ′(z+) and

L(z) := |U ′(z−)|p−2
U ′(z−) lim

ξ→z−
d(U(ξ)) = |U ′(z+)|p−2

U ′(z+) lim
ξ→z+

d(U(ξ)).

(c) Function v : R → R defined by

v(z) :=





d(U(z)) |U ′(z)|p−2 U ′(z), z /∈ ∂MU ∪ ∂NU ,
0, z ∈ ∂NU ,
L(z), z ∈ ∂MU

is continuous and for any z, ẑ ∈ R

v(ẑ)− v(z) + c (U(ẑ)− U(z)) +

∫ ẑ

z

g(U(ξ)) dξ = 0. (2.5)

Moreover, lim
z→±∞

v(z) = 0 if either lim
z→−∞

U(z) = 1 and lim
z→+∞

U(z) = 0 or else

lim
z→−∞

U(z) = 0 and lim
z→+∞

U(z) = 1.

Let us now explain the main idea behind the definition. Some technical details will
be addressed in the subsequent remarks. The profile U = U(z) is defined on the whole
real line and it is a non-smooth function in general. The lack of differentiability is caused
by the discontinuities of the diffusion coefficient and possibly also by its behaviour near
0 and 1. In particular, if the profile reaches one or both equilibria in a finite z, it can do
so with a non-zero slope. Therefore, we introduce the sets MU , NU to account for such
phenomena.

Observe that part (a) holds for any monotone profile, since both sets ∂MU and ∂NU

consist of isolated points. We will prove in the next section that if g is a monostable reac-
tion term and a solution U of (2.4) satisfies boundary conditions U(−∞) = 1, U(+∞) = 0,
then U is necessarily nonincreasing on R. As for the bistable reaction term, an analogous
result cannot be obtained in general. However, it is reasonable to expect some solutions
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to have this property, cf. [35, Proposition 2]. We will discuss this topic in more detail at
the end of this chapter.

For a more intuitive understanding of parts (b) and (c) of the definition, suppose for
now that c = 0, i.e., let us look for non-constant stationary solutions u(x, t) = u(x) of
(2.1), which satisfy the equation

(
d(u(x)) |u′(x)|p−2

u′(x)
)′

= −g(u(x)), x ∈ R, ′ :=
d

dx
. (2.6)

Since g ∈ C[0, 1], it is natural to require that the function d(u(x))|u′(x)|p−2u′(x) =: v(x) is
continuously differentiable. Hence it is sufficient to assume that only one-sided derivatives
of u = u(x) exist for x ∈ ∂Mu as long as they are properly “compensated” by the
discontinuities of d. The resulting product v then attains one value, but the individual
terms taken as one-sided limits can be unequal. In other words, the transition condition

|u′(x−)|p−2
u′(x−) lim

ξ→x−
d(u(ξ)) = |u′(x+)|p−2

u′(x+) lim
ξ→x+

d(u(ξ))

from part (b) of the definition must hold. To visualize this condition, let us assume for
simplicity that d has only one point of discontinuity s1 ∈ (0, 1) with d(s1−) > d(s1+),
Nu = ∅ and the solution u = u(x) is a decreasing function. Then Mu = {ξ1}, u(ξ1) = s1
and u′(ξ1−) < u′(ξ1+), as illustrated in Figure 2.3. The stationary case c = 0 is special

0

1

s1

ξ1

Figure 2.3: Profile of a nonincreasing solution u = u(x) for d discontinuous at s1

in the sense that the continuous function v = v(x), defined in part (c) of the definition,
is indeed differentiable for all x ∈ R, cf. Remark 2.4 below. A similar reasoning for

(
d(U(z)) |U ′(z)|p−2

U ′(z)
)′

+ cU ′(z) = −g(U(z))

with c ̸= 0 becomes more involved due to the additional term cU ′(z) on the left-hand
side, but the general idea remains the same, suggesting that at some points we can now
expect only the existence of one-sided derivatives v′(z±).

Finally, the requirement concerning limits v(±∞), provided certain boundary condi-
tions are satisfied, is motivated by the case of a smooth diffusion coefficient. According
to [22, Lemma 6.1], if g is a monostable reaction term and d ∈ C1(0, 1) is positive and
bounded, these limits are equal to zero. Since our diffusion coefficient d need not be
bounded, we incorporate this property explicitly into the definition.

We now proceed with some more detailed remarks concerning Definition 2.2.

Remark 2.3. Constant functions U(z) = k, z ∈ R, where k ∈ [0, 1] is such that g(k) = 0,
are solutions of (2.4). In particular, U0 ≡ 0 and U1 ≡ 1 are solutions. Here MU0 =MU1 =
∅, NU0 = NU1 = R. In the monostable case, those are the only constant solutions, while
in the bistable case we have at least one more constant solution, namely U∗ ≡ s∗.
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Remark 2.4. Non-constant stationary solutions u(x, t) = u(x) of (2.1) satisfy the equa-
tion (

d(u(x)) |u′(x)|p−2
u′(x)

)′
+ g(u(x)) = 0

in the sense of Definition 2.2 with c = 0. In particular, the first integral (2.5) becomes

v(x̂)− v(x) +

∫ x̂

x

g(u(ξ)) dξ = 0

for all x, x̂ ∈ R. Multiplying both sides of the above equation by 1
h
and passing to the

limit for h→ 0, we obtain that v is continuously differentiable and

v′(x) + g(u(x)) = 0

holds for all x ∈ R.

Remark 2.5. Let z /∈ ∂MU ∪ ∂NU , ẑ = z + h, h ̸= 0. Since ∂MU and ∂NU are closed
sets, we can choose |h| so small that ẑ /∈ ∂MU ∪ ∂NU . Divide (2.5) by h and let h → 0.
Then, by Definition 2.2, the derivative U ′(z) exists and

v′(z) + cU ′(z) + g(U(z)) = 0. (2.7)

In particular, v is differentiable in z /∈ ∂MU ∪ ∂NU .
Proceeding similarly for z ∈ ∂MU and taking the limits as h → 0− and h → 0+, we
obtain

v′(z−) + cU ′(z−) + g(U(z)) = 0

and
v′(z+) + cU ′(z+) + g(U(z)) = 0,

respectively. In particular, both v′(z−), v′(z+) exist and they are finite.

Remark 2.6. Let p = 2, d ≡ 1 and let U = U(z) be a solution of (2.4) in the sense of
Definition 2.2. Then MU = ∅ and U ∈ C1(R \ ∂NU). It follows from Remark 2.5 that
v(z) = U ′(z) is differentiable for any z /∈ ∂NU . In particular, if NU = ∅ then U ∈ C2(R)
and the equation (2.4) holds pointwise.

Remark 2.7. Let U = U(z) be a solution of (2.4) such that NU ̸= ∅. Clearly U ′(z) = 0
if z ∈ intNU . The existence of U ′(z) (and also U ′(z−), U ′(z+)) for z ∈ ∂NU depends on
the behaviour of d near 0 and 1. In particular, if

lim inf
s→0+

d(s) > 0 and lim inf
s→1−

d(s) > 0

then it follows from the continuity of v that U ′(z) = 0 for any z ∈ ∂NU . On the other
hand, if lims→0+ d(s) = 0 (lims→1− d(s) = 0) then U ′(z±) need not be equal or even finite
for z ∈ ∂NU such that U(z) = 0 (U(z) = 1).

Remark 2.8. Since the equation (2.4) is autonomous, then if U = U(z) is a solution of
(2.4), given any fixed ξ ∈ R, the function z 7→ U(z + ξ) is also a solution of (2.4).
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2.2 Monotonicity of solutions

Consider the boundary value problem (b.v.p. for short)

{(
d(U(z)) |U ′(z)|p−2 U ′(z)

)′
+ cU ′(z) + g(U(z)) = 0, z ∈ R

lim
z→−∞

U(z) = 1, lim
z→+∞

U(z) = 0.
(2.8)

A typical result established for p = 2 states that each solution U = U(z) of (2.8) is
nonincreasing on R and strictly decreasing in the open interval J := {z ∈ R : 0 < U(z) <
1}, see e.g. [23, 33, 35]. Moreover, the derivative of U does not vanish in J . As shown in
[16, Proposition 3.4] for monostable reaction, the profile U maintains this property even
if d ∈ C(0, 1) has integrable singularities near 0 and 1. Below we extend this result to the
case p > 1 within our functional setting.

Let U = U(z) be a solution of (2.8) with a monostable reaction term g. Passing to
the limit for z → −∞ in (2.5) and writing z in place of ẑ, we obtain that

v(z) + c (U(z)− 1) +

z∫

−∞

g(U(σ)) dσ = 0 (2.9)

holds for any z ∈ R. On the other hand, passing to the limit for ẑ → +∞ in (2.5), we
obtain that

v(z) + cU(z)−
+∞∫

z

g(U(σ)) dσ = 0 (2.10)

holds for any z ∈ R. Taking now the limit for z → −∞ in (2.10) yields

c =

+∞∫

−∞

g(U(σ)) dσ

and it follows from g > 0 in (0, 1) that c > 0. Similarly, for the opposite boundary
conditions U(−∞) = 0, U(+∞) = 1 we would arrive at c < 0.

Lemma 2.9. Let U = U(z), z ∈ R, be a solution of the b.v.p. (2.8) with monostable
reaction term g ∈ C[0, 1] and assume ξ ∈ NU . Then the following two alternatives occur:

(i) if U(ξ) = 0 then U(z) = 0 for every z ≥ ξ;

(ii) if U(ξ) = 1 then U(z) = 1 for every z ≤ ξ.

Proof. (i) Let U(ξ) = 0 and assume that there exists ξ∗ > ξ such that U(ξ∗) > 0. Taking
ξ∗ closer to ξ if necessary, we may assume that also U(ξ∗) < 1. Then g(U(ξ∗)) > 0 and
therefore

∫ +∞
ξ

g(U(σ)) dσ > 0. From the definition of v we get v(ξ) = 0 and from (2.10)

with z = ξ we deduce
∫ +∞
ξ

g(U(σ)) dσ = 0, a contradiction.

(ii) Let U(ξ) = 1 and assume that there exists ξ∗ < ξ such that U(ξ∗) < 1. Taking ξ∗
closer to ξ if necessary, we can guarantee also U(ξ∗) > 0. Hence g(U(ξ∗)) > 0 and so∫ ξ

−∞ g(U(σ)) dσ > 0. From the definition of v we have v(ξ) = 0 and from (2.9) with z = ξ

we deduce
∫ ξ

−∞ g(U(σ)) dσ = 0, a contradiction.

16



Proposition 2.10. Let U = U(z), z ∈ R, be a solution of the b.v.p. (2.8) with monostable
reaction term g ∈ C[0, 1]. Then U is nonincreasing on R and strictly decreasing in the
open interval J = {z ∈ R : 0 < U(z) < 1}. Moreover, for z ∈ J we have U ′(z) < 0 if
z /∈MU and U ′(z−) < 0, U ′(z+) < 0 if z ∈MU .

Proof. Clearly, the set J is open and from Lemma 2.9 we conclude that J = (z0, z1) where
−∞ ≤ z0 < z1 ≤ +∞, U(z0) = 1 if z0 ∈ R and U(z1) = 0 if z1 ∈ R.

Let ξ ∈ J be such that U ′(ξ−) = 0. Then it follows from Remark 2.5 (for both
alternatives z /∈ ∂MU and z ∈ ∂MU) that

v′(ξ−) = −g(U(ξ)) < 0.

Since v(ξ) = 0, there exists a left neighbourhood U−(ξ) of the point ξ such that for all
z ∈ U−(ξ) we have v(z) > 0. Taking U−(ξ) smaller if necessary, we may assume that
NU ∩ U−(ξ) = ∅. Since d(U(z)) > 0, z ∈ U−(ξ), from v(z) > 0 we deduce that for any
z ∈ U−(ξ) we have also U ′(z−) > 0, U ′(z+) > 0. However, this implies that U(z) < U(ξ),
z ∈ U−(ξ). Since, by Definition 2.2, U ′(ξ+) = 0, we deduce similarly as above that there
is also a right neighbourhood U+(ξ) of ξ such that U(z) < U(ξ), z ∈ U+(ξ). Therefore, ξ
is the point of strict local maximum for U . Since U(z) → 1 as z → −∞ and U(ξ) < 1,
there is ξ∗ ∈ (−∞, ξ) such that U(ξ) ≤ U(ξ∗) < 1. Let ξ∗ ∈ [ξ∗, ξ] be a global minimizer
for U over the compact interval [ξ∗, ξ]. Then U(ξ∗) < U(ξ) ≤ U(ξ∗) < 1 and therefore
ξ∗ ∈ (ξ∗, ξ). In particular, ξ∗ is also a local minimizer for U . If ξ∗ /∈ ∂MU then U ′(ξ∗) exists
and hence U ′(ξ∗) = 0 (ξ∗ is a local minimizer for U). We can prove as above that ξ∗ is a
strict local maximizer for U , a contradiction. Finally, if ξ∗ ∈ ∂MU then from Definition 2.2
(b) and d(U(ξ∗)) > 0 we conclude sgnU ′(ξ∗−) = sgnU ′(ξ∗+). But ξ

∗ being local minimizer
for U implies that U ′(ξ∗−) ≤ 0 and U ′(ξ∗+) ≥ 0. Hence, U ′(ξ∗−) = U ′(ξ∗+) = 0, i.e.,
U ′(ξ∗) = 0 and we proceed as above. This concludes the proof.

Remark 2.11. In the case of bistable reaction term g we are not able to prove Lemma 2.9
and Proposition 2.10 as it is possible for p = 2, smooth d and g, see e.g. [23]. The proof
relies on the uniqueness of the solution of the initial value problem for the second-order
equation in (2.8). However, in our general setting of the problem this uniqueness result is
not available. Therefore, in the bistable case we will always deal a priori with monotone
travelling wave profiles U = U(z) with properties from Proposition 2.10.

2.3 Reduction to a first-order problem

Let U = U(z) be a solution of (2.8) which is nonincreasing on R and there exists an open
interval (z0, z1) ⊂ R, −∞ ≤ z0 < z1 ≤ +∞, such that U is strictly decreasing in (z0, z1),

lim
z→z0+

U(z) = 1 and U(z) = 1 if −∞ < z ≤ z0,

lim
z→z1−

U(z) = 0 and U(z) = 0 if z1 ≤ z < +∞.

Moreover, MU = {ξ1, ξ2, . . . , ξn} where U(ξi) = si, i = 1, 2, . . . , n. In particular, intMU =
∅ and MU = ∂MU . For all z /∈ MU ∪NU we have U ′(z) < 0 and for all z ∈ MU we have
U ′(z−) < 0 and U ′(z+) < 0. The function U is continuous and piecewise C1 in the sense
that U |(ξi,ξi+1)

∈ C1(ξi, ξi+1). Therefore, there exists a strictly decreasing inverse function
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U−1 : (0, 1) → (z0, z1), z = U−1(U), such that U−1|(si,si+1)
∈ C1(si, si+1), i = 0, 1, . . . , n

and the limits

lim
U→si−

dz

dU
=

(
lim

z→ξi+

dU

dz

)−1

, lim
U→si+

dz

dU
=

(
lim

z→ξi−

dU

dz

)−1

exist finite, i = 1, 2, . . . , n. Set

w(U) = v(z(U)), U ∈ (0, 1). (2.11)

Then w = w(U) is a piecewise C1-function in (0, 1),

w|(si,si+1)
∈ C1(si, si+1), i = 0, 1, . . . , n,

with finite limits limU→si−w
′(U), limU→si+w

′(U), i = 1, 2, . . . , n. Therefore, for any
z ∈ (ξi, ξi+1) and U ∈ (si, si+1), i = 0, 1, . . . , n, we have

d

dz
v(z) =

d

dz
w(U(z)) =

dw

dU
(U(z))U ′(z). (2.12)

From v(z) = −d(U(z)) |U ′(z)|p−1 we deduce that

U ′(z) = −
∣∣∣∣
v(z)

d(U(z))

∣∣∣∣
p′−1

, p′ =
p

p− 1
. (2.13)

From (2.11), (2.12) and (2.13),

dv

dz
= −dw

dU
(U(z))

∣∣∣∣
v(z)

d(U(z))

∣∣∣∣
p′−1

= −dw

dU

∣∣∣∣
w(U)

d(U)

∣∣∣∣
p′−1

.

Therefore, the equation (2.7) for z ∈ (ξi, ξi+1) becomes

−dw

dU

∣∣∣∣
w(U)

d(U)

∣∣∣∣
p′−1

− c

∣∣∣∣
w(U)

d(U)

∣∣∣∣
p′−1

+ g(U) = 0, U ∈ (si, si+1),

i = 0, 1, . . . , n. This is equivalent to

|w|p′−1 dw

dU
= −c |w|p′−1 + (d(U))p

′−1 g(U), (2.14)

or
1

p′
d

dU
|w|p′ = c |w|p′−1 − (d(U))p

′−1 g(U). (2.15)

Writing t instead of U , we set

f(t) = (d(t))
1

p−1 g(t) (2.16)

and y(t) = |w(t)|p′ . Then (2.15) becomes

y′(t) = p′
[
c (y(t))

1
p − f(t)

]
, t ∈ (0, 1) \

n⋃

i=1

{si}. (2.17)
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From the boundary conditions in (2.8) and Definition 2.2 (c) we deduce that v(z) → 0
as z → z0+ or z → z1− which is equivalent to limU→0+w(U) = limU→1−w(U) = 0.
Therefore, y = y(t) satisfies the boundary conditions

y(0) = y(1) = 0. (2.18)

On the other hand, let us suppose that y = y(t), y ∈ C[0, 1], is a positive solution of

(2.17), (2.18). Set w(s) := −(y(s))
1
p′ . Then w satisfies (2.14) and (2.15). For U ∈ (0, 1)

set

z(U) = −
∫ U

1
2

∣∣∣∣
d(s)

w(s)

∣∣∣∣
1

p−1

ds, (2.19)

where w(s) = −(y(s))
1
p′ . Then the function z = z(U) is continuous strictly decreasing in

(0, 1), z(1
2
) = 0 and maps the interval (0, 1) onto (z0, z1), where −∞ ≤ z0 < z1 ≤ +∞.

Let us denote by U : (z0, z1) → (0, 1) the inverse function to z = z(U). Then U(0) = 1
2
,

U is continuous strictly decreasing,

lim
z→z0+

U(z) = 1 and lim
z→z1−

U(z) = 0.

Let z ∈ (ξi, ξi+1), i = 0, 1, . . . , n, where U(ξi) = si, i = 0, 1, . . . , n, n+1. Then from (2.19)
we deduce

dU

dz
=

1
dz(U)
dU

= −
∣∣∣∣
w(U)

d(U)

∣∣∣∣
1

p−1

, U ∈ (si, si+1), (2.20)

i.e., U ∈ C1(ξi, ξi+1), U
′(z) < 0 and

−d(U(z))
∣∣∣∣
dU(z)

dz

∣∣∣∣
p−1

= w(U(z)) =: v(z), (2.21)

i.e.,

d

dz

[
d(U(z))

∣∣∣∣
dU

dz

∣∣∣∣
p−2

dU

dz

]
=

d

dz
w(U(z)) =

dw

dU

dU(z)

dz
. (2.22)

From (2.14), (2.21) we deduce

dw

dU
= |w(U)|−(p′−1)

(
−c |w(U)|p′−1 + (d(U))p

′−1 g(U)
)

= −c+ |w(U)|−(p′−1) (d(U))p
′−1 g(U)

= −c+ (d(U(z)))−(p′−1)

∣∣∣∣
dU(z)

dz

∣∣∣∣
−(p−1)(p′−1)

(d(U(z)))p
′−1 g(U(z))

= −c+
∣∣∣∣
dU(z)

dz

∣∣∣∣
−1

g(U(z)).

Let us substitute this into (2.22):

d

dz

[
d(U(z))

∣∣∣∣
dU

dz

∣∣∣∣
p−2

dU

dz

]
=

[
−c+

∣∣∣∣
dU(z)

dz

∣∣∣∣
−1

g(U(z))

]
dU(z)

dz
= −cdU(z)

dz
− g(U(z)),

i.e.,

d

dz

[
d(U(z))

∣∣∣∣
dU

dz

∣∣∣∣
p−2

dU

dz

]
+ c

dU(z)

dz
+ g(U(z)) = 0, z ∈ (ξi, ξi+1), i = 0, 1, . . . , n.
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It follows from (2.20) that

lim
z→ξi±

U ′(z) = −

∣∣∣∣∣∣
w(si)

lim
s→si±

d(s)

∣∣∣∣∣∣

1
p−1

, i = 1, 2, . . . , n.

Notice that lims→si± d(s) ̸= 0 due to (H1). From (2.21) and the continuity of U we then
have

lim
z→z0+

d(U(z)) |U ′(z)|p−2
U ′(z) = lim

z→z1−
d(U(z)) |U ′(z)|p−2

U ′(z) = 0

and the following one-sided limits are finite

lim
z→ξi−

d(U(z)) |U ′(z)|p−2
U ′(z) = lim

z→ξi+
d(U(z)) |U ′(z)|p−2

U ′(z), i = 1, 2, . . . , n.

Since U is monotone decreasing in (z0, z1), we have

lim
z→ξi−

d(U(z)) = lim
s→si+

d(s) and lim
z→ξi+

d(U(z)) = lim
s→si−

d(s), i = 1, 2, . . . , n.

Therefore, U satisfies the transition condition

|U ′(ξi−)|p−2
U ′(ξi−) lim

s→si+
d(s) = |U ′(ξi+)|p−2

U ′(ξi+) lim
s→si−

d(s), i = 1, 2, . . . , n.

