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Abstract
Fairing methods, frequently used for smoothing noisy features of surfaces, evolve a surface towards a simpler
shape. The process of shaping a simple surface into a more complex object requires using a scalar field defined
in the ambient space to drive the surface towards a target shape. Practical implementation of such evolution,
referred to as Lagrangian Shrink-Wrapping (LSW), on discrete mesh surfaces presents a variety of challenges.
Our key innovation lies in the integration of adaptive remeshing and curvature-based feature detection, ensuring
mesh quality and proximity to target data. We introduce the Equilateral Triangle Jacobian Condition Number
metric for assessing triangle quality, and introduce trilinear interpolation for enhanced surface detailing to improve
upon existing implementations. Our approach is tested with point cloud meshing, isosurface extraction, and the
elimination of internal mesh data, providing significant improvements in efficiency and accuracy. Moreover we
extend the evolution to surfaces with higher genus to shrink-wrap even more complex data.

Keywords
fairing, surface evolution, Lagrangian Shrink-Wrapping, adaptive remeshing, feature detection, mesh quality, point
cloud meshing, isosurface extraction, mesh simplification

Figure 1: Lagrangian shrink-wrapping (LSW) evolution with the help of adaptive remeshing of input point cloud sampling of
bunny with 12K vertices over 150 steps with an icosphere starting surface with subdivision level s = 2.

1 INTRODUCTION
Shape extraction from diverse input, including image
data, point clouds, or mesh surfaces, is ubiquitous in
modern geometry processing. A critical challenge in
this domain is maintaining the quality of mesh elements
extracted from these representations, which is essential
for downstream processing applications such as render-
ing or numerical simulations. Traditional methods of
direct triangulation of point clouds often require point
normals, or otherwise struggle to produce watertight
manifold surfaces. Unlike direct processing techniques,
evolutionary methods make use of principles like diffu-
sion described by partial differential equations which
can be equipped with spatial information of input data,
such as distance fields, to evolve a simple starting sur-

face with known topological properties, for example, a
sphere, into a shape with the desired amount of detail.

1.1 Contributions
This work introduces a robust and stable shrink-
wrapping tool designed for voxel, mesh, and point
cloud data (see Fig. 1), employing a triangle surface
mesh. Our contributions include:

• In contrast with prior approaches, the surface is no
longer subject to the stretching of linear discretiza-
tion elements (mesh triangles), essentially pushing
the solution closer to how a smooth surface would
evolve. This places our shrink-wrapping algorithm
among the state-of-the art methods which also em-
ploy some form of adaptive remeshing.
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• Compared to existing implementations, we use tri-
linear interpolation of (possibly truncated) distance
voxel values instead of nearest neighbor for shape
precision.

• Extension of the tool’s applicability to initial sur-
faces constructed from distance contours broadens
its utility to higher-genus target data1.

• The use of customized equilateral triangle quality
metric, validating the production of high-quality
meshes.

• We adopt a curvature-based feature detection tech-
nique, facilitating a more accurate representation of
intricate geometric features.

2 RELATED WORK
Our exploration stands on the contributions in signif-
icant areas of application: fairing, remeshing, image
segmentation, surface reconstruction, and geometry
simplification.

The fairing approaches utilize the key diffusion term
in the evolutionary equations. In its simplest form it
involves smoothing out all features of an input sur-
face as performed using a semi-implicit formulation of
the standard mean curvature flow (MCF) by Mikula
et al. [2], and minimizing Willmore energy by Crane
et al. [3]. This leads also towards unknotting tangled
higher-genus surfaces by Yu et al. [4] who also consid-
ered a point cloud or mesh obstacle repelling an evolv-
ing surface. The outputs of such obstacle problem can
be stacked on top of each other in the form of nested
cages studied by Sach et al. [5].

Surface extraction from image data involves augment-
ing the standard MCF by advection which was also
explored by Mikula et al. [2] in Section 3.2. These
methods date back all the way to perhaps the most
widespread brain extraction tomography application
called BET2 first published by Smith in 2002 [6].
BET2 extracts a surface from an initial icosphere mesh
which evolves towards the boundary of human brain,
driven by advection evaluated from the thresholds
computed within the histogram of the tomography
image.

We put significant emphasis on the development of
point cloud reconstruction tools developed by Daniel
et al. [7] in collaboration with the authors of [2]. A
suitable example of recent evolutionary approaches
to surface reconstruction from point cloud data is
Point2Mesh which also uses neural networks to evolve
convex hull starting surfaces [8].

1 We consider the genus of a surface envelope of a triangle soup
or a point cloud target set in the sense of Hurtado et al. [1].

Since, as we mentioned, evolutionary methods can use
simpler initial surfaces, they can also serve as simpli-
fication tools for enveloping meshes with undesired in-
ternal cavities and non-manifold vertices or edges [1].
This leads us to the use of evolutionary shrink-wrapping
for the purposes of remeshing, as done by Kobbelt et
al. [9], and extended to outward-evolving quad surface
patches by Huska et al. [10].