We may summarize the above reasoning in the following equivalence.

Proposition 2.12. Let g be a monostable reaction term. Then U = U(z), U ∈ Ĉ1(R),
is a unique solution (up to translation) of (2.8) if and only if y : [0, 1] → R, y ∈ C[0, 1]
is a unique positive solution of (2.17), (2.18).

Let g be a bistable reaction term. Then U = U(z), U ∈ Ĉ1(R), is a unique (up to
translation) nonincreasing solution of (2.8) if and only if y : [0, 1] → R, y ∈ C[0, 1] is a
unique positive solution of (2.17), (2.18).

Thanks to this proposition, we can study the first-order problem (2.17), (2.18) to
derive the existence and uniqueness of solution to the second-order b.v.p. (2.8). Let
us recall that there are two “unknowns” in this problem. Indeed, besides the positive
solution y = y(t) we also look for unknown speed of propagation c > 0. Therefore, (2.17),
(2.18) is not overdetermined.

Next, we discuss the sign of the speed of propagation c. Let y(t) > 0, t ∈ (0, 1) be a
positive solution of (2.17), (2.18). Integrating (2.17) and using (2.18) we obtain

0 = y(1)− y(0) =

∫ 1

0

y′(t) dt = p′
[
c

∫ 1

0

(y(t))
1
p dt−

∫ 1

0

f(t) dt

]

and hence

c =

∫ 1

0
f(t) dt

∫ 1

0
(y(t))

1
p dt

, (2.23)

where f is given by (2.16). It follows immediately that the sign of c is ultimately deter-
mined by the sign of ∫ 1

0

f(t) dt =

∫ 1

0

(d(t))
1

p−1 g(t) dt,

justifying the following lemma.
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Lemma 2.13. Let us assume that
∫ 1

0

(d(t))
1

p−1 g(t) dt > 0 (< 0)

and BVP (2.17), (2.18) has a positive solution. Then c > 0 (< 0).

Remark 2.14. Suppose that the following balanced condition holds

∫ 1

0

(d(s))
1

p−1 g(s) ds = 0.

Then c = 0 and

y(t) = −p′
∫ t

0

(d(s))
1

p−1 g(s) ds, t ∈ (0, 1) (2.24)

is a unique positive solution of (2.17), (2.18) with c = 0 (cf. Theorem 3.10). The solution
given by (2.24) leads to the stationary wave. Its profile u = u(x) satisfies the equation

(
d(u(x))|u′(x)|p−2u′(x)

)′
+ g(u(x)) = 0, x ∈ R.

Remark 2.15. If we were to look for nondecreasing solutions instead of nonincreasing
ones, the procedure leading up to the first-order problem would be the same. Let us
denote the speed of propagation of a nondecreasing travelling wave by C. Since U ′(z) > 0
whenever U ′ exists and U ′(z−) > 0, U ′(z+) > 0 if z = ξi, i = 1, 2, . . . , n, instead of
equation (2.15) we would arrive at

1

p′
d

dU
|w|p′ = −C |w|p′−1 − (d(U))p

′−1 g(U),

where |w| = w. The corresponding first order equation can be written in the form (2.17)
if we set c = −C. Therefore, the existence results regarding nonincreasing solutions also
hold for nondecreasing travelling waves which travel in the opposite direction.
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Chapter 3

The first-order ODE

In this chapter, we study the first-order boundary value problem

{
y′(t) = p′

[
c
(
y+(t)

) 1
p − f(t)

]
, t ∈ (0, 1),

y(0) = y(1) = 0,
(3.1)

where p > 1, p′ = p
p−1

, c ∈ R is a parameter, f ∈ L1(0, 1) and y+(t) = max{y(t), 0}.
For f(t) = (d(t))

1
p−1 g(t), where d and g satisfy hypotheses (H1), (H2), respectively,

positive solutions of (3.1) correspond via Proposition 2.12 to nonincreasing solutions of
the second-order b.v.p. (2.8). However, it is important to note that the results presented
in this chapter apply to even more general functions f and are therefore of independent
interest. In particular, existence and uniqueness for the associated initial value problems
(cf. Section 3.1) hold for any f ∈ L1(0, 1). Specifying the sign conditions on f , we then
derive existence and non-existence results for the b.v.p. (3.1) in two qualitatively different
cases.

In [22], the b.v.p. (3.1) was studied for functions f ∈ C[0, 1] of types A, B and C with
f(0) = f(1) = 0. The lack of continuity of f in our setting requires the employment of
different techniques to establish fundamental results and consequently prove the existence
of solutions to (3.1). Due to the assumption f ∈ L1(0, 1), we consider solutions in the
sense of Carathéodory, i.e., functions which are absolutely continuous in [0, 1] and satisfy
the differential equation for a.e. t ∈ [0, 1]. In what follows, we will refer to a solution in
the sense of Carathéodory simply as “solution”.

3.1 Initial value problems

Throughout this section we assume f ∈ L1(0, 1). For (t, y, c) ∈ [0, 1]× R2 we set

h(t, y, c) := p′
[
c
(
y+
) 1

p − f(t)
]

and study the following two initial value problems on [0, 1], which depend on the parameter
c ∈ R:

y′(t) = h(t, y(t), c), y(0) = 0 (3.2)

and
y′(t) = h(t, y(t), c), y(1) = 0. (3.3)
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Using the terminology from [16], (3.2) will be referred to as forward initial value problem,
while (3.3) will be referred to as backward initial value problem. Our aim is to determine
whether for some values of c ∈ R, the corresponding solution yc = yc(t), t ∈ [0, 1], of
either (3.2) or (3.3) also vanishes at the other endpoint of [0, 1].

First, let us note that f ∈ L1(0, 1) implies that h = h(t, y, c) satisfies Carathéodory
conditions, i.e., for almost every t ∈ [0, 1] fixed, h(t, ·, ·) is continuous with respect to y
and c and for every y ∈ R and c ∈ R fixed, h(·, y, c) is measurable with respect to t.

Lemma 3.1. For any c ∈ R there exists at least one solution yc = yc(t) of the froward
i.v.p. (3.2) defined on the entire interval [0, 1]. The same holds for the backward i.v.p. (3.3).

Proof. Let c ∈ R and f ∈ L1(0, 1) be fixed. Since h = h(t, y, c) satisfies Carathéodory
conditions, then according to [43, §10.XVIII, p. 121], it is sufficient to show that there
exists m ∈ L1(0, 1) such that |h(t, y, c)| ≤ m(t) for (t, y) ∈ [0, 1] × R. However, the

function y 7→ (y+)
1
p is not bounded from above, hence we cannot apply this result directly.

Therefore, we first show that all solutions of (3.2), if they exist, are a priori bounded by
a constant K > 0.

Integrating (3.2), we obtain

y(σ) = p′
(
c

∫ σ

0

(
y+(τ)

) 1
p dτ −

∫ σ

0

f(τ) dτ

)
, σ ∈ (0, 1). (3.4)

For t ∈ (0, 1) set
ϱ(t) := max

σ∈[0,t]
|y(σ)|.

It follows from (3.4) that for σ ∈ [0, t]

|y(σ)| ≤ p′
(
|c|
∫ σ

0

(
y+(τ)

) 1
p dτ + ∥f∥L1(0,1)

)

and therefore

ϱ(t) ≤ p′
(
|c| max

σ∈[0,t]

∫ σ

0

(
y+(τ)

) 1
p dτ + ∥f∥L1(0,1)

)

≤ p′
(
|c|
∫ 1

0

max
σ∈[0,t]

(
y+(σ)

) 1
p dτ + ∥f∥L1(0,1)

)

≤ p′
(
|c|
(
max
σ∈[0,t]

|y(σ)|
) 1

p

+ ∥f∥L1(0,1)

)
= p′

(
|c| (ϱ(t)) 1

p + ∥f∥L1(0,1)

)
.

Since 1
p
< 1, the last inequality yields that there exists a constant K > 0 such that

ϱ(t) < K for all t ∈ [0, 1].
Let us set

ĥ(t, y, c) =





h(t, y, c) for |y| < K,

p′
(
cK

1
p − f(t)

)
for y ≥ K,

−p′f(t) for y ≤ −K.
Then solutions of the modified problem

y′(t) = ĥ(t, y(t), c), y(0) = 0 (3.5)
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are bounded by the same constant K > 0. Indeed, following the same procedure as above,
we obtain

ϱ(t) = max
σ∈[0,t]

|y(σ)|

≤ p′


|c| max

σ∈[0,t]

∫

{τ∈(0,σ) : |y(τ)|<K}

(
y+(τ)

) 1
p dτ + |c| max

σ∈[0,t]

∫

{τ∈(0,σ) : y(τ)≥K}

K
1
p dτ + ∥f∥L1(0,1)




≤ p′
(
|c| max

σ∈[0,t]

∫ σ

0

(
y+(τ)

) 1
p dτ + ∥f∥L1(0,1)

)

≤ p′
(
|c|
∫ 1

0

max
σ∈[0,t]

(
y+(σ)

) 1
p dτ + ∥f∥L1(0,1)

)

≤ p′
(
|c|
(
max
σ∈[0,t]

|y(σ)|
) 1

p

+ ∥f∥L1(0,1)

)
= p′

(
|c| (ϱ(t)) 1

p + ∥f∥L1(0,1)

)
.

Therefore, ϱ(t) < K for all t ∈ [0, 1] and the set of solutions of the modified problem (3.5)

coincides with the set of solutions of (3.2). But ĥ satisfies Carathéodory conditions and

there is a function m ∈ L1(0, 1) such that |ĥ(t, y, c)| ≤ m(t) for (t, y) ∈ [0, 1]×R. Hence,
(3.5) (and thus also (3.2)) has at least one solution in [0, 1]. Similarly we proceed in the
case of the backward i.v.p. (3.3).

Remark 3.2. The solution yc in the above lemma is not unique in general due to the
fact that the function

y 7→ c
(
y+
) 1

p , y ∈ R,

does not satisfy Lipschitz condition at 0. However, this function is nondecreasing for
c ≥ 0 and nonincreasing for c ≤ 0. Therefore, it satisfies one-sided Lipschitz condition in
either case and we can derive uniqueness results separately for the forward and backward
initial value problems.

Lemma 3.3. If c ≤ 0, then the forward i.v.p. (3.2) has exactly one solution yc = yc(t),
t ∈ [0, 1]. If c ≥ 0, then the backward i.v.p. (3.3) has exactly one solution yc = yc(t),
t ∈ [0, 1].

Proof. Since the idea of the proof is the same for both alternatives, we only prove the
latter. Let c ≥ 0 and y1 = y1(t), y2 = y2(t) be two solutions of (3.3) in [0, 1]. Set

δ(t) = (y1(t)− y2(t))
2 .

Then δ(1) = 0, δ(t) ≥ 0 and

δ′(t) = 2 (y′1(t)− y′2(t)) (y1(t)− y2(t))

= 2p′c
[(
y+1 (t)

) 1
p −

(
y+2 (t)

) 1
p

]
(y1(t)− y2(t)) ≥ 0.

(the functions positive part and 1/p-th power are both nondecreasing). Hence δ(t) = 0
for a.e. t ∈ [0, 1] and y1(t) = y2(t), t ∈ [0, 1].

Thanks to the uniqueness result, we also have continuous dependence of solutions on
the parameter c.
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Lemma 3.4. Let c0 ≥ 0. Then c → c0 > 0 or c → 0+ if c0 = 0 implies that solutions
yc = yc(t) of the backward i.v.p. (3.3) converge uniformly in [0, 1] (i.e., in the topology of
C[0, 1]) to yc0. A corresponding statement holds for c0 ≤ 0 and the forward i.v.p. (3.2).

Proof. The proof follows from the uniqueness result in Lemma 3.3 and [9, Theorems 4.1
and 4.2 in Chapter 2].

In Section 2.2 we have shown that when looking for solutions U = U(z) of the
b.v.p. (2.8), monostable reaction term g yields c > 0. As for the bistable case, the
sign of the wavespeed c is given by the sign of

∫ 1

0

f(t) dt =

∫ 1

0

(d(t))
1

p−1 g(t) dt,

cf. Lemma 2.13. Therefore, we further focus on parameters c ∈ [0,+∞) and the backward
i.v.p. (3.3).

Let us introduce the notion of defect Pcφ of a function φ with respect to the differential
equation y′ = h(t, y, c), see [43, §9.II, p. 90]:

Pcφ := φ′(t)− h(t, φ(t), c).

The defect indicates “how close” is φ to being a solution of the differential equation. In
particular, the defect of a solution is 0. The following comparison argument is one of our
basic tools.

Lemma 3.5. Let c ≥ 0 and assume that the functions φ, ψ ∈ AC[0, 1] satisfy φ(1) ≤
ψ(1), Pcφ ≥ Pcψ a.e. in [0, 1]. Then φ ≤ ψ in [0, 1].

Proof. Set w = ψ − φ. Then

w′ = ψ′ − φ′ = Pcψ + p′c(ψ+)
1
p − Pcφ− p′c(φ+)

1
p ≤ p′c

(
(ψ+)

1
p − (φ+)

1
p

)
(3.6)

a.e. in [0, 1]. Assume that there is t0 ∈ (0, 1) such that w(t0) < 0. Let t1 ∈ (t0, 1] be such

that w(t) ≤ 0, t ∈ (t0, t1]. It follows from (3.6) that w′ ≤ p′c[(ψ+)
1
p − (φ+)

1
p ] ≤ 0 a.e. in

(t0, t1], i.e., w(t1) ≤ w(t0) < 0. By using the same argument repeatedly if necessary, we
conclude that w(1) < 0, a contradiction with φ(1) ≤ ψ(1).

Corollary 3.6. Let 0 ≤ c1 < c2. Let yc1 and yc2 be the solutions of the backward
i.v.p. (3.3) with c = c1 and c = c2, respectively. Then

yc1(t) ≥ yc2(t), t ∈ [0, 1].

In particular, yc1(0) ≥ yc2(0).

Proof. We have

Pc2yc1 = y′c1 − h(t, yc1 , c2) = y′c1 − h(t, yc1 , c1)︸ ︷︷ ︸
=0

+h(t, yc1 , c1)− h(t, yc1 , c2)

= p′(c1 − c2)
(
y+c1
) 1

p ≤ 0 = y′c2 − h(t, yc2 , c2) = Pc2yc2 a.e. in [0, 1].

Since yc1(1) = yc2(1) = 0, Lemma 3.5 yields that yc1 ≥ yc2 in [0, 1].
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So far we have shown that for each c ≥ 0 there exists a unique solution of (3.3) and
the solutions yc = yc(t) decrease (not strictly) with c. Note that these results hold for
any f ∈ L1(0, 1).

In order to prove the existence of solution to the b.v.p. (3.1), we restrict ourselves to
two cases according to the sign of the function f on [0, 1]. For simplicity, we denote these
cases as bistable and monostable, indicating which type of reaction term g will lead to

the desired properties of f given by f(t) = (d(t))
1

p−1 g(t).

3.2 Bistable case

Let f ∈ L1(0, 1) have the following property: there exists s∗ ∈ (0, 1) such that

f(t) ≤ 0 if t ∈ (0, s∗), f(t) > 0 if t ∈ (s∗, 1). (3.7)

In this section, we prove that if (3.7) holds and

∫ 1

0

f(t) dt ≥ 0, (3.8)

there exists a unique c∗ ≥ 0 such that the b.v.p. (3.1) possesses a unique positive solution
yc∗ = yc∗(t), t ∈ [0, 1]. More precisely, strict inequality in (3.8) leads to c∗ > 0, while in
the case of equality we obtain that c∗ = 0.

First, we mention the following two corollaries of Lemma 3.5.

Corollary 3.7. Assume that f ∈ L1(0, 1) satisfies (3.7) and f̃ ∈ L1(0, 1) is such that

f̃(t) = 0 for t ∈ (0, s∗), f̃(t) = f(t) for t ∈ (s∗, 1).

Let c ≥ 0 and ỹc = ỹc(t), t ∈ [0, 1], be a solution of the backward i.v.p. (3.3) with f
replaced by f̃ . Then yc ≤ ỹc in [0, 1].

Proof. Set h̃(t, y, c) := p′
[
c(y+(t))

1
p − f̃(t)

]
. Then h̃ ≤ h and so

Pcỹc = ỹ′c − h(t, ỹc, c) = ỹ′c − h̃(t, ỹc, c)︸ ︷︷ ︸
=0

+h̃(t, ỹc, c)− h(t, ỹc, c) ≤ 0 = y′c − h(t, yc, c)

= Pcyc a.e. in [0, 1].

It then follows from Lemma 3.5 that yc ≤ ỹc in [0, 1].

Corollary 3.8. Let f ∈ L1(0, 1) be such that (3.7) holds and f is lower semicontinuous
in (s∗, 1). Let yc = yc(t) be a solution of the backward i.v.p. (3.3) with c ≥ 0. Then
yc(t) > 0 for t ∈ (s∗, 1).

Proof. We have

Pc0 = 0− h(t, 0, c) = p′f(t) ≥ 0 = y′c − h(t, yc, c) = Pcyc a.e. in [s∗, 1].

It follows from Lemma 3.5 with 0 replaced by s∗ that yc ≥ 0 in [s∗, 1]. We prove that
yc > 0 in (s∗, 1). Indeed, assume the contrary, i.e., there is t0 ∈ (s∗, 1) such that yc(t0) = 0.
Since f is positive and lower semicontinuous in (s∗, 1), given arbitrarily small ε > 0 there
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exists ϱ > 0 such that f(t) ≥ ϱ > 0 for all t ∈ [t0, 1− ε]. Integrating the equation in (3.3)
from t0 to t ∈ (t0, 1− ε] and using yc(t0) = 0, we get

yc(t) = p′
(
c

∫ t

t0

(
y+c (τ)

) 1
p dτ −

∫ t

t0

f(τ) dτ

)
,

yc(t)

t− t0
= p′


c

∫ t

t0
(y+c (τ))

1
p dτ

t− t0
−
∫ t

t0
f(τ) dτ

t− t0


 . (3.9)

Since ∫ t

t0
f(τ) dτ

t− t0
≥ ϱ, (3.10)

and, due to continuity of yc at t0 also

lim
t→t0+

∫ t

t0
(y+c (τ))

1
p dτ

t− t0
= 0, (3.11)

we conclude from (3.9)–(3.11) that for t and t0 close enough,

yc(t)

t− t0
< 0,

a contradiction. Therefore, yc > 0 in (s∗, 1).

Below we present the main assertions of this section. In Theorem 3.9, we assume that∫ 1

0
f(t) dt > 0, while Theorem 3.10 deals with the case of

∫ 1

0
f(t) dt = 0. We refer to these

cases as unbalanced and balanced, respectively.

Theorem 3.9 (Unbalanced case). Let f ∈ L1(0, 1) be such that (3.7) holds, f is lower
semicontinuous in (s∗, 1) and ∫ 1

0

f(t) dt > 0.

Then there exists a number c∗ > 0 such that the b.v.p. (3.1) has a unique positive solution
if and only if c = c∗.

Proof. Let y0 = y0(t) be the solution of the backward i.v.p. (3.3) with c = 0. It follows
from our assumptions on f that

y0(t) = p′
∫ 1

t

f(s) ds > 0 for all t ∈ [0, 1). (3.12)

In particular, y0(0) > 0.
Set

c∗ := sup {c > 0 : yc(t) > 0 for all t ∈ (0, 1)} .
From (3.12), continuous dependence on parameter (Lemma 3.4) and Corollary 3.8, we
conclude that the set {c > 0 : yc(t) > 0 for all t ∈ (0, 1)} is non-empty and therefore c∗ >
0. Next we prove that c∗ < +∞. Indeed, if c∗ = +∞, then by the definition of c∗ there
exist cn → +∞ and corresponding ycn = ycn(t) satisfying ycn > 0 in (0, 1). Let f̃ and
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ỹc = ỹc(t) be as in Corollary 3.7. Since ỹcn ≥ ycn in (0, 1) by the same corollary, we have
ỹcn > 0 in (0, 1) and ỹcn satisfies

ỹ′cn(t) = p′cn (ỹcn(t))
1
p , t ∈ (0, s∗), (3.13)

ỹ′cn(t) = p′
[
cn (ỹcn(t))

1
p − f(t)

]
, t ∈ (s∗, 1). (3.14)

Separating variables in (3.13) yields

(ỹcn(t))
1
p′ = (ỹcn(s∗))

1
p′ + cn(t− s∗), t ∈ (0, s∗). (3.15)

On the other hand, from (3.14) we obtain

ỹcn(s∗) = p′
∫ 1

s∗

f(t) dt− p′c

∫ 1

s∗

(
ỹ+cn(t)

) 1
p dt.

It follows that for all n ∈ N

ỹcn(s∗) ≤ p′
∫ 1

s∗

f(t) dt < +∞

and therefore for any t ∈ (0, s∗) the right-hand side of (3.15) tends to −∞ as n → +∞,
a contradiction. Hence c∗ < +∞.

Now we prove that yc∗(0) = 0 and yc∗(t) > 0, t ∈ (0, 1). By continuous dependence on
parameter (Lemma 3.4), Corollary 3.8 and the definition of c∗, the function yc∗ = yc∗(t)
must vanish somewhere in [0, s∗]. Let η ∈ [0, s∗] be the largest zero of yc∗ . If η > 0, then
for c < c∗ and t ∈ (0, η] we have yc(t) > 0 and hence from

y′c(t) = p′c
[
(yc(t))

1
p − f(t)

]
≥ p′c (yc(t))

1
p , t ∈ (0, η),

separating variables we deduce

0 < (yc(t))
1
p′ ≤ (yc(η))

1
p′ + c(t− η), t ∈ (0, η). (3.16)

Since for c → c∗ we have yc(η) → yc∗(η) = 0 by Lemma 3.4, for any fixed t ∈ (0, η) there
exists c < c∗, (c∗ − c) sufficiently small, such that

(yc(η))
1
p′ + c(t− η) < 0,

which contradicts (3.16). Therefore η = 0.
Finally, we show that positive solutions of the backward i.v.p. (3.3) do not vanish at

0 for other values of c different from c∗. Assume by contradiction that there exists ĉ ̸= c∗
such that yĉ = yĉ(t) > 0 and yĉ(0) = 0. It follows immediately from the definition of c∗
that ĉ < c∗ and by Corollary 3.6 we have yĉ(t) ≥ yc∗(t), t ∈ (0, 1). Since

y′ĉ(t) = p′
[
ĉ (yĉ(t))

1
p − f(t)

]
, (3.17)

y′c∗(t) = p′
[
c∗ (yc∗(t))

1
p − f(t)

]
, (3.18)

for c ∈ [ĉ, c∗] we obtain

y′ĉ(t) ≤ p′
[
c (yĉ(t))

1
p − f(t)

]
(3.19)
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and
y′c∗(t) ≥ p′

[
c (yĉ(t))

1
p − f(t)

]
(3.20)

for a.e. t ∈ (0, 1). Set z1 = (yĉ)
1
p′ > 0, z2 = (yc∗)

1
p′ > 0. Then z1 ≥ z2 in (0, 1) and it

follows from (3.19) and (3.20) that

z′1(t) ≤ c− f(t)

(z1(t))
1

p−1

, (3.21)

z′2(t) ≥ c− f(t)

(z2(t))
1

p−1

, (3.22)

for a.e. t ∈ (0, 1). Let us subtract (3.22) from (3.21) and restrict on the interval (0, s∗)
where f(t) ≤ 0. Then

(z1(t)− z2(t))
′ ≤ −f(t)

(
1

(z1(t))
1

p−1

− 1

(z2(t))
1

p−1

)

and

(z1(t)− z2(t)) (z1(t)− z2(t))
′ ≤ −f(t)

(
1

(z1(t))
1

p−1

− 1

(z2(t))
1

p−1

)
(z1(t)− z2(t)) ≤ 0

for a.e. t ∈ (0, s∗). Hence

1

2

d

dt
(z1(t)− z2(t))

2 ≤ 0 for a.e. t ∈ (0, s∗). (3.23)

Since z1(0) = z2(0) = 0, it follows from (3.23) that z1(t) = z2(t), t ∈ (0, s∗), i.e., yĉ(t) =
yc∗(t), t ∈ (0, s∗). Equations (3.17), (3.18) then hold for both yĉ, yc∗ on (0, s∗) and by
subtraction we conclude that

0 = p′(ĉ− c∗) (yc∗(t))
1
p , t ∈ (0, s∗).

But this equality cannot hold unless ĉ = c∗. Therefore c∗ is the unique value of c for
which yc(0) = 0 and yc > 0 in (0, 1). The uniqueness of yc∗ as a solution of the b.v.p.
(3.1) follows from the uniqueness result for the backward i.v.p. (3.3). This completes the
proof.

Theorem 3.10 (Balanced case). Let f ∈ L1(0, 1) be such that (3.7) holds, f < 0 on (0, δ)
for some δ ∈ (0, s∗) and ∫ 1

0

f(t) dt = 0. (3.24)

Then the b.v.p. (3.1) has a unique positive solution if and only if c = 0.

Proof. Let y = y(t), t ∈ [0, 1], be a positive solution of (3.1). Integrating the equation in
(3.1) from 0 to 1 and using the boundary conditions together with (3.24), we obtain

0 = y(1)− y(0) =

∫ 1

0

y′(t) dt = p′
[
c

∫ 1

0

(
y+(t)

) 1
p dt−

∫ 1

0

f(t) dt

]
= p′c

∫ 1

0

(
y+(t)

) 1
p dt.

Hence c = 0.
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On the other hand, the backward i.v.p. (3.3) with c = 0 has a unique solution

y(t) = p′
∫ 1

t

f(s) ds.

It follows from our assumptions on f that y(t) > 0 for all t ∈ (0, 1) and y(0) = 0.
Therefore, it is also a unique positive solution of (3.1).

Remark 3.11. Unlike in the unbalanced case, Theorem 3.10 does not require the as-
sumption of lower semicontinuity of f in (s∗, 1). On the other hand, f must now be
negative on some small neighbourhood of 0 to ensure that the integral of f is equal to
0 only when taken over the entire interval (0, 1). Although properties (3.7) and (3.24)
imply that f must be negative on a set of non-zero measure, if f = 0 on (0, δ), then

y(t) = p′
∫ 1

t
f(s) ds = 0 (at least) on (0, δ).

Remark 3.12. The result in Theorem 3.10 remains valid under the following (more
general) assumptions on f : (3.24) holds and there exist α, β ∈ (0, 1), α < β, such that
f < 0 on (0, α), f ≤ 0 on (α, s∗), f ≥ 0 on (s∗, β) and f > 0 on (β, 1). In particular, f
might be equal to zero on (α, β).

3.3 Monostable case

We now consider the case when f > 0 in (0, 1). We formulate sufficient conditions under
which there exist positive solutions of (3.1) for a continuum of admissible values c > 0.
We also present a nonexistence result, in which the behaviour of f near 0 plays a crucial
role.

The following result generalizes that from [22, Proposition 2].

Theorem 3.13 (Existence). Let f be lower semicontinuous, f(t) > 0, t ∈ (0, 1), and

0 < µ := sup
t∈(0,1)

f(t)

tp′−1
< +∞. (3.25)

Then there exists a number c∗ ∈ (0, (p′)
1
p′ p

1
pµ

1
p′ ] such that the b.v.p. (3.1) has a unique

positive solution if and only if c ≥ c∗.

Proof. It follows from (3.25) that f is bounded in (0, 1). In particular, f ∈ L1(0, 1). For
a solution yc = yc(t) of (3.3) with c ≥ 0 we have

Pc0 = 0− h(t, 0, c) = p′f(t) ≥ 0 = y′c − h(t, yc, c) = Pcyc a.e. in [0, 1].

Then by Lemma 3.5 we have yc ≥ 0 in [0, 1]. The same argument as in the proof of
Corollary 3.8 applied on the entire interval (0, 1) yields that yc > 0 in (0, 1).

Next, using the estimates similar to [22, p. 176], we prove that yc(0) = 0 provided

c is “large enough”. Set ϕc(s) = cs
1
p − s, c > 0, s ∈ (0, cp

′
). Then ϕc > 0 in (0, cp

′
),

ϕc(0) = ϕc(c
p′) = 0, and ϕc attains maximum value Mc := ( c

p
)p

′
(p − 1) at the point

k := ( c
p
)p

′ ∈ (0, cp
′
). Elementary calculation yields that c ≥ (p′)

1
p′ p

1
pµ

1
p′ if and only if

Mc ≥ µ, i.e., ϕc(k) ≥ µ, or equivalently we have

ck
1
p − µ ≥ k . (3.26)
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Let s(t) := ktp
′
. Then s(1) > 0 and thanks to (3.26),

Pcs = s′(t)− h(t, s, c) = kp′tp
′−1 − h(t, s, c) ≤

(
ck

1
p − µ

)
p′tp

′−1 − p′
[
c(s(t))

1
p − f(t)

]

≤
(
ck

1
p − µ

)
p′tp

′−1 − p′
[
c(s(t))

1
p − µtp

′−1
]
= 0 = Pcyc a.e. in [0, 1].

Then again by Lemma 3.5 we have

0 ≤ yc(t) ≤ s(t), t ∈ [0, 1].

In particular,
0 = yc(0) = s(0).

To summarize, we have proved that for any fixed c ≥ (p′)
1
p′ p

1
pµ

1
p′ there exists unique

positive solution yc = yc(t) of the backward i.v.p. (3.3) satisfying yc(0) = 0. In particular,
yc = yc(t) is a unique positive solution of (3.1).

By Corollary 3.6, yc1(t) ≥ yc2(t), t ∈ (0, 1), yci(0) = yci(1) = 0, i = 1, 2, if c1 < c2. Set

c∗ := inf{c > 0 : (3.1) has a unique positive solution}.

Then from above we get c∗ ≤ (p′)
1
p′ p

1
pµ

1
p′ . Let cn → c∗+, ycn = ycn(t), t ∈ [0, 1], be

solutions of (3.1) with c = cn. Then, according to Lemma 3.4, solutions ycn converge
uniformly to a solution yc∗ of (3.1) with c = c∗. Since c∗ ≥ 0, we have yc∗(t) > 0,
t ∈ (0, 1) by Corollary 3.8 applied on the entire interval (0, 1). Hence (3.1) has a unique
positive solution if and only if c ≥ c∗. For c = 0 we have

y0(t) = p′
∫ 1

t

f(τ) dτ, t ∈ [0, 1].

In particular, y0(0) > 0 and therefore c∗ > 0.

We also have the following non-existence result.

Theorem 3.14 (Non-existence). Let f(t) > 0, t ∈ (0, 1),

0 < ν := lim inf
t→0+

f(t)

tp′−1
. (3.27)

If

0 ≤ c < (p′)
1
p′ p

1
pν

1
p′ (3.28)

then the b.v.p. (3.1) has no positive solution. In particular, if

lim
t→0+

f(t)

tp′−1
= +∞, (3.29)

then (3.1) has no positive solution for any c ≥ 0.

Proof. The case c = 0 is obvious, see the end of the proof of Theorem 3.13. To prove the
rest of the statement, we proceed by contradiction. Let c > 0 be fixed and satisfy (3.28).
Assume that (3.1) has a positive solution yc = yc(t) > 0, t ∈ (0, 1). Since yc is also a
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solution of the backward i.v.p. (3.3) and c > 0, by Lemma 3.3 function yc is a also unique
solution of (3.1). For v ∈ C[0, 1] fixed let u ∈ C[0, 1] be such that

u(t) = p′
∫ t

0

[
c
(
v+(τ)

) 1
p − f(τ)

]
dτ.

Then u = T (v) defines a monotone increasing operator from C[0, 1] into C[0, 1] and yc is
a fixed point of T . Indeed, let v1, v2 ∈ C[0, 1], v1(t) ≤ v2(t), t ∈ [0, 1]. Then

T (v1)(t)− T (v2)(t) = p′
∫ t

0

c
[(
v+1 (τ)

) 1
p −

(
v+2 (τ)

) 1
p

]
dτ ≤ 0.

Set y0(t) = cp
′
tp

′
, t ∈ [0, 1]. Then

T (y0)(t) = y0(t)− p′
∫ t

0

f(τ) dτ ≤ y0(t), t ∈ [0, 1],

i.e., y0 is a supersolution of T (see e.g. [13, Definition 6.3.15]). We consider the following
successive approximations

yn+1 = T (yn), n = 0, 1, 2, . . .

Since T is monotone increasing, we have

y0(t) ≥ y1(t) ≥ · · · ≥ yn(t) ≥ . . . (3.30)

For any n ∈ N,

yn(t) = T (yn−1)(t) ≥ −p′
∫ t

0

f(τ) dτ,

i.e., the sequence {yn}∞n=0 is bounded below in C[0, 1]. By [13, Theorem 6.3.16], this
sequence converges to the greatest fixed point of T . Therefore,

y0(t) ≥ y1(t) ≥ · · · ≥ yn(t) ≥ · · · ≥ yc(t) > 0, t ∈ (0, 1). (3.31)

It follows from (3.27), (3.28) that there exists δ ∈ (0, 1] and ν̃ ∈
(

1
p′pp′−1 , 1

)
such that

f(t) ≥ ν̃cp
′
tp

′−1 for all t ∈ (0, δ). (3.32)

Now, using (3.32) we deduce

y1(t) = p′
[
c

∫ t

0

(
y+0 (τ)

) 1
p dτ −

∫ t

0

f(τ) dτ

]
= p′

[
c

∫ t

0

c
p′
p τ

p′
p dτ −

∫ t

0

f(τ) dτ

]

≤ p′cp
′
[
τ p

′

p′

]t

0

− p′
∫ t

0

ν̃cp
′
τ p

′−1 dτ = cp
′
tp

′ − ν̃cp
′
tp

′
= ctp

′
(1− ν̃), t ∈ (0, δ),

y2(t) = p′
[
c

∫ t

0

(
y+1 (τ)

) 1
p dτ −

∫ t

0

f(τ) dτ

]

≤ p′c

∫ t

0

c
p′
p τ

p′
p (1− ν̃)

1
p dτ − p′

∫ t

0

ν̃cp
′
τ p

′−1 dτ = cp
′
tp

′
(1− ν̃)

1
p − ν̃cp

′
tp

′

= cp
′
tp

′
[
(1− ν̃)

1
p − ν̃

]
, t ∈ (0, δ).
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Performing the iterative process, we get for k = 1, 2, . . . that

yk(t) ≤ akc
p′tp

′
for t ∈ (0, δ), (3.33)

where
a0 = 1, ak = (ak−1)

1
p − ν̃. (3.34)

It follows from (3.31), (3.33) that

0 < yc(t) ≤ · · · ≤ akc
p′tp

′ ≤ ak−1c
p′tp

′ ≤ · · · ≤ a1c
p′tp

′ ≤ cp
′
tp

′
(3.35)

for t ∈ (0, δ). Hence {ak}∞k=1 is a bounded and monotone decreasing sequence and therefore
there exists its finite limit a∞ := limk→∞ ak. Then obviously a∞ < 1 and due to (3.35)
we infer a∞ > 0. Passing to the limit for k → ∞ in (3.34), we get

a∞ = a
1
p
∞ − ν̃, i.e., ν̃ = a

1
p
∞(1− a

1
p′
∞).

Since the function x 7→ x
1
p (1 − x

1
p′ ), x ∈ (0, 1), attains its maximum 1

p′pp′−1 at the point

x = 1
pp′

, we necessarily have ν̃ ≤ 1
p′pp′−1 , a contradiction with the fact ν̃ ∈

(
1

p′pp′−1 , 1
)
.

Therefore (3.1) cannot have a positive solution. In particular, if (3.29) holds then ν = +∞
and (3.28) yields that (3.1) has no positive solution for any c ≥ 0.

Remark 3.15. Let µ and ν be defined as in Theorems 3.13 and 3.14, respectively. Then
we conclude from the existence and nonexistence results above that the minimal value of
the “critical” speed c∗ > 0 must satisfy

(p′)
1
p′ p

1
pν

1
p′ ≤ c∗ ≤ (p′)

1
p′ p

1
pµ

1
p′ .
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Chapter 4

Existence and non-existence of
travelling wave profiles

Combining the results from Chapters 2 and 3, we can now formulate existence and non-
existence results for the generalized profile U satisfying the second-order boundary value
problem

{(
d(U(z)) |U ′(z)|p−2 U ′(z)

)′
+ cU ′(z) + g(U(z)) = 0, z ∈ R,

lim
z→−∞

U(z) = 1, lim
z→+∞

U(z) = 0
(4.1)

in the bistable unbalanced, bistable balanced and monostable cases. We also summarize
the properties of the profile U .

In each of the theorems below, we assume that the diffusion coefficient d and reaction
term g satisfy the hypotheses (H1), (H2), respectively, introduced in Section 2.1.

4.1 Bistable case

Theorem 4.1 (Unbalanced case). Assume that g = g(s) satisfies

g(0) = g(s∗) = g(1) = 0 for some s∗ ∈ (0, 1)

g(s) ≤ 0 if s ∈ (0, s∗), g(s) > 0 if s ∈ (s∗, 1),

and let ∫ 1

0

(d(s))
1

p−1 g(s) ds > 0. (4.2)

Then there is a unique value of c = c∗ > 0 such that the b.v.p. (4.1) has a unique
nonincreasing solution U = U(z), z ∈ R. Moreover, U has the following properties:

(i) U(0) = s∗

(ii) There exist −∞ ≤ z0 < 0 < z1 ≤ +∞ such that U(z) = 1 for z ∈ (−∞, z0],
U(z) = 0 for z ∈ [z1,+∞).

(iii) U is strictly decreasing in (z0, z1).

(iv) For i = 1, 2, . . . , n let ξi ∈ (z0, z1) be such that U(ξi) = si, ξ0 = z0, ξn+1 = z1. Then

U ∈ Ĉ1(R),
U |(ξi,ξi+1)

∈ C1(ξi, ξi+1), i = 0, 1, . . . , n
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and the limits U ′(ξi−) := lim
z→ξi−

U ′(z) and U ′(ξi+) := lim
z→ξi+

U ′(z) exist finite for all

i = 1, 2, . . . , n.

(v) For any i = 1, 2, . . . , n, the following transition condition holds:

|U ′(ξi−)|p−2
U ′(ξi−) lim

s→si+
d(s) = |U ′(ξi+)|p−2

U ′(ξi+) lim
s→si−

d(s).

(vi) U satisfies

lim
z→z0+

d(U(z)) |U ′(z)|p−2
U ′(z) = lim

z→z1−
d(U(z)) |U ′(z)|p−2

U ′(z) = 0.

Proof. The assumptions on d and g imply that f(t) = (d(t))
1

p−1 g(t) satisfies the hy-
potheses of Theorem 3.9, hence there exists a unique constant c = c∗ > 0 such that the
b.v.p. (3.1) possesses a unique positive solution yc∗ = yc∗(t) in the sense of Carathéodory.
Since f |(si,si+1)

∈ C(si, si+1), i = 0, 1, . . . , n, the solution y also satisfies (2.17) pointwise.
The proof then follows from Proposition 2.12 and Theorem 3.9. The properties of the
profile U follow from the reasoning in Section 2.3. Without loss of generality, the solution
can be normalized by U(0) = s∗, cf. Remark 2.8.

Remark 4.2. Property (ii) in the above theorem indicates that the solution U may not
actually attain the values 0 and 1, but if it does, then it must be constant outside of
(z0, z1). Adopting the terminology from [34, Definition 1.1], we distinguish the following
types of solutions, illustrated in Figure 4.1: front-type if (z0, z1) = R; sharp of type I if
z0 = −∞ and z1 ∈ R; sharp of type II if z0 ∈ R and z1 = +∞; sharp of type III if
z0, z1 ∈ R.

0

1

front-type

0

1

z1
sharp of type I

0

1

z0
sharp of type II

0

1

z1z0
sharp of type III

Figure 4.1: Classification of wave profiles based on the finiteness of z0, z1

Theorem 4.3 (Balanced case). Assume that g = g(s) satisfies

g(0) = g(s∗) = g(1) = 0 for some s∗ ∈ (0, 1)

g(s) > 0 if s ∈ (s∗, 1)
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and there exists δ ∈ (0, s∗) such that

g(s) < 0 if s ∈ (0, δ), g(s) ≤ 0 if s ∈ (δ, s∗).

Let ∫ 1

0

(d(s))
1

p−1 g(s) ds = 0. (4.3)

Then the b.v.p. (4.1) has a unique nonincreasing solution U = U(z), z ∈ R, if and only
if c = 0. Moreover, U has the properties (i)–(vi) from Theorem 4.1.

Proof. The proof can be derived using the same reasoning as in the proof of Theorem 4.1,
replacing the references to Theorem 3.9 with Theorem 3.10.

Remark 4.4. Let us recall that solutions to (4.1) with c = 0 are stationary solutions of
the partial differential equation (2.1), i.e., solutions of the form u(x, t) = u(x), referred
to as stationary waves. According to Theorem 3.10, condition (4.3) is sufficient for the
existence of a monotone stationary wave solution, which is unique up to translation. On
the other hand, if c = 0 in (4.1), it follows from Proposition 2.12 and Lemma 2.13 that this
condition is also necessary. To summarize, each pair of the following statements implies
the remaining one:

(a)
∫ 1

0
(d(s))

1
p−1 g(s) ds = 0;

(b) c = 0;

(c) there exists a unique (up to translation) nonincreasing solution of (4.1).

Remark 4.5 (Non-monotone solutions). It follows from Lemma 2.13 and Remark 2.15
that the equation

(
d(u(x)) |u′(x)|p−2

u′(x)
)′

+ g(u(x)) = 0, x ∈ R (4.4)

possesses a pair of monotone stationary waves u1 = u1(x), u2 = u2(x), x ∈ R, one
nonincreasing and the other nondecreasing, which satisfy the boundary conditions

lim
x→−∞

u1(x) = 1, lim
x→+∞

u1(x) = 0

and
lim

x→−∞
u2(x) = 0, lim

x→+∞
u2(x) = 1,

respectively. If these waves are sharp of type III, we have many possibilities to “connect”
0 and 1 using suitable translations of u1 and u2. Indeed, let x0, x1 be associated with
the nonincreasing solution u1, u

′
1(x) < 0 in (x0, x1), and assume that x0, x1 ∈ R. Then

x̂0, x̂1, associated with the nondecreasing solution u2 must be also finite and we have
u′2(x) > 0 in (x̂0, x̂1). Utilizing the translation invariance, we can normalize u1 and u2 so
that x1 ≤ x̂0. Consequently, we can construct a solution û as follows:

û(x) = u1(x) for (−∞, x1), û(x) = 0 for (x1, x̂0), û(x) = u2(x) for (x̂0,+∞),

see Figure 4.2, which solves the equation (4.4) and satisfies boundary conditions

lim
x→−∞

û(x) = lim
x→+∞

û(x) = 1.

By the same reasoning, we can further extend û to obtain a non-monotone solution ũ of
the b.v.p. (4.1), see Figure 4.3.
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0

1

x0 x1 x̂0 x̂1

û

Figure 4.2: Non-monotone stationary wave û satisfying û(±∞) = 1

0

1

x0 x1 x̂0 x̂1 x̃0 x̃1

ũ

Figure 4.3: Non-monotone stationary wave ũ satisfying ũ(−∞) = 1, ũ(+∞) = 0

4.2 Monostable case

In this section we assume that g = g(s) satisfies g(0) = g(1) = 0, g(s) > 0 for s ∈ (0, 1).

Theorem 4.6 (Existence). Let

0 < µ := sup
s∈(0,1)

(d(s))
1

p−1 g(s)

sp′−1
< +∞. (4.5)

Then there exists a number c∗ ∈ (0, (p′)
1
p′ p

1
pµ

1
p′ ] such that the b.v.p. (4.1) has a unique

solution U = U(z), z ∈ R, if and only if c ≥ c∗. Moreover, U(0) = 1
2
and U has the

properties (ii)–(vi) from Theorem 4.1.

Proof. The assumptions on d and g imply that f(t) = (d(t))
1

p−1 g(t) satisfies the hy-
potheses of Theorem 3.13, hence the boundary value problem (3.1) has a unique positive
solution in the sense of Carathéodory y = y(t), t ∈ [0, 1], if and only if c ≥ c∗. Since
f |(si,si+1)

∈ C(si, si+1), i = 0, 1, . . . , n, the solution y also satisfies (2.17) pointwise. The
proof then follows from Proposition 2.12 and Theorem 3.13. The properties of U , here
normalized by U(0) = 1

2
, follow from Proposition 2.10 and the reasoning in Section 2.3.

Theorem 4.7 (Non-existence). Let

0 < ν := lim inf
s→0+

(d(s))
1

p−1 g(s)

sp′−1
. (4.6)

If

0 ≤ c < (p′)
1
p′ p

1
pν

1
p′

then there is no solution U = U(z), z ∈ R, of the b.v.p. (4.1). In particular, (4.1) has no
solution for any c ≥ 0 if

lim
t→0+

(d(s))
1

p−1 g(s)

sp′−1
= +∞.

Proof. The proof follows from Proposition 2.12 and Theorem 3.14.
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Chapter 5

Asymptotic analysis of the wave
profile

With the existence and non-existence results established, we now turn our attention to
investigating the behaviour of solutions near 0 and 1.

Let us recall that the reduction to a first-order b.v.p., discussed in Section 2.3, relies on
the assumption that the profile U satisfying the b.v.p. (4.1) is strictly monotone whenever
0 < U(z) < 1. More precisely, we assumed that U = U(z) is nonincreasing on R and
strictly decreasing in the open interval (z0, z1) = {z ∈ R : 0 < U(z) < 1}. This property
is granted in the monostable case, cf. Proposition 2.10.

Naturally, we are interested in whether the profile attains one, both or neither of
the values 0 and 1, and how this depends on the properties of the reaction g and the
diffusivity d. For instance, in the case of p = 2 and monostable reaction, degeneration
of the diffusion coefficient d at 0 might cause the appearance of a sharp profile, which
reaches 0 in a finite z ∈ R with a negative slope. This phenomenon also depends on the
derivative of d at 0 and it only concerns the profile associated with the minimal wave
speed c∗.

Due to our general assumptions on the functions d and g, a detailed discussion that
directly correlates the finiteness of z0 and z1 to specific properties of d or g, such as
degenerations, singularities or the speed of vanishing, is not feasible. We will show below
that the outcome is determined by the combined influence of the diffusion and reaction
terms as well as the value of p. For technical reasons, we will assume power-type behaviour
of d and g near the equilibria 0 and 1.

We proceed by examining the inverse function to the profile U = U(z), U(0) = 1
2
:

z(U) = −
∫ U

1
2

(d(t))
1

p−1

(yc(t))
1
p

dt, U ∈ (0, 1), (5.1)

as U → 1 and U → 0, respectively. In particular, we have

z0 = −
∫ 1

1
2

(d(t))
1

p−1

(yc(t))
1
p

dt and z1 =

∫ 1
2

0

(d(t))
1

p−1

(yc(t))
1
p

dt, (5.2)

where yc is the positive solution of the equivalent first-order problem (3.1). In the case of
bistable reaction, the function z = z(U) is customarily normalized by z(s∗) = 0 instead
of z(1

2
) = 0. This modification will be implemented automatically.
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We focus separately on the bistable balanced, bistable unbalanced and monostable
case. Where possible, we also discuss the one-sided derivatives U ′(z0+), U ′(z1−), pro-
vided z0, z1 ∈ R, to obtain information about the smoothness of the solution at these
“transition” points. Throughout this chapter, we consider d and g with properties (H1)
and (H2), respectively, introduced in Chapter 2. For the sake of notational simplicity, in
what follows we will write

h1(t) ∼ h2(t) as t→ t0 ∈ R if and only if lim
t→t0

h1(t)

h2(t)
∈ (0,+∞).

5.1 Bistable balanced case

Let us start with the asymptotic analysis of solutions in the bistable balanced case. As-
sume that d and g satisfy the hypotheses from Theorem 4.3 and

∫ 1

0

(d(s))
1

p−1 g(s) ds = 0.

As discussed in Remark 4.4, the above condition is both necessary and sufficient for the
existence of monotone stationary waves u = u(x), characterized by zero wave speed c,
which satisfy





(
d(u(x)) |u′(x)|p−2 u′(x)

)′
+ g(u(x)) = 0, x ∈ R,

lim
x→−∞

u(x) = 1, lim
x→+∞

u(x) = 0.

Due to c = 0, the unique solution y = y(t) of the first-order b.v.p. (3.1) can be
obtained via direct integration:

y(t) = −p′
∫ t

0

f(s) ds, t ∈ [0, 1]. (5.3)

It then follows from (5.1) and (5.3) that the inverse function to the profile u = u(x),
u(0) = s∗, is given by

x(u) = −
(
1

p′

) 1
p
∫ u

s∗

(d(s))
1

p−1

(
−
∫ s

0
(d(σ))

1
p−1 g(σ) dσ

)1/p ds,

with x0 and x1 now denoting the corresponding expressions in (5.2).
Assuming power-type behaviour of the reaction and diffusion terms, the asymptotic

analysis of x = x(u) as u→ 0+ yields the following result for the stationary wave u = u(x)
as x→ +∞.

Theorem 5.1. Let α > 0, β ∈ R and g(s) ∼ (−sα), d(s) ∼ sβ as s→ 0+. Assume that

α +
β

p− 1
> −1.

(i) If α− β ≥ p− 1 then x1 = +∞. Moreover, for α− β = p− 1 we have

u(x) ∼ e−x → 0 + for x→ +∞
and for α− β > p− 1 we have

u(x) ∼ x
p

p−1−(α−β) → 0 + for x→ +∞.
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(ii) If α− β < p− 1 then x1 < +∞ and for x→ x1− we have

u(x) ∼ (x1 − x)
p

p−1−(α−β) .

As for the derivatives, we then have

(a)
du

dx

∣∣∣∣
x=x1−

∼ −(x1 − x)
α−β+1

p−1−(α−β) → 0 for x→ x1− if α− β > −1,

(b)
du

dx

∣∣∣∣
x=x1−

∼ −(x1 − x)0 → k < 0 for x→ x1− if α− β = −1,

(c)
du

dx

∣∣∣∣
x=x1+

∼ −(x1 − x)
α−β+1

p−1−(α−β) → −∞ for x→ x1− if α− β < −1.

Proof. Let g(s) ∼ (−s)α, d(s) ∼ sβ as s→ 0+ for some α > 0, β ∈ R. Then

f(s) = (d(s))
1

p−1 g(s) ∼ −sα+
β

p−1 as s→ 0+

and our assumption f ∈ L1(0, 1) implies that the parameters α, β and p must satisfy

α +
β

p− 1
> −1.

Since

−
∫ s

0

(d(σ))
1

p−1 g(σ) dσ ∼
∫ s

0

σα+ β
p−1 dσ ∼ sα+

β
p−1

+1 as s→ 0+,

for u→ 0+ we can write

x(u) ∼ −
∫ u

s∗

s
β

p−1

(
sα+

β
p−1

+1
)1/p ds = −

∫ u

s∗

s
β

p−1
−α

p
− β

p(p−1)
− 1

p ds =

∫ s∗

u

s
β−α−1

p ds. (5.4)

From (5.4), we derive the fundamental distinction between two qualitatively different
cases:

(i) If α− β ≥ p− 1 then x1 = +∞.

(ii) If α− β < p− 1 then x1 < +∞.

Moreover, (5.4) provides additional insight into the asymptotic behaviour of x = x(u),
and hence u = u(x), in both of these cases.

Case (i). Let α− β = p− 1. Then (5.4) implies that

x(u) ∼ − lnu as u→ 0+

and therefore
u(x) ∼ e−x → 0 + for x→ +∞.

On the other hand, if α− β > p− 1, we have

x(u) ∼ u
β−α−1

p
+1 = u

p−1−(α−β)
p as u→ 0+
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and hence
u(x) ∼ x

p
p−1−(α−β) → 0 + for x→ +∞.

Case (ii). Let α− β < p− 1. Then from (5.4) we conclude

x1 − x(u) ∼ u
p−1−(α−β)

p as u→ 0 + .

An inverse point of view then yields

u(x) ∼ (x1 − x)
p

p−1−(α−β) for x→ x1 − .

Since p
p−1−(α−β)

> 0, we have

du

dx

∣∣∣∣
x=x1−

∼ −(x1 − x)
α−β+1

p−1−(α−β)

and the cases (a), (b) and (c) follow immediately.

Notice that apart from determining conditions for the parameters α, β that guarantee
x1 = +∞, we are also able to distinguish whether the solution approaches 0 exponentially
or at a power rate. If x1 < +∞, we obtain classification of profiles based on the one-sided
derivative u′(x1−). Since u′(x1+) = 0, the profile u is differentiable at x1 only in case (a).
In the other two cases (b) and (c), it reaches 0 with a negative slope (finite or infinite).
The behaviour of u at x1 is illustrated in Figure 5.1. The colours correspond to those
used to depict the sets B1, B2 and B3 (see Remark 5.2 below) in Figures 5.2, 5.3.

0

1

u

x1

Case (a)

0

1

u

x1

Case (b)

0

1

u

x1

Case (c)

Figure 5.1: Behaviour of u = u(x) at x1 ∈ R

Remark 5.2. To visualize conditions from Theorem 5.1, we introduce the sets

A1 := {(α, β) ∈ R2 : α > 0, α− β = p− 1},

A2 :=

{
(α, β) ∈ R2 : α > 0, α +

β

p− 1
> −1, α− β > p− 1

}
,
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corresponding to case (i), in which x1 = +∞, and

B1 := {(α, β) ∈ R2 : α > 0, −1 < α− β < p− 1},
B2 := {(α, β) ∈ R2 : α > 0, α− β = −1},
B3 := {(α, β) ∈ R2 : α > 0, α− β < −1},

corresponding to case (ii), in which x1 < +∞. For different values of p, these sets are
depicted in Figures 5.2, 5.3.

α

β

−1 1

−1

1

α
+
β
= −

1

α
− β

=
−1

α
− β

=
1

B2

A2

B3

A1

B1

Figure 5.2: Visualization of the sets A1, A2 and B1, B2, B3 for p = 2

α

β

−1 2

1

−2

α
− β

=
−1

α
− β

=
2

B2

A2

B3

A1

B1

p = 3

α

β

−1 1
2

1

α + 2β = −1

α
− β

=
−1

α
− β

=
1/
2

B2

A2

B3

A1

B1

p = 3
2

Figure 5.3: Geometric interpretation for values p ̸= 2

We observe that both x1 = +∞ and x1 < +∞ occur for singular as well as degenerate
diffusion coefficient d. In other words, the behaviour of d alone cannot be linked to a
specific type of solution. This is due to the fact that the speed of vanishing of g at 0 also
plays an important role. However, the smaller the value of p, the less likely becomes the
appearance of sharp solutions if d has a singularity at 0, i.e., when β < 0.
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Proceeding similarly as above, we derive the following result concerning the asymptotic
behaviour of u = u(x) near 1, i.e., for x→ −∞.

Theorem 5.3. Let γ > 0, δ ∈ R and g(s) ∼ (1−s)γ, d(s) ∼ (1−s)δ as s→ 1−. Assume
that

γ +
δ

p− 1
> −1.

(i) If γ − δ ≥ p− 1 then x0 = −∞. Moreover, for γ − δ = p− 1 we have

u(x) ∼ 1− ex → 1− for x→ −∞
and for γ − δ > p− 1 we have

u(x) ∼ 1− |x|
p

p−1−(γ−δ) → 1− for x→ −∞.

(ii) If γ − δ < p− 1 then x0 > −∞ and for x→ x0+ we have

u(x) ∼ 1− (x− x0)
p

p−1−(γ−δ) .

As for the derivatives, we then have

(a)
du

dx

∣∣∣∣
x=x0+

∼ −(x− x0)
γ−δ+1

p−1−(γ−δ) → 0 for x→ x0+ if γ − δ > −1,

(b)
du

dx

∣∣∣∣
x=x0+

∼ −(x− x0)
0 → k < 0 for x→ x0+ if γ − δ = −1,

(c)
du

dx

∣∣∣∣
x=x0+

∼ −(x− x0)
γ−δ+1

p−1−(γ−δ) → −∞ for x→ x0+ if γ − δ < −1.

Proof. The proof mirrors that of Theorem 5.1, now focusing on the behaviour of the
inverse function x = x(u) as u→ 1−. In particular, since

x(u) ∼ −
∫ u

s∗

(1− s)
δ−γ−1

p ds as u→ 1−,

we derive the same conditions for γ and δ as previously for α and β, distinguishing
between the cases x0 = −∞ and x0 > −∞. The asymptotic properties of x = x(u), and
consequently u = u(x), follow again from elementary calculations.

Remark 5.4. Visualizing the conditions from Theorem 5.3 in the (γ, δ)-plane yields the
same geometric interpretation as in Figures 5.2, 5.3. In [17] we performed the asymptotic
analysis for nondecreasing solutions, obtaining the same conditions for α, β, γ, δ and p
as in Theorems 5.1 and 5.3.

Remark 5.5 (Classification of stationary waves). Combining the results from Theorems
5.1 and 5.3, we arrive at the following classification of solutions, using the terminology
from Remark 4.2. For the reader’s convenience, below we include Figure 5.4 illustrating
the basic characteristics (without taking into account the derivatives at z0 and z1). The
stationary wave u = u(x) is

front-type if α− β ≥ p− 1, γ − δ ≥ p− 1;

sharp of type I if α− β < p− 1, γ − δ ≥ p− 1;

sharp of type II if α− β ≥ p− 1, γ − δ < p− 1;

sharp of type III if α− β < p− 1, γ − δ < p− 1.
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Figure 5.4: Classification of wave profiles from Remark 4.2

5.2 Bistable unbalanced case

Let us now assume that d and g satisfy the hypotheses of Theorem 4.1. In particular, we
consider g ∈ C[0, 1] such that

g(0) = g(s∗) = g(1) = 0 for some s∗ ∈ (0, 1)

g(s) ≤ 0 if s ∈ (0, s∗), g(s) > 0 if s ∈ (s∗, 1).

If (4.2) holds, then there exists a unique c∗ > 0 such that the b.v.p. (4.1) possesses a
unique monotone solution U = U(z), U(0) = s∗ with U ′(z) < 0 in (z0, z1).

In order to perform the asymptotic analysis of

z(U) = −
∫ U

s∗

(d(t))
1

p−1

(yc∗(t))
1
p

dt, U ∈ (0, 1), (5.5)

as U → 0+ and U → 1−, we first need to examine the behaviour of the unique solution
yc∗ = yc∗(t) of the b.v.p. (3.1) as t → 0+ and t → 1−. Because of this, the analysis
becomes more involved and less precise than in the stationary case c = 0, where we
obtained the solution in a closed form. Our method consists in finding suitable upper and
lower solutions of the initial value problems (3.2) and (3.3), which we use to estimate the
values z0 and z1 with respect to ±∞.

5.2.1 Asymptotics near 1

For the purposes of this section, we first formulate a particular version of Lemma 3.5,
which is essential for the upcoming proofs. We recall the notion of defect Pcφ of an
absolutely continuous function φ with respect to the differential equation in (3.1):

Pcφ = φ′(t)− p′
[
c(φ+(t))

1
p − f(t)

]
.

Lemma 5.6. Let yc∗ = yc∗(t) be the solution of (3.1) with c = c∗ and consider a function
φ(t) = κ(1− t)ω, κ > 0, ω > 0.
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(i) If Pc∗φ ≥ 0 a.e. in [ϱ, 1], 0 ≤ ϱ < 1, then φ ≤ yc∗ in [ϱ, 1].

(ii) If Pc∗φ ≤ 0 a.e. in [ϱ, 1], 0 ≤ ϱ < 1, then φ ≥ yc∗ in [ϱ, 1].

Proof. Observe that both yc∗ and φ are absolutely continuous on [0, 1] and recall that
Pc∗yc∗ = 0. Since φ(1) = yc∗(1) = 0, the statements (i) and (ii) follow immediately from
Lemma 3.5.

Assuming power-type behavior of the reaction and diffusion term, we obtain the fol-
lowing results.

Theorem 5.7. Let γ > 0, δ ∈ R and g(t) ∼ (1− t)γ, d(t) ∼ (1− t)δ as t→ 1−. Assume
that

−1 < γ +
δ

p− 1
≤ 1

p− 1
. (5.6)

If
γ − δ + 1

p
< 1

then z0 > −∞. If
γ − δ + 1

p
≥ 1

then z0 = −∞.

Proof. Set f(t) = (d(t))
1

p−1 g(t). Then f(t) ∼ (1−t)γ+ δ
p−1 as t→ 1− and since f ∈ L1(0, 1),

we have the following necessary condition for the parameters γ, δ and p:

γ +
δ

p− 1
> −1,

i.e., the first inequality in (5.6).
Due to our assumptions on d and g, there exists θ > 0 (small enough) such that both

d and g are continuous in (1 − θ, 1). Therefore, f = f(t) is also continuous in (1 − θ, 1)

and hence f(t) ∼ (1− t)γ+
δ

p−1 is equivalent to

f(t) = η(t)(1− t)γ+
1

p−1 , t ∈ (1− θ, 1),

where η = η(t) is a continuous function in (1− θ, 1) with limt→1− η(t) ∈ (0,+∞).
Let −1 < γ + δ

p−1
≤ 1

p−1
. For κ > 0 we set

yκ(t) = κ(1− t)γ+
δ

p−1
+1, t ∈ [1− θ, 1].

Clearly γ + δ
p−1

+ 1 > 0 and hence yκ(1) = 0. Next we calculate the defect Pc∗yκ:

Pc∗yκ = y′κ − p′
[
c∗ (yκ)

1
p − f(t)

]

= − κ

(
γ +

δ

p− 1
+ 1

)
(1− t)γ+

δ
p−1

− p′
[
c∗κ

1
p (1− t)

γ+ δ
p−1+1

p − η(t)(1− t)γ+
δ

p−1

]

= (1− t)γ+
δ

p−1

[
−κ
(
γ +

δ

p− 1
+ 1

)
+ p′η(t)

]
− (1− t)

γ+ δ
p−1+1

p p′c∗κ
1
p ,

(5.7)
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t ∈ (1− θ, 1). Our assumption γ + δ
p−1

≤ 1
p−1

implies

γ +
δ

p− 1
≤
γ + δ

p−1
+ 1

p
,

and therefore the power (1− t)γ+
δ

p−1 dominates the power (1− t)
γ+ δ

p−1+1

p near 1. It then
follows from (5.7) that we may distinguish between two cases:

(i) There exists κ≪ 1 so small that Pc∗yκ ≥ 0 a.e. in [1− θ, 1].

(ii) There exists κ≫ 1 so large that Pc∗yκ ≤ 0 a.e. in [1− θ, 1].

Case (i). Let γ−δ+1
p

< 1. It follows from Lemma 5.6 with ϱ = 1− θ, φ(t) = yκ(t) that

yc∗(t) ≥ yκ(t), in [1− θ, 1]. (5.8)

From (5.5) and (5.8) we conclude that there exists c1 > 0 such that

z0 = −
∫ 1

s∗

(d(t))
1

p−1

(yc∗(t))
1
p

dt ≥ −
∫ 1−θ

s∗

(d(t))
1

p−1

(yc∗(t))
1
p

dt−
∫ 1

1−θ

(d(t))
1

p−1

(yκ(t))
1
p

dt

≥ −
∫ 1−θ

s∗

(d(t))
1

p−1

(yc∗(t))
1
p

dt− c1

∫ 1

1−θ

(1− t)
δ

p−1

(1− t)
γ+ δ

p−1+1

p

dt

= −
∫ 1−θ

s∗

(d(t))
1

p−1

(yc∗(t))
1
p

dt− c1

∫ 1

1−θ

dt

(1− t)
γ−δ+1

p

> −∞.

Case (ii). Let γ−δ+1
p

≥ 1. It follows from Lemma 5.6 with ϱ = 1− θ, φ(t) = yκ(t) that

yc∗(t) ≤ yκ(t) in [1− θ, 1]. (5.9)

From (5.5) and (5.9) we conclude that there exists c2 > 0 such that

z0 = −
∫ 1

s∗

(d(t))
1

p−1

(yc∗(t))
1
p

dt ≤ −
∫ 1−θ

s∗

(d(t))
1

p−1

(yc∗(t))
1
p

dt−
∫ 1

1−θ

(d(t))
1

p−1

(yκ(t))
1
p

dt

≤ −
∫ 1−θ

s∗

(d(t))
1

p−1

(yc∗(t))
1
p

dt− c2

∫ 1

1−θ

(1− t)
δ

p−1

(1− t)
γ+ δ

p−1+1

p

dt

= −
∫ 1−θ

s∗

(d(t))
1

p−1

(yc∗(t))
1
p

dt− c2

∫ 1

1−θ

dt

(1− t)
γ−δ+1

p

= −∞.

Theorem 5.8. Let γ > 0, δ ∈ R and g(t) ∼ (1− t)γ, d(t) ∼ (1− t)δ as t→ 1−. Assume
that

γ +
δ

p− 1
>

1

p− 1
. (5.10)

If γ < 1 then z0 > −∞. If γ ≥ 1 then z0 = −∞.
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Proof. We proceed similarly as in the proof of Theorem 5.7. In particular, thanks to our
assumptions on d and g we have

f(t) = (d(t))
1

p−1 g(t) = η(t)(1− t)γ+
1

p−1 , t ∈ (1− θ, 1),

where η = η(t) is a continuous function in (1− θ, 1) with limt→1− η(t) ∈ (0,+∞).
Let γ + δ

p−1
> 1

p−1
. For κ > 0 we set

yκ(t) = κ(1− t)p(γ+
δ

p−1), t ∈ [1− θ, 1].

Clearly p
(
γ + δ

p−1

)
> 0 and hence yκ(1) = 0. As for the defect Pc∗yκ, we now have

Pc∗yκ = y′κ − p′
[
c∗ (yκ)

1
p − f(t)

]

= − κp

(
γ +

δ

p− 1

)
(1− t)p(γ+

δ
p−1)−1

− p′
[
c∗κ

1
p (1− t)γ+

δ
p−1 − η(t)(1− t)γ+

δ
p−1

]

= − κp

(
γ +

δ

p− 1

)
(1− t)p(γ+

δ
p−1)−1 − p′

[
c∗κ

1
p − η(t)

]
(1− t)γ+

δ
p−1 ,

(5.11)

t ∈ (1 − θ, 1). Our assumption γ(p − 1) + δ > 1 implies γ + δ
p−1

< p
(
γ + δ

p−1

)
− 1 and

now the power (1− t)tγ+ δ
p−1 dominates the power (1− t)p(γ+ δ

p−1)−1 near 1. It follows from
(5.11) that we may distinguish between two cases:

(i) There exists κ≪ 1 so small that Pc∗yκ ≥ 0 a.e. in [1− θ, 1].

(ii) There exists κ≫ 1 so large that Pc∗yκ ≤ 0 a.e. in [1− θ, 1].

Case (i). Let γ < 1. It follows from Lemma 5.6 with ϱ = 1− θ, φ(t) = yκ(t) that

yc∗(t) ≥ yκ(t), in [1− θ, 1],

and we conclude that there exists a constant c3 > 0 such that

z0 = −
∫ 1

s∗

(d(t))
1

p−1

(yc∗(t))
1
p

dt ≥ −
∫ 1−θ

s∗

(d(t))
1

p−1

(yc∗(t))
1
p

dt− c3

∫ 1

1−θ

(1− t)
δ

p−1

(1− t)γ+
δ

p−1

dt

= −
∫ 1−θ

s∗

(d(t))
1

p−1

(yc∗(t))
1
p

dt− c3

∫ 1

1−θ

dt

(1− t)γ
> −∞.

Case (ii). Let γ ≥ 1. From Lemma 5.6 with ϱ = 1− θ, φ(t) = yκ(t) we obtain

yc∗(t) ≤ yκ̄(t) in [1− θ, 1].

Hence there exists c4 > 0 such that

z0 ≤ −
∫ 1−θ

s∗

(d(t))
1

p−1

(yc∗(t))
1
p

dt−
∫ 1

1−θ

(d(t))
1

p−1

(yκ(t))
1
p

dt

≤ −
∫ 1−θ

s∗

(d(t))
1

p−1

(yc∗(t))
1
p

dt− c4

∫ 1

1−θ

dt

(1− t)γ
= −∞.
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Remark 5.9. To visualize conditions from Theorems 5.7 and 5.8, we introduce the sets

A1
1 :=

{
(γ, δ) ∈ R2 : γ > 0,−1 < γ +

δ

p− 1
≤ 1

p− 1
, γ − δ + 1 ≥ p

}
,

B1
1 :=

{
(γ, δ) ∈ R2 : γ > 0,−1 < γ +

δ

p− 1
≤ 1

p− 1
, γ − δ + 1 < p

}
,

A2
1 :=

{
(γ, δ) ∈ R2 : γ ≥ 1, γ +

δ

p− 1
>

1

p− 1

}
,

B2
1 :=

{
(γ, δ) ∈ R2 : 0 < γ < 1, γ +

δ

p− 1
>

1

p− 1

}
.

Then z0 = −∞ if (γ, δ) ∈ A1
1 ∪ A2

1 and z0 > −∞ if (γ, δ) ∈ B1
1 ∪ B2

1. For different values
of p, theses sets are depicted in Figures 5.5 and 5.6.

γ

δ

−1 1

−1

1

γ
+
δ
= −

1

γ
+
δ
=
1

γ
− δ

=
1

B1
1

A1
1

B2
1

A2
1

Figure 5.5: Visualization of the sets A1
1, A2

1 and B1
1, B2

1 for p = 2

γ

δ

−1 1 2

−2

1
γ
− δ

=
2

B1
1

A1
1

B2
1

A2
1

p = 3

γ

δ

−1 1 2
−1

2

1

γ
− δ

=
1
2

B1
1

A1
1

B2
1

A2
1

p = 3
2

Figure 5.6: Geometric interpretation for values p ̸= 2
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It is interesting to observe how the value of p affects the layout of these sets and
consequently types of solutions for given γ, δ. For large values of p, there exists a solu-
tion for almost any combination of γ and δ. Notice that sharp-type solution are always
produced only by non-Lipschitz reaction g. As p increases, the regions corresponding to
finite z0 (depicted in red and yellow) expand further below the γ-axis. In other words, the
parameter p helps to compensate singularity of d and the sharp-type solutions become
more frequent.

On the other hand, small values of p seem to have the opposite effect. The lower
dashed boundary line is getting less steep and, in the limit for p → 1+, aligns with the
γ-axis. Therefore, admissible singularities of d, which might still produce a solution, are
more restricted and typically yield a front-type profile.

Remark 5.10. Let (γ, δ) ∈ B1
1 ∪ B2

1, i.e., z0 > −∞. Then it follows from Remark 2.7
that for δ ≤ 0 we have limz→z0+ U

′(z) = 0. This implies that the wave profile U = U(z)
is a C1-function in a neighbourhood of z0 ∈ R. The estimates in the proofs of Theorems
5.7 and 5.8 allows us to extend this result also for δ > 0 in the following way.

Let (γ, δ) ∈ B1
1. Then

yc∗(t) ≤ κ(1− t)γ+
δ

p−1
+1, t ∈ [1− θ, 1],

and, therefore, there exist a constant c5 > 0 such that

z′(1−) = lim
U→1−

dz

dU
= lim

U→1−
− (d(U))

1
p−1

(yc∗(U))
1
p

≤ −c5 lim
U→1−

(1− U)
δ

p−1

(1− U)
γ+ δ

p−1+1

p

= −c5 lim
U→1−

(1− U)−
γ−δ+1

p = −∞,

i.e., U ′(z0+) = 0 if δ < γ + 1.

Let (γ, δ) ∈ B2
1. Then

yc(t) ≤ κ(1− t)p(γ+
δ

p−1
), t ∈ [1− θ, 1],

and, therefore, there is a constant c6 > 0 such that

z′(1−) = lim
U→1−

dz

dU
= lim

U→1−
− (d(U))

1
p−1

(yc∗(U))
1
p

≤ −c6 lim
U→1−

(1− U)
δ

p−1

(1− U)γ+
δ

p−1

= −c6 lim
U→1−

(1− U)−γ = −∞,

i.e., U ′(z0+) = 0 if γ > 0.
To sum up the above discussion, the wave profile U is a C1-function in a neighbourhood

of z0 ∈ R for any (γ, δ) ∈ B1
1 ∪ B2

1.

5.2.2 Asymptotics near 0

Let us now investigate the asymptotic behaviour of the profile U near 0. In order to
employ the same technique used for asymptotics near 1, where we derived estimates for
z0 using upper and lower solutions in the form of suitable power functions, we first need
to establish an analogue of Lemma 3.5 for functions with prescribed values at 0.
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The main challenge arises from the lack of uniqueness for the forward i.v.p. (3.2) when
c > 0. In particular, according to [43, Theorem §10.XXII],the forward i.v.p. (3.2) has
a maximal solution y∗ and a minimal solution y∗ in [0, 1] and for φ, ψ ∈ AC[0, 1], the
following holds true:

φ′ ≤ h(t, φ(t), c) a.e. in [0, 1] , φ(0) ≤ 0 ⇒ φ ≤ y∗ in [0, 1]

ψ′ ≥ h(t, ψ(t), c) a.e. in [0, 1] , ψ(0) ≥ 0 ⇒ ψ ≥ y∗ in [0, 1]

and y∗ ≤ y ≤ y∗ in [0, 1] for every solution y. Observe that the need to work with minimal
and maximal solutions is not convenient for our purposes, and we are not able to compare
functions φ and ψ relative to each other. However, special form of the equation in (3.2)
guarantees uniqueness in the set of solutions which are positive in (0, s∗).

Lemma 5.11. Let f be as in Theorem 3.9. Then the forward i.v.p. (3.2) with c > 0 has
a unique positive solution in (0, s∗).

Proof. Let y = y(t), t ∈ (0, s∗), be a solution of the forward i.v.p. (3.2) with c > 0, cf.
Lemma 3.1. Then

y′(t) = p′
[
c
(
y+(t)

) 1
p − f(t)

]
≥ 0, t ∈ (0, s∗)

and therefore

y(t) = y(0) +

∫ t

0

y′(σ) dσ ≥ 0, t ∈ (0, s∗).

Assume that there are two positive solutions y1 = y1(t), y2 = y2(t), t ∈ (0, s∗) of (3.2).

Then z1 = (y1)
1
p′ > 0, z2 = (y2)

1
p′ > 0 solve the forward initial value problem

z′i(t) = c− f(t)

(zi(t))
1

p−1

for a.e. t ∈ (0, s∗),

zi(0) = 0

for i = 1, 2. It then follows that

(z1(t)− z2(t))
′ = −f(t)

(
1

(z1(t))
1

p−1

− 1

(z2(t))
1

p−1

)

and

(z1(t)− z2(t))
+ (z1(t)− z2(t))

′ = −f(t)
(

1

(z1(t))
1

p−1

− 1

(z2(t))
1

p−1

)
(z1(t)− z2(t))

+

for a.e. t ∈ (0, s∗). Since f(t) ≤ 0, t ∈ (0, s∗), it follows from here that

1

2

d

dt

[
(z1(t)− z2(t))

+]2 ≤ 0, a.e. in (0, s∗). (5.12)

But z1(0) = z2(0) = 0 and (5.12) imply z1(t) ≤ z2(t). Similarly, we prove that z2(t) ≤
z1(t). Therefore, y1(t) = y2(t) for t ∈ (0, s∗).

Remark 5.12. It follows from Lemma 5.11 that the restriction of the unique positive
solution yc∗ = yc∗(t), t ∈ [0, 1], of the b.v.p. (3.1) to the interval (0, s∗) is also the unique
solution of the forward i.v.p. (3.2) with c = c∗ on (0, s∗).
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Thanks to the uniqueness result, we have the following comparison argument.

Lemma 5.13. Let f ∈ L1(0, 1) be as in Theorem 3.9, 0 < θ < s∗. Assume that the
functions φ, ψ ∈ AC[0, θ] are positive in (0, θ) and satisfy φ(0) = ψ(0) = 0,

φ′(t) ≤ h(t, φ(t), c∗), ψ′(t) ≥ h(t, ψ(t), c∗) for a.e. t ∈ [0, θ],

i.e., Pc∗φ ≤ 0 and Pc∗ψ ≥ 0 a.e. in [0, θ]. Let yc∗ = yc∗(t), t ∈ [0, 1], be the unique
solution of the b.v.p. (3.1). Then

φ(t) ≤ yc∗(t) ≤ ψ(t), t ∈ [0, θ].

Proof. The proof follows from [43, Theorem §10.XXII] combined with Lemma 5.11 and
Remark 5.12.

We can now employ similar reasoning as in Section 5.2.1 to prove the following results.

Theorem 5.14. Let α > 0, β ∈ R and g(t) ∼ (−tα), d(t) ∼ tβ as t→ 0+. Assume that

−1 < α+
β

p− 1
≤ 1

p− 1
.

If
α− β + 1

p
< 1

then z1 < +∞. If
α− β + 1

p
≥ 1

then z1 = +∞.

Proof. The assumptions on d and g imply that for θ such that 0 < θ < min{s∗, s1} the

function f(t) = (d(t))
1

p−1 g(t) is continuous in (0, θ) and f(t) ∼ −tα+
β

p−1 is equivalent to

f(t) = −η(t)tα+
β

p−1 , t ∈ (0, θ),

where η = η(t) is a continuous function in (0, θ), limt→0+ η(t) ∈ (0,+∞). Since f ∈
L1(0, 1), the parameters α, β and p must satisfy

α +
β

p− 1
> −1.

Let −1 < α+ β
p−1

≤ 1
p−1

. For κ > 0 we set

yκ(t) = κtα+
β

p−1
+1, t ∈ [0, θ].

Clearly α + β
p−1

+ 1 > 0, yκ(0) = 0 and yκ > 0 in (0, θ]. Then

Pc∗yκ = κ

(
α +

β

p− 1
+ 1

)
tα+

β
p−1 − p′

[
c∗κ

1
p t

α+
β

p−1+1

p + η(t)tα+
β

p−1

]

= tα+
β

p−1

[
κ

(
α +

β

p− 1
+ 1

)
− p′η(t)

]
− t

α+
β

p−1+1

p p′c∗κ
1
p

(5.13)
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for a.e. t ∈ [0, θ]. The assumption α + β
p−1

≤ 1
p−1

implies

α +
β

p− 1
≤
α + β

p−1
+ 1

p

and therefore the power tα+
β

p−1 dominates the power t
α+

β
p−1+1

p near 0. It then follows from
(5.13) that we may distinguish between two cases:

(i) There exists κ≪ 1 so small that Pc∗yκ ≤ 0 for a.e. t ∈ [0, θ].

(ii) There exists κ≫ 1 so large that Pc∗yκ ≥ 0 for a.e. t ∈ [0, θ].

From Lemma 5.13 we then conclude

yκ(t) ≤ yc∗(t) ≤ yκ(t), t ∈ [0, θ],

where yc∗ is the solution of the b.v.p. (3.1).

Case (i). Let α−β+1
p

< 1. Then there exists c1 > 0 such that

z1 =

∫ s∗

0

(d(t))
1

p−1

(yc∗(t))
1
p

dt ≤
∫ θ

0

(d(t))
1

p−1

(yκ(t))
1
p

dt+

∫ s∗

θ

(d(t))
1

p−1

(yc∗(t))
1
p

dt

≤ c1

∫ θ

0

t
β

p−1

t
α+

β
p−1+1

p

dt+

∫ s∗

θ

(d(t))
1

p−1

(yc∗(t))
1
p

dt

= c1

∫ θ

0

dt

t
α−β+1

p

+

∫ s∗

θ

(d(t))
1

p−1

(yc∗(t))
1
p

dt < +∞.

Case (ii). Let α−β+1
p

≥ 1. Then there exists c2 > 0 such that

z1 =

∫ s∗

0

(d(t))
1

p−1

(yc∗(t))
1
p

dt ≥
∫ θ

0

(d(t))
1

p−1

(yκ̄(t))
1
p

dt+

∫ s∗

θ

(d(t))
1

p−1

(yc∗(t))
1
p

dt

≥ c2

∫ θ

0

t
β

p−1

t
α+

β
p−1+1

p

dt+

∫ s∗

θ

(d(t))
1

p−1

(yc∗(t))
1
p

dt

= c2

∫ θ

0

dt

t
α−β+1

p

∫ s∗

θ

(d(t))
1

p−1

(yc∗(t))
1
p

dt = +∞.

Theorem 5.15. Let α > 0, β ∈ R and g(t) ∼ (−tα), d(t) ∼ tβ as t→ 0+. Assume that

α +
β

p− 1
>

1

p− 1
.

If β > 2− p then z1 < +∞. If β ≤ 2− p then z1 = +∞.
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Proof. As in the proof of Theorem 5.14, we conclude that there exists 0 < θ < min{s∗, s1}
such that

f(t) = (d(t))
1

p−1 g(t) = η(t)tα+
β

p−1 , t ∈ (0, θ),

where η = η(t) is a continuous function in (0, θ), limt→0+ η(t) ∈ (0,+∞).

Let α + β
p−1

> 1
p−1

. For κ > 0 we set

yκ(t) = κtp
′
, t ∈ [0, θ].

Clearly yκ(0) = 0 and yκ(t) > 0 for t ∈ (0, θ]. Then

Pc∗yκ = κp′tp
′−1 − p′

[
c∗κ

1
p t

p′
p + η(t)tα+

β
p−1

]

=
(
κp′ − p′c∗κ

1
p

)
t

1
p−1 − p′η(t)tα+

β
p−1 ,

(5.14)

for a.e. t ∈ [0, θ]. The assumption α + β
p−1

> 1
p−1

implies that the power t
1

p−1 dominates

tα+
β

p−1 near 0. It follows from (5.11) that we may distinguish between two cases:

(i) There exists κ≪ 1 so small that Pc∗yκ ≤ 0 for a.e. t ∈ [0, θ].

(ii) There exists κ≫ 1 so large that Pc∗yκ ≥ 0 for a.e. t ∈ [0, θ].

From Lemma 5.13 we then conclude

yκ(t) ≤ yc∗(t) ≤ yκ(t), t ∈ [0, θ],

where yc∗ is the solution of the b.v.p. (3.1).

Case (i). Let β > p− 2. Then there exists c3 > 0 such that

z1 ≤
∫ θ

0

(d(t))
1

p−1

(yκ(t))
1
p

dt+

∫ s∗

θ

(d(t))
1

p−1

(yc∗(t))
1
p

dt ≤ c3

∫ θ

0

t
β

p−1

t
p′
p

dt+

∫ s∗

θ

(d(t))
1

p−1

(yc∗(t))
1
p

dt

= c3

∫ s∗

0

dt

t
1−β
p−1

+

∫ s∗

θ

(d(t))
1

p−1

(yc∗(t))
1
p

dt < +∞.

Case (ii). Let β ≤ p− 2. Then there exists c4 > 0 such that

z1 ≥
∫ θ

0

(d(t))
1

p−1

(yκ(t))
1
p

dt+

∫ s∗

θ

(d(t))
1

p−1

(yc∗(t))
1
p

dt

≥ c4

∫ θ

0

dt

t
1−β
p−1

+

∫ s∗

θ

(d(t))
1

p−1

(yc∗(t))
1
p

dt = +∞.
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Remark 5.16. To visualize conditions from Theorems 5.14 and 5.15, we introduce the
sets

A1
0 :=

{
(α, β) ∈ R2 : α > 0,−1 < α+

β

p− 1
≤ 1

p− 1
, α− β + 1 ≥ p

}
,

B1
0 :=

{
(α, β) ∈ R2 : α > 0,−1 < α+

β

p− 1
≤ 1

p− 1
, α− β + 1 < p

}
,

A2
0 :=

{
(α, β) ∈ R2 : α > 0, α+

β

p− 1
>

1

p− 1
, β ≤ 2− p

}
,

B2
0 :=

{
(α, β) ∈ R2 : α > 0, α+

β

p− 1
>

1

p− 1
, β > p− 2

}
.

Then z1 = +∞ if (α, β) ∈ A1
0 ∪A2

0 and z1 < +∞ if (α, β) ∈ B1
0 ∪ B2

0. For different values
of p, theses sets are depicted in Figures 5.7 and 5.8.

α

β

−1 1

−1

1

α
+
β
= −

1

α
+
β
=
1

α
− β

=
1

B1
0

A1
0

B2
0

A2
0

Figure 5.7: Visualization of the sets A1
0, A2

0 and B1
0, B2

0 for p = 2

α

β

−1 1 2

−2

1 α
− β

=
2

B1
0

A1
0

B2
0

A2
0

p = 3

β = −1
α

β

−1 1 2
−1

2

1

1
2

α
− β

=
1
2

B1
0

A1
0

B2
0

A2
0

p = 3
2

β = 1
2

Figure 5.8: Geometric interpretation for values p ̸= 2
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Let us briefly discuss some interesting observations. While the sets A1
0 and B1

0 are
complete analogues of A1

1 and B1
1, the sets A2

0 and B2
0 differ significantly, with B2

0 now
being the most prominent, see Figures 5.7 and 5.8 below. In contrast to the asymptotics
near 1, sharp-type solutions reaching 0 in a finite z1 are very common and not restricted
to non-Lipschitz reactions. For p = 2, degenerate diffusion (β > 0) always leads to sharp-
type profiles. Strictly positive diffusion (β = 0) yields front-type solutions provided g is
Lipschitz.

As p increases, the set B2
0 expands below the α-axis, meaning that singular diffusion

with 0 < β < 2 − p gives rise to sharp-type solutions independently of α. Conversely,
smaller values of p shift the blue and green regions above the α-axis. Consequently,
degenerate non-Lipschitz diffusion results more frequently in front-type solutions rather
than sharp-type. However, the horizontal line dividing A2

0 and B2
0 cannot ascend beyond

β = 1. This implies that degenerate Lipschitz diffusion produces sharp-type profiles
independently of both p and α.

Remark 5.17. Let (α, β) ∈ B2
0. The estimates on z1 from Theorem 5.15 provide addi-

tional information about the smoothness of the profile as it reaches 0. In particular, we
have

yc∗(t) ≥ κtp
′
, t ∈ [0, θ]

and, therefore, there exist a constant c5 > 0 such that

0 ≥ z′(0+) = lim
U→0+

dz

dU
= lim

U→0+
− (d(U))

1
p−1

(yc∗(U))
1
p

≥ −c5 lim
U→0+

U
β

p−1

U
p′
p

= −c5 lim
U→0+

U
β−1
p−1 .

Hence we are able to distinguish the following cases:

(i) If β > 1 then z′(0+) = 0 and hence U ′(z1−) = −∞.

(ii) If β = 1 then 0 ≥ z′(0+) ≥ −c5 and hence 0 > U ′(z1−) ≥ −∞.

In either case, the wave profile U is not smooth at z1 ∈ R.
As we can see, the above estimate for z′(0+) cannot provide any information about

the existence of profiles with U ′(z1−) = U ′(z1+) = 0. In particular, a smooth profile
might appear if (α, β) ∈ B2

0 and β < 1, or if (α, β) ∈ B1
0.

For p = 2, regions corresponding to the cases (i) and (ii) are highlighted in Figure 5.9.
The light yellows part of B2

0 indicates where no further classification based on the value
of U ′(z1−) is available.

Finally, let us recall the discussion from Remark 5.16 to make an interesting observa-
tion. The closer p is to 1, the narrower the indeterminate region becomes, as the upper
boundary line of A2

0 approaches the threshold β = 1. Therefore, the likelihood of ob-
taining a smooth profile is diminished significantly when considering a Lipschitz reaction
(α ≥ 1). This is another major difference compared to the behaviour near 1. Whenever
the profile reaches the equilibrium 1, it does so with a zero derivative.

Remark 5.18 (Classification of profiles). Let us consider the following particular case of
the equation (2.1):

∂u

∂t
=

∂

∂x

(
uβ(1− u)δ

∣∣∣∣
∂u

∂x

∣∣∣∣
p−2

∂u

∂x

)
+ uα(1− u)γ(u− s∗), 0 < s∗ < 1, p > 1.
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α

β

−1 1

−1

1

B1
0

A2
0

B2
0

A2
0

U ′(z1−) = −∞

0 > U ′(z1−) ≥ −∞

Figure 5.9: Visualization of the sets A1
0, A2

0 and B1
0, B2

0 for p = 2

Here d(s) = sβ(1 − s)δ and g(s) = sα(1 − s)γ(s − s∗), s ∈ [0, 1], are the diffusion and
reaction terms, respectively, with α > 0, γ > 0 and β, δ ∈ R. If

∫ 1

0

sα(1− s)γ(s− s∗) ds > 0,

then also (4.2) holds true and Theorem 4.1 guarantees the existence of monotone nonin-
creasing profile with c∗ > 0.

Combining the results from Theorems 5.7, 5.8 and 5.14, 5.15 together with the notation
from Remarks 5.9 and 5.16, we arrive at the following classification of travelling wave
profiles u(x, t) = U(x− ct) = U(z). The unique profile U = U(z) is

front-type if (α, β) ∈ A1
0 ∪ A2

0 and (γ, δ) ∈ A1
1 ∪ A2

1;

sharp of type I if (α, β) ∈ B1
0 ∪ B2

0 and (γ, δ) ∈ A1
1 ∪ A2

1;

sharp of type II if (α, β) ∈ A1
0 ∪ A2

0 and (γ, δ) ∈ B1
1 ∪ B2

1;

sharp of type III if (α, β) ∈ B1
0 ∪ B2

0 and (γ, δ) ∈ B1
1 ∪ B2

1.

In this example, the diffusion coefficient is continuous in (0, 1), i.e., MU = ∅. It follows
from Remarks 5.10 and 5.17 that profiles which are sharp of type II are C1-functions on
R, and sharp of type III profiles are generally of class C1(R \ {z1}).

5.3 Monostable case

Finally, we address the case of monostable reaction term g ∈ C[0, 1], characterized by the
property g(0) = g(1) = 0, g(s) > 0 for s ∈ (0, 1). Let us recall that under the assumptions
of Theorem 4.6, there exists a half-line of admissible wave speeds c ∈ [c∗,+∞), c∗ > 0.
Unlike in the previous case, we now need to take into account also the non-existence result
from Theorem 4.7, which concerns the behaviour of d(s) and g(s) as s → 0+. While the
asymptotic analysis near the equilibrium 1 is not affected by this and hence similar to
that in the bistable unbalanced case, the analysis near 0 becomes less detailed and an
additional assumption on c must be imposed in order to refine some of the estimates.
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5.3.1 Asymptotics near 1

Let us start by examining the behaviour of solutions U = U(z) as z → −∞. The means
of the proofs are basically the same as in the bistable case, except for the fact that the
assumption (4.5) yields a different necessary condition for the involved parameters.

In what follows, we assume that c ∈ [c∗,+∞) is arbitrary but fixed.

Theorem 5.19. Let γ > 0, δ ∈ R and g(t) ∼ (1− t)γ, d(t) ∼ (1− t)δ as t→ 1−. Assume
that

0 ≤ γ +
δ

p− 1
≤ 1

p− 1
. (5.15)

If
γ − δ + 1

p
< 1

then z0 > −∞. If
γ − δ + 1

p
≥ 1

then z0 = −∞.

Proof. Set f(t) = (d(t))
1

p−1 g(t). Then f(t) ∼ (1− t)γ+
δ

p−1 as t→ 1− and we observe that
due to the assumption (4.5) from Theorem 4.6, we have the following necessary condition
for the parameters γ, δ and p:

γ +
δ

p− 1
≥ 0,

i.e., the first inequality in (5.15).

Our assumptions on d and g yield the existence of θ > 0 such that f(t) = (d(t))
1

p−1 g(t)

is continuous in (1− θ, 1). Hence f(t) ∼ (1− t)γ+
δ

p−1 is equivalent to

f(t) = η(t)(1− t)γ+
δ

p−1 , t ∈ (1− θ, 1),

where η = η(t) is a continuous function in (1− θ, 1) with limt→1− η(t) ∈ (0,+∞).
The rest of the proof is then carried out in the same way as in the proof of Theorem 5.7,

using upper and lower solutions of the form

yκ(t) = κ(1− t)γ+
δ

p−1
+1, κ > 0, t ∈ [1− θ, 1].

Theorem 5.20. Let γ > 0, δ ∈ R and g(t) ∼ (1− t)γ, d(t) ∼ (1− t)δ as t→ 1−. Assume
that

γ +
δ

p− 1
>

1

p− 1
.

If γ < 1 then z0 > −∞. If γ ≥ 1 then z0 = −∞.

Proof. The proof follows the same reasoning as in the proof of Theorem 5.8, employing
upper and lower solutions of the form

yκ(t) = κ(1− t)p(γ+
δ

p−1), κ > 0, t ∈ [1− θ, 1].
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Remark 5.21. To visualize conditions from Theorem 5.19 and 5.20, we introduce the
sets

A1
1 :=

{
(γ, δ) ∈ R2 : γ > 0, 0 ≤ γ +

δ

p− 1
≤ 1

p− 1
, γ − δ + 1 ≥ p

}
,

B1
1 :=

{
(γ, δ) ∈ R2 : γ > 0, 0 ≤ γ +

δ

p− 1
≤ 1

p− 1
, γ − δ + 1 < p

}
,

A2
1 :=

{
(γ, δ) ∈ R2 : γ ≥ 1, γ +

δ

p− 1
>

1

p− 1

}
,

B2
1 :=

{
(γ, δ) ∈ R2 : 0 < γ < 1, γ +

δ

p− 1
>

1

p− 1

}
.

Then z0 = −∞ if (γ, δ) ∈ A1
1 ∪ A2

1 and z0 > −∞ if (γ, δ) ∈ B1
1 ∪ B2

1.
Notice that the sets A2

1 and B2
1 are the same as in the bistable case, while A1

1 and
B1
1 differ only in the lower bound for γ + δ

p−1
. Therefore, in the geometric interpretation

(see Figures 5.10 and 5.11), the lower boundary line of the corresponding regions always
intersects the origin.

γ

δ

1

1

−1

γ
+
δ
=
0

γ
+
δ
=
1

γ
− δ

=
1

B1
1

A1
1

B2
1

A2
1

Figure 5.10: Visualization of the sets A1
1, A2

1 and B1
1, B2

1 for p = 2

As for the derivative U ′(z0+), the same reasoning as in Remark 5.10 applies also in
the monostable case. In particular, for any (γ, δ) ∈ B1

1 ∪B2
1, the wave profile U = U(z) is

a C1-function in the neighbourhood of z0 ∈ R.

5.3.2 Asymptotics near 0

In this section, we adopt a different approach from the previous cases. We proceed directly
with the reasoning and summarize it in the main theorem at the end.

Let us assume that g(t) ∼ tα and d(t) ∼ tβ as t → 0+ for some α > 0 and β ∈ R. It
follows from Theorem 4.7 that

α +
β

p− 1
≥ 1

p− 1
(5.16)
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=
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Figure 5.11: Geometric interpretation for values p ̸= 2

must hold, otherwise there is no solution of (4.1).
The proof of Theorem 3.13 suggests a method to determine when z1 = +∞. Indeed,

there we showed that
0 < yc(t) ≤ ktp

′
, t ∈ (0, 1),

with k = ( c
p
)p

′
. Together with the expression for z1 from (5.2), the above inequality yields

that there exists a constant c1 > 0 such that

z1 =

∫ 1
2

0

(d(t))
1

p−1

(yc(t))
1
p

dt ≥
∫ 1

2

0

(d(t))
1

p−1

k
1
p t

p′
p

dt ≥ c1

∫ 1
2

0

t
β

p−1

t
1

p−1

dt = c1

∫ 1
2

0

t
β−1
p−1 dt.

From the last integral we conclude that z1 = +∞ if and only if β ≤ 2 − p. The values
of α and β for which this situation occurs are depicted in Figure 5.12 for p = 2. The
boundary lines of this region are generally given by the expressions β = 1− (p− 1)α and
β = 2− p, suggesting how the layout changes for different values of p.

However, this estimate is far from being optimal. Indeed, we can refine the asymptotics
of yc near 0 in the case of power-type behaviour of g and d near 0 and prove z1 = +∞
under more general assumptions on α and β.

Notice that (5.16) is equivalent to pα + p′β ≥ p′ and set ω := pα + p′β, yκ(t) := κtω,
t ∈ (0, 1), with κ > 0. Let

f1 := sup
t∈(0,1)

(d(t))
1

p−1 g(t)

tα+
β

p−1

. (5.17)

It follows from (5.16) and (4.5) that µ ≤ f1 < +∞. In particular, (5.17) yields

f(t) ≤ f1t
α+ β

p−1 = f1t
ω
p , t ∈ [0, 1].

Therefore, we have

Pcyκ = y′κ(t)− p′
[
c (yκ(t))

1
p − f(t)

]
≤ ωκtω−1 − p′cκ

1
p t

ω
p + p′f1t

ω
p

= t
ω
p

(
ωκtε − p′cκ

1
p + p′f1

)
, t ∈ [0, 1],
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α

β

1

1

α
+
β
=
1

p = 2

z1 = +∞

Figure 5.12: Visualization of conditions leading to z1 infinite

with ε = ω − 1− ω
p
≥ 0. Since t ∈ [0, 1], the following inequality

ωκ− p′cκ
1
p + p′f1 ≤ 0 (5.18)

would imply that Pcyκ ≤ 0 a.e. in [0, 1]. Notice that (5.18) is equivalent to

c ≥ ωκ+ p′f1

p′κ
1
p

=: H(κ), κ > 0. (5.19)

Obviously, H(κ) > 0, κ ∈ (0,+∞) and limκ→0+H(κ) = limκ→+∞H(κ) = +∞. The
global minimum of H over (0,+∞) is attained at

κmin =

(p′)2

p
f1

ω

and, due to ω ≥ p′,

H(κmin) = (p′)1−
2
p p

1
p f

1
p′
1 ω

1
p ≥ (p′)

1
p′ p

1
p f

1
p′
1 . (5.20)

It follows from (5.18)–(5.20) that for κ = κmin and all c ≥ (p′)
1
p′ p

1
p f

1
p′
1 we have that

Pcyκ ≤ 0 = Pcyc a.e. in [0, 1] and since yκ(1) > 0, by Lemma 3.5, we get yκ(t) ≥ yc(t) for
t ∈ [0, 1]. In particular, we deduce

z1 =

∫ 1
2

0

(d(t))
1

p−1

(yc(t))
1
p

dt ≥
∫ 1

2

0

(d(t))
1

p−1

κ
1
p t

ω
p

dt ≥ c2

∫ 1
2

0

t
β

p−1

t
ω
p

dt = +∞

with some c2 > 0 if and only if
β

p− 1
− ω

p
≤ −1,

which is equivalent to α ≥ 1.
On the other hand, let c ∈ [c∗,+∞) be fixed. Since d and g are strictly positive in

(0, 1) and f(t) ∼ tα+
β

p−1 as t→ 0+, there exists 0 < f2 < +∞ such that

f(t) ≥ f2t
α+ β

p−1 = f2t
ω
p , t ∈

[
0,

1

2

]
.
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We set yκ(t) = κtω, t ∈ [0, 1
2
], where

κ := min

{
2ωyc

(
1

2

)
,

(
f2
c

)p}
.

Then yκ(
1
2
) ≤ yc(

1
2
) and

Pcyκ = y′κ(t)− p′
[
c (yκ(t))

1
p − f(t)

]
≥ ωκtω−1 − p′cκ

1
p t

ω
p + p′f2t

ω
p

≥ p′t
ω
p

(
f2 − cκ

1
p

)
≥ 0 = Pcyc in

[
0,

1

2

]
.

By Lemma 3.5 we conclude yκ(t) ≤ yc(t), t ∈ [0, 1
2
]. In particular, we conclude

z1 =

∫ 1
2

0

(d(t))
1

p−1

(yc(t))
1
p

dt ≤
∫ 1

2

0

(d(t))
1

p−1

κ
1
p t

ω
p

dt ≤ c3

∫ 1
2

0

t
β

p−1

t
ω
p

dt < +∞

with some c3 > 0 if and only if
β

p− 1
− ω

p
> −1,

which is equivalent to α < 1.

We can summarize the asymptotics of yc near 0 as follows.

Theorem 5.22. Let α > 0, β ∈ R and g(t) ∼ (−tα), d(t) ∼ tβ as t → 0+. Let f1 be as
in (5.17) and assume that

α +
β

β
≥ 1

p− 1
.

(i) Let c ≥ c∗. If β ≤ 2− p then z1 = +∞. If 0 < α < 1 then z1 < +∞.

(ii) Let c ≥ (p′)1/p
′
p1/p f

1/p′

1 . If α ≥ 1 then z1 = +∞.

Remark 5.23. To visualize conditions from Theorem 5.22, we introduce the following
sets:

A0 :=

{
(α, β) ∈ R2 : α ≥ 1, α+

β

p− 1
≥ 1

p− 1

}
,

B0 :=

{
(α, β) ∈ R2 : 0 < α < 1, α+

β

p− 1
≥ 1

p− 1

}
,

see Figures 5.13 and 5.14 for geometric interpretation.
If (α, β) ∈ B0 and c ≥ c∗, then z1 < +∞. On the other hand, if (α, β) ∈ A0 and

c ≥ (p′)1/p
′
p1/p f

1/p′

1 , then z1 = +∞. Without the restriction c ≥ (p′)1/p
′
p1/p f

1/p′

1 (notice
that f1 ≥ µ), we only know that z1 = +∞ if (α, β) ∈ A0 and β ≤ 2− p. This horizontal
line is highlighted in Figure 5.14 and it coincides with the α-axis in Figure 5.13. It is

important to note that for c ∈ [c∗, (p′)1/p
′
p1/p f

1/p′

1 ), the type as well as the smoothness
(see Remark 5.24 below) of the wave profile U might be very different for (α, β) ∈ A0 and
β > 2− p.

For example, in view of the results from [33, Theorem 2] and [22, Theorem 6.3], one
should expect that for 1 < p ≤ 2, α > 0, β = 1 and c = c∗, the profile U reaches zero
in z1 < +∞ and with U ′(z1−) < 0. Since U ′(z1+) = 0, U is not a C1-function in the
neighbourhood of z1 ∈ R.
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Figure 5.13: Visualization of the sets A0 and B0 for p = 2
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Figure 5.14: Visualization of the sets A0 and B0 for p ̸= 2

Remark 5.24. (α, β) ∈ B0, i.e., z1 < +∞. Then it follows from Remark 2.7 that for
β ≤ 0 we have limz→z1− U

′(z) = 0, i.e., the travelling wave profile U is a C1-function in a
neighbourhood of z1 ∈ R. Notice, however, that (α, β) ∈ B0 with β ≤ 0 occurs only for
1 < p < 2.

Fortunately, we are able to improve this result provided c is “large enough”. Let

c ≥ (p′)1/p
′
p1/p f

1/p′

1 and yκ(t) = κtω be as above. Then yc(t) ≤ κt
ω
p , t ∈ [0, 1], and there

exists c4 such that

z′(0+) = lim
U→0+

dz

dU
= lim

U→0+
− (d(U))

1
p−1

(yc(U))
1
p

≤ − lim
U→0+

(d(U))
1

p−1

κ
1
pU

ω
p

≤ −c4 lim
U→0+

U
β

p−1

U
ω
p

= −c4 lim
U→0+

U−α = −∞,

if α > 0. Hence U ′(z1−) = 0, i.e., the travelling wave profile U is a C1-function in a

neighbourhood of z1 ∈ R for any (α, β) ∈ B0 and c ≥ (p′)1/p
′
p1/p f

1/p′

1 .
As we mentioned in the previous remark, the results from [33] and [22] suggest that a
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different outcome can be expected at least when 1 < p ≤ 2, β = 1 and c = c∗.

Remark 5.25 (Classification of profiles). Let us consider the following particular case of
the equation (2.1):

∂u

∂t
=

∂

∂x

(
uβ(1− u)δ

∣∣∣∣
∂u

∂x

∣∣∣∣
p−2

∂u

∂x

)
+ uα(1− u)γ, p > 1.

Here d(s) = sβ(1 − s)δ and g(s) = sα(1 − s)γ, s ∈ [0, 1], are the diffusion and reaction
terms, respectively, with α > 0, γ > 0 and β, δ ∈ R.

Combining the results from Theorems 5.19, 5.20 and 5.22 together with the notation
from Remarks 5.21 and 5.23, we arrive at the following classification of travelling wave
profiles u(x, t) = U(x− ct) = U(z).

Let c ≥ c∗. The profile U = U(z) is

front-type if (α, β) ∈ A0, β ≤ 2− p and (γ, δ) ∈ A1
1 ∪ A2

1;

sharp of type I if (α, β) ∈ B0 and (γ, δ) ∈ A1
1 ∪ A2

1;

sharp of type II if (α, β) ∈ A0, β ≤ 2− p and (γ, δ) ∈ B1
1 ∪ B2

1;

sharp of type III if (α, β) ∈ B0 and (γ, δ) ∈ B1
1 ∪ B2

1.

If c ≥ (p′)1/p
′
p1/p f

1/p′

1 , we obtain front-type and type II sharp solutions for all (α, β) ∈ A0,
i.e., also for β > 2− p.

Since d ∈ C(0, 1), we have U ∈ C1(z0, z1) and it follows from Remark 5.21 that
front-type solutions as well as sharp of type II solutions are differentiable for all z ∈ R.
Moreover, if c ≥ (p′)1/p

′
p1/p f

1/p′

1 , we conclude from Remark 5.24 that all types of profiles
are C1-functions on R. Therefore, in this case, Figure 5.4 depicts accurately the derivatives
of U at z0 and z1.
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Chapter 6

The influence of convection in the
case of combustion nonlinearity

In this chapter, we present our most recent results concerning the appearance of travelling
waves in a scalar reaction-diffusion-convection equation with p-Laplacian type diffusion
and combustion-type reaction.

The notation in this section mostly coincides with that used in the previous text except
for some minor changes. The diffusion coefficient is denoted D instead of d to empha-
size the fact that different assumptions are considered for the problem with convection.
Finally, for convenience reasons, the analogue of interval (z0, z1) is now denoted as (z1, z2).

6.1 Reaction-diffusion-convection equation

Let us consider the reaction-diffusion-convection equation

∂u

∂t
=

∂

∂x

[
D(u)

∣∣∣∣
∂u

∂x

∣∣∣∣
p−2

∂u

∂x

]
+
∂H(u)

∂x
+ g(u). (6.1)

Here p > 1, D is a density-dependent diffusion coefficient with D > 0 in (0, 1), H rep-
resents a nonlinear convective flux function, and g is a combustion-type reaction term,
i.e.,

g(s) = 0 in [0, s∗], g(s) > 0 in (s∗, 1), g(1) = 0 (6.2)

for some s∗ ∈ (0, 1). Our assumptions on the regularity of these functions will be specified
in the next section.

We are concerned with the existence and properties of travelling wave solutions u(x, t) =
U(x− ct), c ∈ R, which connect the stationary states 0 and 1. Clearly, if H is constant,
equation (6.1) reduces to the previously discussed reaction-diffusion equation (2.1). Our
aim is to investigate how the additional transport termH affects the existence of travelling
waves.

Let us start with a brief summary of results in the case p = 2, which can be found in
[37]. There, the authors assume H ∈ C1[0, 1], strictly positive D ∈ C1[0, 1] and different
types of reaction g ∈ C[0, 1]. For further details and discussions, we refer to the papers
[31, 36, 32], on which the survey [37] is based.

For monostable equations, i.e., when g is a type A function, the presence of convective
processes does not affect the existence of a continuum of admissible wave speeds. Instead,
it simply causes a “shift” of the threshold value c∗, which, consequently, need not be
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positive. In the bistable case, the situation might change considerably compared to the
case without convection. In particular, if g is a type C function, it was shown in [36]
that it is possible to have connections from 0 to s∗ and from s∗ to 1 with the same wave
speed, which causes the disappearance of the travelling wave connecting 0 and 1. This
phenomenon depends on the behaviour of the product D(s)g(s) at s∗. In particular,
it occurs when the derivative of this product vanishes at s∗. Otherwise, there exists a
unique wave speed c∗ (as in the absence of convection), but this value might be again
shifted due to the convective term. Finally, if g is a type B function, i.e., it satisfies (6.2),
the travelling wave solution might also disappear, but for a different reason than in the
case of type C functions. Now, this phenomenon is linked to the threshold value s∗ and
the convective term H. In particular, if H(s∗) is “large” with respect to the terms D and
g (cf. Section 6.3), no travelling waves exist.

Let us also mention the case of degenerate diffusion D ∈ C1[0, 1] in monostable equa-
tions. In [34], the existence of travelling waves is proved assuming D(0) = 0 and D(1) ≥ 0,
instead of D > 0 in [0, 1]. Furthermore, the authors also investigate “sharpness” of the
wave profiles (cf. Remark 4.2), providing detailed classification for cases D′(0) ̸= 0 and
D′(0) = D′(1) = 0. In the absence of convection, the profiles are either of front-type (when
c > c∗) or sharp of type I (when c = c∗), regardless of whether D(1) > 0 or D(1) = 0.
In other words, the possible degeneracy at 1 does not cause any other sharpness phe-
nomenon. However, the same is not true for reaction-diffusion-convection equations. Now
the double degeneracy can determine the appearance of solutions which are sharp of type
II or III.

In this chapter, we study how the results for p = 2 and combustion nonlinearity (6.2)
extend to equations with p-Laplacian type diffusion. Furthermore, we impose weaker
assumptions on D and g than those in [32], although, for technical purposes, less general
than the assumptions made in Chapter 2, cf. Remark 6.6.

6.2 Preliminaries

We consider the equation (6.1) with p > 1 and assume that the functions D, H and g
have the following properties: D ∈ C1(0, 1), D > 0 in (0, 1), H ∈ C1[0, 1], g ∈ C[0, 1]
is Lipschitz continuous in [s∗, 1) and satisfies (6.2). Notice that the diffusion coefficient
D might degenerate or have a singularity at one or both endpoints 0, 1. Without loss of
generality, we further assume that H(0) = 0 and write

H(U) :=

∫ U

0

h(s) ds,

where h(U) = d
dU
H(U), U ∈ [0, 1], is the convective velocity.

Formally substituting u(x, t) = U(z) with z = x − ct into (6.1) yields the ordinary
differential equation

(
D(U(z))|U ′(z)|p−2U ′(z)

)′
+ (c+ h(U(z)))U ′(z) + g(U(z)) = 0, z ∈ R,

where primes denote differentiation with respect to the wave coordinate z. This equation
is autonomous, hence its solutions are invariant under translations and we can normalize
them by U(0) = s∗. As in the pure reaction-diffusion case, we look for travelling wave
profiles U which satisfy boundary conditions U(−∞) = 1, U(+∞) = 0, i.e., we consider
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the following boundary value problem on the real line

{
(D(U)|U ′|p−2U ′)

′
+ (c+ h(U))U ′ + g(U) = 0,

lim
z→−∞

U(z) = 1, lim
z→+∞

U(z) = 0
(6.3)

Equations involving the p-Laplacian need not have classical solutions, as the second
derivative may not exist in general. They are also known for their finite property, meaning
that the solution of (6.1) might reach 0 in finite time. Apart from this fact, possible
degenerations and singularities of the diffusivity D also require us to adopt a more general
concept of solution U to (6.3).

Definition 6.1. Let IU = {z ∈ R : 0 < U(z) < 1}. A continuous function U : R → [0, 1]
is a solution of (6.3) if

(a) U ∈ C1(IU) and the equation in (6.3) holds at every point of IU ;

(b) the function z 7→ D(U(z))|U ′(z)|p−2U ′(z) is continuous on R and

D(U(z))|U ′(z)|p−2U ′(z) → 0 as U(z) → 0 and U(z) → 1;

(c) (boundary conditions) U(z) → 1 as z → −∞ and U(z) → 0 as z → +∞.

Remark 6.2. It is not difficult to see that the above definition is a simpler form of
Definition 2.2 in Chapter 2 with MU = ∅. In addition, it explicitly contains the boundary
conditions from (6.3). Below we will show that IU is in fact an open interval and that
U ′(z) < 0 for all z ∈ IU . If p = 2, D ∈ C1[0, 1] and g is a Lipschitz function in [0, 1], then
IU = R and U ∈ C2(R) is a classical solution, cf. [32].

Similarly as in the absence of convection, we would like to establish equivalence of the
b.v.p. (6.3) with a first-order one on a bounded interval. To do so, we first derive the
following analogue of Proposition 2.10.

Proposition 6.3. Let U be a solution of (6.3). There exist −∞ ≤ z1 < z2 ≤ +∞ such
that U ≡ 1 in (−∞, z1], U ≡ 0 in [z2,+∞) and U ′(z) < 0 for any z ∈ (z1, z2).

Before proceeding to the proof, we note that it relies on two auxiliary lemmas, which
are presented afterward for the sake of clarity in exposition.

Proof. First we show that the derivative of a solution to (6.3) does not vanish in the set
IU . Indeed, let z0 ∈ IU be such that 0 < U(z0) ≤ θ. If U ′(z0) = 0 then it follows from
Lemma 6.4 that the boundary conditions in (6.3) are not satisfied, a contradiction. Now
consider z0 ∈ IU , s∗ < U(z0) < 1 with U ′(z0) = 0. Then

(
D(U(z)|U ′(z)|p−2U ′(z))

)′∣∣∣
z=z0

= −g(U(z0)) < 0.

It follows from Lemma 6.5 that z0 must be the point of strict local maximum of U and
therefore lim

z→−∞
U(z) ̸= 1, again a contradiction.

Next we prove that U ′(z) < 0 for all z ∈ IU , i.e., the solution cannot “switch” from 0
to 1 and back again finitely many times (while still satisfying the boundary conditions).
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To this end, we observe that c > −H(1) is a necessary condition for the existence of
solution to (6.3). Indeed, integrating the equation in (6.3) we obtain

D(U(z))|U ′(z)|p−2U ′(z)−D(U(ẑ))|U ′(ẑ)|p−2U ′(ẑ) + c(U(z)− U(ẑ))

+H(U(z))−H(U(ẑ)) +

∫ z

ẑ

g(U(ξ)) dξ = 0, z, ẑ ∈ R.

Passing to the limits z → +∞, ẑ → −∞ and taking into account parts (b) and (c) of
Definition 6.1 yields

c+H(1)−H(0) =

∫ +∞

−∞
g(U(ξ)) dξ.

Since H(0) = 0 and the integral on the left-hand side is positive, we conclude that
c > −H(1).

Suppose that there exist z, z̄ ∈ R such that U(z) = 0, U(z̄) = 1 and U ′(z) > 0 for
all z ∈ (z, z̄). Integrating the equation in (6.3) from z to z̄ and employing the same
arguments as above, we arrive at

c+H(1) = −
∫ z̄

z

g(U(ξ)) dξ < 0,

i.e., c < −H(1), a contradiction.
Therefore, there exist −∞ ≤ z1 < z2 ≤ +∞ such that U ≡ 1 in (−∞, z1], U ≡ 0 in

[z2,+∞) and U ′(z) < 0 for any z ∈ (z1, z2). This concludes the proof.

The following lemmas were used in the proof of Proposition 6.3.

Lemma 6.4. Let U ∈ C1(R) be a solution of the initial value problem
{
(D(U)|U ′|p−2U ′)

′
= − (c+ h(U))U ′,

U(z0) = U0 ∈ (0, 1), U ′(z0) = 0.
(6.4)

Then U does not verify part (c) of Definition 6.1.

Proof. Integrating the equation in (6.4) and using the initial conditions yields

D(U(z))|U ′(z)|p−2U ′(z) = c(U0 − U(z)) +H(U0)−H(U(z)), z ∈ R. (6.5)

Put
Sp(ν) := |ν|p−2ν for ν ̸= 0, Sp(0) = 0, p > 1.

Since Sp′ is the inverse function to Sp, equation (6.5) is for D(U(z)) ̸= 0 equivalent to

U ′(z) = Sp′

(
1

D(U(z))
[c(U0 − U(z)) +H(U0)−H(U(z))]

)
. (6.6)

If 1 < p ≤ 2 then, due to D ∈ C1(0, 1) and H ∈ C1[0, 1], the right-hand side of (6.6)
is Lipschitz continuous in U . Hence U(z) = U0, z ∈ R, is a unique solution of (6.4) in R,
and therefore does not verify part (c) of Definition 6.1.

If p > 2, i.e., 1 < p′ < 2, then the right-hand side of (6.6) is not Lipschitz continuous
only at one point U = U0, but it is one-sided Lipschitz continuous there. Therefore,
either U(z) = U0, z ∈ (−∞, z0] is a unique solution of (6.4) in (−∞, z0], or U(z) = U0,
z ∈ [z0,+∞), is a unique solution of (6.4) in [z0,+∞). In either case, part (c) of Definition
6.1 is not satisfied.
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Lemma 6.5. Let U be a solution of (6.3) and let z0 ∈ R be such that U(z0) ∈ (0, 1),
U ′(z0) = 0 and (

D(U(z))|U ′(z)|p−2U ′(z))
)′∣∣∣

z=z0
< 0.

Then U has a strict local maximum at z0.

Proof. We have

0 >
(
D(U(z))|U ′(z)|p−2U ′(z))

)′∣∣∣
z=z0

=
dD

dU

∣∣∣∣
U=U(z0)

|U ′(z0)|p|︸ ︷︷ ︸
=0

+D(U(z0))
(
|U ′(z)|p−2U ′(z)

)′∣∣∣
z=z0

.

Since D(U(z0)) > 0, we get (|U ′(z)|p−2U ′(z))
′∣∣
z=z0

< 0, and therefore, |U ′(z)|p−2U ′(z) is

strictly decreasing in z0 and equal to 0 at z = z0. Since the power Sp(ν) = |ν|p−2ν is
strictly increasing, U ′(z) is strictly decreasing at z = z0. Hence z0 is the point of strict
local maximum of U .

It follows from Proposition 6.3 that IU = (z1, z2), i.e., IU is an open interval, bounded
or unbounded. As in Section 2.3, we now follow the substitutions from [22] and set

−w(U) := D(U)|U ′|p−2U ′. (6.7)

Since U ′(z) < 0 for all z ∈ (z1, z2), we have w = w(U) > 0 in (0, 1) and w satisfies

1

p′Dp′−1(U)

d

dU
wp′(U)− (c+ h(U))

(
w(U)

D(U)

)p′−1

+ g(U) = 0, U ∈ (0, 1).

where p′ = p
p−1

is the exponent conjugate. Put

y(U) := wp′(U) > 0

and write t instead of U . Then y = y(t) solves

y′(t) = p′
[
(c+ h(t))(y+(t))

1
p − f(t)

]
, t ∈ (0, 1), (6.8)

where f(t) := Dp′−1(t)g(t). In terms of y, part (b) of Definition 6.1 translates to

y(0) = y(1) = 0. (6.9)

It follows from (6.7) that

dz

dU
=

(
D(U)

w(U)

)p′−1

and therefore

z(U) = −
∫ U

s∗

(
D(s)

w(s)

)p′−1

ds = −
∫ U

s∗

(D(s))p
′−1

(y(s))
1
p

ds, U ∈ (0, 1). (6.10)

Since z = z(U) maps (0, 1) onto (z1, z2), we have

z1 = −
∫ 1

s∗

(D(s))
1

p−1

(y(s))
1
p

ds and z2 =

∫ s∗

0

(D(s))
1

p−1

(y(s))
1
p

ds. (6.11)
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It follows from the above calculations that the existence of a monotone solution to (6.3)
implies the existence of a positive solution to (6.8), (6.9) which, in addition, satisfies
(6.11). Actually, it is possible to show that these problems are equivalent, cf. Section 2.3.
This allows us to derive existence and non-existence results for (6.3) by investigating
existence and non-existence of positive solutions to (6.8), (6.9).

Remark 6.6. Let us note that the results presented in the following sections could be
derived under weaker assumptions on D and g. In particular, we may assume D ∈ C(0, 1)
and g ∈ C[0, 1]. By appropriately modifying Definition 6.1, functions D and h with jump
discontinuities in (0, 1) could also be considered. However, the assertion in Proposition 6.3
would not hold due to the lack of uniqueness of the associated Cauchy problem. Therefore,
as in Section 2.3, we would need to assume the monotonicity property of solutions in order
to transform the second-order problem (6.3) into a first-order one.

6.3 Non-existence results

In what follows, we denote
hm := min

s∈[0,1]
h(s),

and assume that the integral ∫ 1

0

(D(s))
1

p−1 g(s) ds

exists finite.

Theorem 6.7 (Non-existence). Let

H(s∗) ≥ s∗hm +

(
p′
∫ 1

0

(D(s))
1

p−1 g(s) ds

)1/p′

. (6.12)

Then the b.v.p. (6.3) has no solution for any c > −hm. If strict inequality holds in (6.12),
there is no solution for any c ≥ −hm.

Proof. It suffices to show that the first-order b.v.p. (6.8), (6.9) does not admit positive
solutions for the given values of c.

Assume by contradiction that c > −hm and yc = yc(t) is a positive solution of (6.8),
(6.9). Integrating the equation (6.8) over (s∗, 1) and using (6.9) yields

yc(s∗) = −p′
∫ 1

s∗

(c+ h(τ)) (yc(τ))
1
p dτ + p′

∫ 1

s∗

f(τ) dτ < p′
∫ 1

0

f(τ) dτ, (6.13)

where f(t) = D
1

p−1 (t)g(t). On the other hand, since f ≡ 0 on (0, s∗) the equation (6.8) is
separable on (0, s∗). Using (6.9) we obtain

(yc(s∗))
1
p′ = cs∗ +H(s∗). (6.14)

It follows from (6.13), (6.14) and the condition (6.12) that

(
p′
∫ 1

0

f(τ) dτ

)1/p′

> (yc(s∗))
1
p′ = cs∗ +H(s∗) > −hms∗ +H(s∗) ≥

(
p′
∫ 1

0

f(τ) dτ

)1/p′

,
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a contradiction.
Assuming strict inequality in (6.12) and c ≥ −hm, we would arrive at

(
p′
∫ 1

0

f(τ) dτ

)1/p′

≥ (yc(s∗))
1
p′ = cs∗ +H(s∗) ≥ −hms∗ +H(s∗) >

(
p′
∫ 1

0

f(τ) dτ

)1/p′

,

again a contradiction. This concludes the proof.

We notice that
c ≥ −h(0) (6.15)

is a necessary condition for the existence of a positive solution of (6.8), (6.9). Indeed, if
c < −h(0) then, by the continuity of h, there exists δ > 0 such that c < −h(u) for all
U ∈ [0, δ]. Integrating the equation (6.8) over [0, δ] and using yc(0) = 0 together with
c+ h(u) < 0 in [0, δ], we arrive at

yc(δ) = p′
∫ δ

0

(c+ h(τ))(y+c (τ))
1
p dτ < 0,

a contradiction with the positivity of solution yc = yc(t).
Taking into account the necessary condition (6.15) in Theorem 6.7, we obtain the

following corollary, which addresses the non-existence of a wave profile for any c ∈ R.

Corollary 6.8. If strict inequality holds in (6.12) and hm = h(0), then (6.3) has no
solution for any c ∈ R.

6.4 Existence results

Let

k = k(p) =





1
2p′−1−1

if 1 < p < 2,

1 if p = 2,
p′

p′−1+
1+p′(p′−1)

1
p′−2 +(p′−1)

p′
p′−21+(p′−1)

1
p′−2

p′

if p > 2. (6.16)

Then k = k(p) is a continuous function in (1,+∞) and

lim
p→1+

k(p) = 0 and lim
p→+∞

k(p) =
1

2
.

Theorem 6.9 (Existence). Let

H(1) ≤ hm +

(
k(p)

∫ 1

0

(D(s))
1

p−1 g(s) ds

)1/p′

. (6.17)

Then there exists a unique c = c∗ > −hm such that the b.v.p. (6.3) has a unique (up to
translation) solution U = U(z). Moreover, the solution U is strictly decreasing on IU and
c∗ satisfies

c∗ <
1

s∗

[(
p′
∫ 1

0

(D(s))
1

p−1 g(s) ds

)1/p′

−H(s∗)

]
− hm. (6.18)
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Proof. We first prove the statement of Theorem 6.9 assuming that hm = min
s∈[0,1]

h(s) = 0,

i.e., we will show that if

H(1) ≤
(
k(p)

∫ 1

0

(D(s))
1

p−1 g(s) ds

)1/p′

,

then there exists a unique positive value c = c∗ for which (6.3) admits a solution. This
result can then be applied to the case of a more general h ∈ C[0, 1] with hm ̸= 0 by means
of a suitable shift, discussed at the end of the proof.

Thanks to the equivalence established in Section 6.2, we proceed by investigating the
initial value problem

{
y′c(t) = p′

[
(c+ h(t))(y+c (t))

1
p − f(t)

]
, t ∈ (0, 1),

yc(1) = 0.
(6.19)

Let c ≥ 0. Since c+ h(t) ≥ 0 for all t ∈ [0, 1], the function

y 7→ (c+ h(t))(y+)
1
p , t ∈ [0, 1],

satisfies one-sided Lipschitz condition and it follows from Lemma 3.1, where we replace c
by c+ h(t), that (6.19) has a unique global solution yc = yc(t) defined on [0, 1]. Our aim
is to show that there exists c > 0 such that yc(t) > 0 for t ∈ (0, 1) and yc(0) = 0.

First, let us observe that f(t) > 0 in (s∗, 1) implies that

yc(t) > 0 for t ∈ (s∗, 1), (6.20)

and

yc(s∗) = −p′
∫ 1

s∗

(c+ h(τ))(yc(τ))
1
p dτ + p′

∫ 1

s∗

f(τ) dτ < p′
∫ 1

0

f(τ) dτ. (6.21)

According to Lemma 6.12 (see the end of this section), for any p > 1 we have

(y0(s∗))
1
p′ > H(s∗). (6.22)

In particular, y0(s∗) > 0 and hence there exists 0 < δ ≤ s∗ such that yc(t) > 0 for
t ∈ (s∗ − δ, s∗). Since f ≡ 0 on (0, s∗), y0 = y0(t) solves the equation

y′0(t) = p′h(t)(y0(t))
1
p , t ∈ (s∗ − δ, s∗).

Separating variables, we obtain for t ∈ (s∗ − δ, s∗)

(y0(s∗))
1
p′ − (y0(t))

1
p′ = H(s∗)−H(t),

i.e.,

(y0(t))
1
p′ −H(t) = (y0(s∗))

1
p′ −H(s∗) > 0

by (6.22). It follows that δ = s∗ and

(y0(t))
1
p′ > 0 for all t ∈ [0, s∗].
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Therefore,
y0(t) > 0 for all t ∈ [0, 1). (6.23)

Set
c∗ := sup{c > 0 : yc(t) > 0 for all t ∈ (0, 1)}.

It follows from (6.20), (6.23) and the continuous dependence of the solution to (6.19) on
the parameter c that the set {c > 0 : yc(t) > 0 for all t ∈ (0, 1)} is non-empty and c∗ > 0.
If c∗ = +∞ then there exist cn → +∞ and corresponding ycn = ycn(t) > 0, t ∈ (0, 1),
which satisfy

y′cn(t) = p′(cn + h(t))(ycn(t))
1
p , t ∈ (0, s∗).

Separating variables yields

(ycn(t))
1
p′ = (ycn(s∗))

1
p′ + cn(t− s∗) +H(t)−H(s∗), t ∈ (0, s∗), (6.24)

and from (6.21) we get

ycn(s∗) < p′
∫ 1

0

f(τ) dτ < +∞.

Therefore, the right-hand side in (6.24) tends to −∞, a contradiction. Hence

0 < c∗ < +∞.

Next we prove that yc∗(t) > 0, t ∈ (0, 1), yc∗(0) = 0. Indeed, by the continuous
dependence of (6.19) on the parameter c and the definition of c∗, the solution yc∗ = yc∗(t)
must vanish somewhere in the interval [0, s∗]. Let η ∈ [0, s∗] be the largest zero of yc∗ . It
follows from the comparison argument that solutions of (6.19) decrease with c. This can
be easily shown as in Lemma 3.5 and Corollary 3.6 by replacing c with c+ h(t). If η > 0
then for c < c∗ we have yc(t) > 0 on (0, η) and hence from

y′c(t) = p′(c+ h(t))(yc(t))
1
p , t ∈ (0, η),

we again deduce

0 < (yc(t))
1
p′ = (yc(η))

1
p′ + c(t− η) +H(t)−H(η). (6.25)

Since for c→ c∗ we have yc(η) → yc∗(η) = 0 by continuous dependence on parameter, for
any fixed t ∈ (0, η) there exists c < c∗, (c∗ − c) sufficiently small, such that

(yc(η))
1
p′ + c(t− η) +H(t)−H(η) < 0

(hm = 0 implies that H is nondecreasing), which contradicts (6.25). Hence η = 0.
Finally, we show that positive solutions of (6.19) do not vanish at 0 for values of c ̸= c∗.

Assume by contradiction that there exists ĉ ̸= c∗ such that yĉ = yĉ(t) > 0 solves (6.19) in
(0, 1), yĉ(0) = 0. The definition of c∗ yields ĉ < c∗. Separating variables in the equation
in (6.19) on (0, s∗), we obtain

(yĉ(s∗))
1
p′ = ĉs∗ +H(s∗)

and also
(yc∗(s∗))

1
p′ = c∗s∗ +H(s∗). (6.26)
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Hence yĉ(s∗) < yc∗(s∗). On the other hand, the comparison argument applied to (6.19)
yields yĉ(t) ≥ yc∗(t), t ∈ [0, 1]. This follows from Corollary 3.6 with c1 = ĉ + h(t) and
c2 = c∗ + h(t). In particular, yĉ(s∗) ≥ yc∗(s∗), a contradiction.

It follows from (6.26) together with (6.21) that

c∗ =
1

s∗

(
(yc∗(s∗))

1
p′ −H(s∗)

)
<

1

s∗

[(
p′
∫ 1

0

(D(s))
1

p−1 g(s) ds

)1/p′

−H(s∗)

]
,

i.e., (6.18) holds. This concludes the proof for hm = 0.

If hm ̸= 0, we can consider a new convective velocity h̃(s) := h(s) − hm, s ∈ [0, 1].

Then h̃m := mins∈[0,1] h̃(s) = 0 and H̃(U) =
∫ U

0
h̃(s) ds = H(U)−hmU is a nondecreasing

function. Setting c̃ := c+ hm, the equation in (6.3) becomes
(
D(U)|U ′|p−2U ′)′ + (c̃+ h̃(U))U ′ + g(U) = 0

and we can apply the above reasoning to prove the existence of a unique positive value c̃∗
assuming that

H̃(1) ≤
(
k(p)

∫ 1

0

(D(s))
1

p−1 g(s) ds

)1/p′

.

Since H̃(1) = H(1)− hm, we immediately see that condition (6.17) yields a unique value
c∗ = c̃∗ − hm > −hm, corresponding to the problem with convective velocity h, and the
estimate (6.18) holds.

Notice that if hm ≤ 0, from Theorem 6.9 we immediately see that the unique wave
speed c∗ is positive. The following result addresses the existence of a positive wave speed
in the case hm > 0.

Theorem 6.10 (Positive wave speed c). If h(s) > 0 for s ∈ [0, 1] and

H(1) ≤
(
k(p)

∫ 1

0

(D(s))
1

p−1 g(s) ds

)1/p′

, (6.27)

then c∗ > 0 > −hm.
Proof. If hm > 0, the proof can be carried out exactly as in the case hm = 0. In particular,
statements concerning the i.v.p. (6.19) remain valid and the positivity of h justifies the
use of Lemma 6.12. Therefore, if (6.27) holds we conclude that c∗ > 0 > −hm.

To establish the inequality (6.22) in the proof of Theorem 6.9, we employ the following
lemma.

Lemma 6.11 (Technical inequalities). Let a > 0, b > 0. Then

(i) for r ≥ 2 we have
ar + rar−1b+ br ≤ (a+ b)r ;

(ii) for 1 < r < 2 we have

ar + rar−1b+ br ≤ k̂(r)(a+ b)r,

where

k̂(r) =
1 + r(r − 1)

1
r−2 + (r − 1)

r
r−2

(
1 + (r − 1)

1
r−2

)r .
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Proof. We put t = b
a
> 0 and write the inequality in an equivalent form

f(t) :=
1 + rt+ tr

(1 + t)r
≤ k̂(r),

where we set k̂(r) = 1 for r ≥ 2. Then the optimal choice for k̂(r) would be k̂(r) =
maxt≥0 f(t), if this maximum exists. Indeed, it does. Namely, f is a continuously dif-
ferentiable function on [0,+∞) satisfying f(0) = 1 = limt→+∞ f(t). An elementary

calculation yields that t1 = (r − 1)
1

r−2 is the only stationary point of f in (0,+∞).
Part (i). It is clear that equality holds for r = 2. Let r > 2. Then f(1) = 2+r

2r
< 1.

Hence t1 = (r − 1)
1

r−2 is the point of global minimum of f , 0 < f(t1) ≤ f(1) < 1 and
therefore maxt≥0 f(t) = f(0) = 1.

Part (ii). Let 1 < r < 2. Then f(1) = 2+r
2r

> 1 and hence t1 is the point of global
maximum of f in [0,+∞) with

k̂(r) = f(t1) =
1 + r(r − 1)

1
r−2 + (r − 1)

r
r−2

(
1 + (r − 1)

1
r−2

)r .

Lemma 6.12 (Inequality (6.22)). Assume that h(t) ≥ 0 in [0, 1] and let y0 = y0(t) be a
solution of the i.v.p. (6.19) with c = 0. If

Hp′(1) ≤ k(p)

∫ 1

0

f(t) dt, (6.28)

where k = k(p) is given by (6.16), then

(y0(s∗))
1
p′ > H(s∗).

Proof. We proceed by contradiction, that is, we assume that

(y0(s∗))
1
p′ ≤ H(s∗).

Since f > 0 on (s∗, 1), it follows from the equation in (6.19) that y0(t) > 0 for all t ∈ (s∗, 1).

Set z(t) := (y0(t))
1
p′ . Then z(t) > 0 in (s∗, 1), z(1) = 0,

z(s∗) ≤ H(s∗) (6.29)

and z = z(t) satisfies the equation

[zp
′
(t)]′ = p′h(t)zp

′−1(t)− p′f(t), t ∈ (s∗, 1), (6.30)

or, equivalently,

z′(t) = h(t)− f(t)

zp′−1(t)
, t ∈ (s∗, 1). (6.31)

Integrating (6.30) and using the mean value theorem, we obtain

zp
′
(s∗) = zp

′
(1)− p′

∫ 1

s∗

h(t)zp
′−1(t) dt+ p′

∫ 1

s∗

f(t) dt

= −p′zp′−1(t0)(H(1)−H(s∗)) + p′
∫ 1

0

f(t) dt

(6.32)
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for some t0 ∈ (s∗, 1). From (6.31) we have

z(t0)− z(s∗) =

∫ t0

s∗

h(t) dt−
∫ t0

s∗

f(t)

zp′−1(t)
dt < H(t0)−H(s∗)

and hence
z(t0) < z(s∗) +H(1)−H(s∗) (6.33)

thanks to the monotonicity of H (in particular, h ≥ 0 implies that H is nondecreasing).
It follows from (6.32), (6.33) together with (6.29)

Hp′(s∗) > −p′ (H(s∗) + [H(1)−H(s∗)])
p′−1 (H(1)−H(s∗)) + p′

∫ 1

0

f(t) dt. (6.34)

Next we proceed separately for p = 2, 1 < p < 2 and p > 2.

Case 1: p = 2. Since p′ = 2, (6.34) becomes

H2(s∗) > −2 (H(s∗) + [H(1)−H(s∗)]) (H(1)−H(s∗)) + 2

∫ 1

0

f(t) dt.

Reorganizing the terms in the above inequality and using (6.28), we obtain

0 > −H2(s∗)− 2H(s∗)(H(1)−H(s∗))− (H(1)−H(s∗))
2 − (H(1)−H(s∗))

2

+ 2

∫ 1

0

f(t) dt = −H2(1)− (H(1)−H(s∗))
2 + 2

∫ 1

0

f(t) dt

> 2

(∫ 1

0

f(t) dt−H2(1)

)
≥ 0,

a contradiction.

Case 2: 1 < p < 2. Since p′ > 2, we use the inequality

(a+ b)r ≤ 2r−1(ar + br), a, b > 0, r > 1,

with a = H(s∗), b = H(1)−H(s∗), r = p′ − 1 in (6.34) and obtain

Hp′(s∗) > −p′ (H(s∗) + [H(1)−H(s∗)])
p′−1 (H(1)−H(s∗)) + p′

∫ 1

0

f(t) dt

≥ −p′2p′−2
(
Hp′−1(s∗) + [H(1)−H(s∗)]

p′−1
)
(H(1)−H(s∗)) + p′

∫ 1

0

f(t) dt.

Hence

0 >−Hp′(s∗)− p′2p
′−2Hp′−1(s∗)(H(1)−H(s∗))− p′2p

′−2 (H(1)−H(s∗))
p′ + p′

∫ 1

0

f(t) dt

= −Hp′(s∗)− p′Hp′−1(s∗)(H(1)−H(s∗))− (H(1)−H(s∗))
p′

+ (1− p′2p
′−2)(H(1)−H(s∗))

p′ + (p′ − p′2p
′−2)Hp′−1(s∗)(H(1)−H(s∗))

+ p′
∫ 1

0

f(t) dt

75



and, using the inequality from Lemma 6.11 (i) with a = H(s∗), b = H(1) − H(s∗) and
r = p′,

0 > −(H(s∗) + (H(1)−H(s∗)))
p′ + (1− p′2p

′−2)(H(1)−H(s∗))
p′

+ (p′ − p′2p
′−2)Hp′−1(s∗)(H(1)−H(s∗)) + p′

∫ 1

0

f(t) dt.

Then 0 ≤ H(s∗) ≤ H(1) implies

0 > −Hp′(1) + (1− p′2p
′−2)Hp′(1) + (p′ − p′2p

′−2)Hp′(1) + p′
∫ 1

0

f(t) dt

and from (6.28) we conclude

0 > −p′(2p′−1 − 1)Hp′(1) + p′
∫ 1

0

f(t) dt ≥ 0,

a contradiction.

Case 3: p > 2. Since 1 < p′ < 2, we now use the inequality

(a+ b)r ≤ ar + br, a, b > 0, 0 < r < 1,

with a = H(s∗), b = H(1)−H(s∗), r = p′ − 1 in (6.34) and obtain

0 > −Hp′(s∗)− p′
(
Hp′−1(s∗) + [H(1)−H(s∗)]

p′−1
)
(H(1)−H(s∗)) + p′

∫ 1

0

f(t) dt,

i.e.,

0 > −Hp′(s∗)− p′Hp′−1(s∗)(H(1)−H(s∗))− p′ (H(1)−H(s∗))
p′ + p′

∫ 1

0

f(t) dt,

or equivalently

0 > −Hp′(s∗)− p′Hp′−1(s∗)(H(1)−H(s∗))− (H(1)−H(s∗))
p′

−(p′ − 1) (H(1)−H(s∗))
p′ + p′

∫ 1

0

f(t) dt.

For a > 0, b > 0, r ∈ (1, 2) we have ar + rar−1b + br ≤ k̂(r)(a + b)r by the technical
Lemma 6.11 (ii) below. We apply it with a = H(s∗), b = H(1)−H(s∗), r = p′:

0 > −k̂(p′) (H(s∗) + (H(1)−H(s∗)))
p′ − (p′ − 1) (H(1)−H(s∗))

p′ + p′
∫ 1

0

f(t) dt.

But (6.28) yields

0 > −(k̂(p′) + (p′ − 1))Hp′(1) + p′
∫ 1

0

f(t) dt ≥ 0,

a contradiction.
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6.5 Asymptotic analysis of the wave profile

In this section, we discuss asymptotic behaviour of the solution U = U(z) to (6.3) as
z → ±∞. Our aim is to determine whether the solution attains 0 and/or 1 (or neither of
them). To this end, we study the convergence of the integrals from (6.11), and hence the
finiteness of the values z1, z2. For technical reasons, we assume power-type behaviour of
D and g near equilibria 0 and 1.

In what follows, we consider H(U) > 0, U ∈ (0, 1], and profiles with c∗ > 0. For the
sake of brevity, we will use the following notation, introduced in Chapter 5: for s0 ∈ R
we write

ϕ1(s) ∼ ϕ2(s) as s→ s0 if and only if lim
s→s0

ϕ1(s)

ϕ2(s)
∈ (0,+∞).

Asymptotics near 0

Let us assume that D(t) ∼ tα as t → 0+ for some α ∈ R. Thanks to f ≡ 0 in [0, s∗], we
have

(yc∗(t))
1
p′ = c∗t+H(t), t ∈ (0, θ),

and due to the assumption H ∈ C1[0, 1], H > 0 together with c∗ > 0, we have (yc∗(t))
1
p′ ∼

t as t→ 0+. Let us recall that

z2 =

∫ s∗

0

(D(t))
1

p−1

(yc∗(t))
1
p

dt.

Since ∫ U

0

(D(t))
1

p−1

(yc∗(t))
1
p

dt ∼
∫ U

0

tα(p
′−1)

tp′−1
dt =

∫ U

0

t
α−1
p−1 dt as U → 0+, (6.35)

we conclude that the following two cases occur:

(a) z2 = +∞ if and only if p+ α ≤ 2;

(b) z2 < +∞ if and only if p+ α > 2,

see Figure 6.1 for geometric interpretation.
Observe that for any α > 1, the profile U = U(z) is always sharp of type I (cf.

Figure 4.1), i.e., z2 ∈ R, U ≡ 0 in [z2,+∞). If α = 0 and 1 < p ≤ 2, the profile does
not attain 0 for any finite z. This result is consistent with that from [32] for p = 2 and
D ∈ C1[0, 1] strictly positive in [0, 1].

In case (b), we can also study the one-sided derivative U ′(z2−). In particular, differ-
entiating (6.10) yields

dz

dU
= − d

dU

∫ U

s∗

(D(t))
1

p−1

(yc∗(t))
1
p

dt = −(D(U))
1

p−1

(yc∗(U))
1
p

, U ∈ (0, 1).

Since D(U) ∼ Uα, y(U) ∼ Up′ as U → 0+, we have

dz

dU

∣∣∣∣
U=0+

∼ −U α−1
p−1 →





0 if α > 1

const. < 0 if α = 1

−∞ if α < 1

as U → 0 + .

77



α

p

1 2

1

2

p
+
α
=
2

z2 = +∞

z2 < +∞

Figure 6.1: Visualization of cases (a) and (b), leading to z2 finite or infinite

Employing an inverse perspective, we obtain the following classification for the profile
U = U(z):

U ′(z2−) =





−∞ if α > 1,

const. < 0 if α = 1,

0 if α < 1.

Therefore, if p+ α > 2 and α < 1 we have U ′(z2−) = U ′(z2+) = 0.

Asymptotics near 1

Let us assume that D(t) ∼ (1− t)β and g(t) ∼ (1− t)γ as t→ 1− for some β ∈ R, γ > 0.
Since the equation (6.8) is not separable on (s∗, 1), the asymptotic analysis becomes
more involved than in the previous case. However, we can apply the same reasoning as
in Section 5.2.1, where we investigated asymptotic properties of solutions near 1 in the
absence of convection. In fact, this technique yields the same results also when h(t) ≥ 0
instead of h ≡ 0. Replacing c by c + h(t) in the proofs of Theorems 5.7, 5.8, we derive
the same conditions leading to z1 = −∞ and z1 > −∞. In our current notation, these
theorems read as follows.

Theorem 6.13. Let β ∈ R, γ > 0 and D(t) ∼ (1 − t)β, g(t) ∼ (1 − t)γ as t → 1−.
Assume that

−1 < γ +
β

p− 1
≤ 1

p− 1

If
γ − β + 1

p
< 1,

then z1 > −∞. If
γ − β + 1

p
≥ 1,

then z1 = −∞.
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Theorem 6.14. Let β ∈ R, γ > 0 and D(t) ∼ (1 − t)β, g(t) ∼ (1 − t)γ as t → 1−.
Assume that

γ +
β

p− 1
>

1

p− 1
.

If γ < 1 then z1 > −∞. If γ ≥ 1 then z1 = −∞.

For geometric interpretation, we refer to Figures 5.5 and 5.6 in Section 5.2.1, where
we used δ instead of β. As in the case of h ≡ 0 discussed therein, the profile U = U(z) is
a C1-function in the neighbourhood of z1 ∈ R, cf. Remark 5.10.
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Conclusion

In this thesis, we studied travelling waves to a class of reaction-diffusion equations on the
real line with a density-dependent diffusion involving the p-Laplacian. Our assumptions
on the diffusion and reaction terms were motivated by applications as well as their math-
ematical generalizations, which were previously considered in literature. An overview of
relevant models together with basic existence results was provided in Chapter 1.

The aim of our research was to generalize the well-known theory of admissible wave
speeds for monostable and bistable equations by proving the existence of travelling waves
under weakest possible assumptions. To this end, we developed a broad theoretical back-
ground in Chapter 2. A new definition of a continuous, generally non-smooth, travelling
wave profile was introduced in Section 2.1, allowing us to consider a piecewise continuous
diffusion coefficient with degenerations or singularities at 0 and 1. In the case of monos-
table reaction, we have shown in Section 2.2 that the profile is necessarily nonincreasing
on R and strictly decreasing in some maximal interval. Restricting our attention to mono-
tone solutions also in the bistable case, we were then able to follow the substitutions from
[22] and reduce the second-order problem to a first-order one (Section 2.3).

Chapter 3 was devoted to the investigation of the equivalent first-order problem in
the sense of Carathéodory, which in turn yields the existence of travelling waves to the
original problem, presented in Chapter 4. The properties of wave profiles were further
explored in Chapter 5, assuming power-type behaviour of the reaction and diffusion terms.
Our findings on this topic also constitute one of the main contributions of our work. We
derived conditions for the involved parameters which guarantee that the profile reaches
(or does not reach) 0 and/or 1. The most detailed classification, which also specified the
derivatives at the points of transition from the steady states, was obtained for stationary
waves in Section 5.1. Travelling wave profiles were examined in Sections 5.2 and 5.3 for
bistable and monostable reactions, respectively. Using suitable upper and lower solutions,
we were able to provide a similar classification with less precise information about the
smoothness of profiles when reaching 0. Interestingly, if a travelling wave profile reaches 1,
it does so with a zero derivative, which is not the case for stationary waves.

In Chapter 6, we explored the effect of convective term on the existence of travelling
waves to equations with a special type of nonlinear reaction arising in combustion. Our
main results, presented in Theorems 6.7 and 6.9, reveal that if convection dominates over
the reaction and diffusion (in the sense of condition (6.12)), the equation ceases to admit
travelling wave solutions. Conversely, when the convective term is ‘’weak” compared
to diffusion and reaction (in the sense of condition (6.17)), a unique wave speed and
corresponding profile exist, akin to the pure reaction-diffusion case.

While the general approach employed in this thesis enabled us extend the results
obtained in more conventional settings and treat different types of reaction in a largely
unified manner, it is, in a sense, too “coarse” to provide more detailed information about
solutions. Some of the issues may possibly be addressed via different techniques, yet we
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expect some inherent complexity to hinder a more comprehensive study.
Despite this, there are many interesting directions for future research. Perhaps the

most straightforward task is to study problems with convection and p-Laplacian type
diffusion with other than combustion nonlinearities. Our general results derived for the
first-order problem also suggest the possibility of considering a discontinuous reaction,
which appears in some combustion models [5]. Recently, sign-changing diffusivity has
been investigated in the case p = 2, see [7, 8], the inspiration for it being drawn from the
modelling of collective movements, namely of vehicular flows and crowds dynamics. An-
other possible extension is to consider equations with diffusion driven by the ϕ-Laplacian
operator:

u 7→ ∂

∂x

[
ϕ

(
∂u

∂x

)]

where ϕ : R → R is an increasing homeomorphism with ϕ(0) = 0, see e.g. [12, 10].
Particular examples are for instance the classical p-Laplacian or the relativistic curvature
operator

ϕ(v) =
v√

1− v2
.

Finally, an interesting and important topic is the study of initial value problems for
the equation (1.1). In general settings like ours, it may be too ambitious to prove the
convergence of a solution u(x, t) to a travelling wave as t→ +∞. However, even numerical
experiments might be of great help in gaining valuable insights.
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H. Poincaré C Anal. Non Linéaire 9, 5 (1992), 497–572.

[7] Berti, D., Corli, A., and Malaguti, L. Uniqueness and nonuniqueness of fronts
for degenerate diffusion-convection reaction equations. Electron. J. Qual. Theory
Differ. Equ. (2020), Paper No. 66, 34.

[8] Berti, D., Corli, A., and Malaguti, L. Diffusion-convection reaction equations
with sign-changing diffusivity and bistable reaction term. Nonlinear Anal. Real World
Appl. 67 (2022), Paper No. 103579, 29.

[9] Coddington, E. A., and Levinson, N. Theory of ordinary differential equations.
McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.

[10] Coelho, I., and Sanchez, L. Travelling wave profiles in some models with non-
linear diffusion. Appl. Math. Comput. 235 (2014), 469–481.

[11] Cohen, H. Nonlinear diffusion problems. In Studies in applied mathematics, vol. 7.
Math. Assoc. of America and Prentice-Hall, 1971, pp. 27–64.

[12] Cupini, G., Marcelli, C., and Papalini, F. Heteroclinic solutions of boundary-
value problems on the real line involving general nonlinear differential operators.
Differential Integral Equations 24, 7-8 (2011), 619–644.

82
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