3 METHODOLOGY

Figure 2: Slice of distance field d to surface Γ Utah Teapot
with resolution 1203 and an evolving surface F driven by
fields d and −∇d. Source: [11].

3.1 Surface Evolution
Let X be a Riemannian 2-manifold. For a time inter-
val [0,T ], the map F : [0,T ]×X → R3 defines surface
evolution in R3, governed by:

∂tF = vN + vT , (1)

where vN and vT are the normal and tangential compo-
nents of velocity respectively. To ensure that the de-
composition into normal and tangential components at
F(x) ∈ R3 is well-defined at each point x ∈ X , F t =
F(t, ·) must be an immersion of X into R3 for all t ∈
[0,T ]. Equation (1) is accompanied by an initial im-
mersion F0 = F(0, ·). First-order Laplacian smooth-
ing follows ∂tF = ∆gF F =−2HN, where H = (κmin +
κmax)/2 is the mean curvature and N the outward unit
normal. As demonstrated in Section 4.2 of [11], nu-
merical simulations using the Laplace-Beltrami formu-
lation with respect to the metric gF of immersion F con-
verge to the behavior of mean curvature flow (MCF) for

the shrinking sphere solution r(t) =
√

r2
0 −4t, begin-

ning from radius r0.2

Now let Γ ⊂ R3 be a target set, potentially a non-
manifold surface (see Fig.2) or a point cloud. Let
d : R3 → R be the distance field of Γ, taking either the
unsigned d+ or signed d± form, the latter of which dis-
tinguishes the interior Int(Γ) from the exterior Ext(Γ)
of Γ with negative and positive sign respectively.
The target set Γ generates its distance field d in its am-
bient space R3, and for this reason, it can affect the evo-
lution of F in the following advection-diffusion model:

∂tF = ε∆gF F +ηN +ρvT , F(0, ·) = F0, (2)

2 This alignment underscores the practical equivalence of the
Laplacian smoothing approach to MCF in numerical settings.
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where ε,ρ , and η are control functions, namely

ε(d) :=C1
(
1− e−d2/C2

)
, C1,C2 > 0, (3)

ρ(d) : = A
(
1− e−d2)

, A > 0, (4)

η(d) := D1d
(
(−∇d ·N)−D2

√
1− (∇d ·N)2

)
,

D1 > 0, D2 ≥ 0, (5)

inspired by [10] using the distance field d to target Γ.
With ε we ensure that MCF slows down to zero as F
approaches Γ, we also use a similar control function
ρ to slow down the effects of tangential redistribution
near Γ, and finally η controls the orientation of normal
N to surface F (see Fig. 2). To make sure that F does
not evolve past Γ under the influence of MCF, we can
use modified weight functions ε+ and η+ which are
non-zero only for positive values d > 0.

We also use the angle-based tangential redistribution
inspired by [10] for computing velocity vT with pre-
ferred weight ω = 0.05 throughout our experiments.

3.2 The Discrete Picture
The evolving surface F is represented by a triangle
mesh (K,V ) where K is an abstract simplicial complex
and V ⊂ F [X ]⊂R3 the vertex set, such that its geomet-
ric realization — in the sense of Hoppe et al. [12] — is
a compact manifold surface without boundary. Scalar
and vector fields (d and −∇d) are sampled on regular
voxel grids G ⊂ R3 containing Γ with cell size cG > 0
using trilinear interpolation. In our experiments, we
compute cell size as cG = βmin/40, that is: 40 voxels
per minimal dimension of the target set’s bounding box.

We use the icosphere subdivision surface (see "step 0"
in Fig.1) for simulations with spherical starting sur-
faces, and for another set of simulations we use isosur-
faces of the distance field Sd0 = {x ∈ R3 | d(x) = d0}
reconstructed via the Marching Cubes algorithm [13]
after which it is processed with a single step of adap-
tive remeshing by Dunyach et al. [14] to achieve more
uniform vertex density3. The adaptive remeshing algo-
rithm is then used during evolution when necessary4.

Distance field d is computed using a multi-step ap-
proach from Section 2.1 in [11] accelerated by spatial
data structures like AABB tree and Octree, and using
the Fast-Sweeping algorithm by Zhao [16]. The gradi-
ent ∇d is computed as a central difference of respective
neighboring cell values for each cell.

Non-linear parabolic equation 2 is discretized using fi-
nite 2-volumes (areas) Vi surrounding mesh vertices

3 The PMP library [15] allows us to use only one iteration of
pmp::Remeshing::adaptive_remeshing if the re-
sulting mesh quality suffices.

4 when the measured polygon quality drops below the desired
level.

Fi, i = 1, ...,NV = |V | (see Fig. 3). The concept of
these, so called, co-volumes is explained in more de-
tail by Meyer et al. [17] and Mikula et al. [2]. In
particular, the Laplace-Beltrami operator in (2) is dis-
cretized using a cotangent scheme when compiling the
underlying sparse linear system of dimension NV ×NV .
Analogously to [10], the advection terms in our case
ηN +ρvT correspond to the state of the previous time
step during evolution, and thus are added to the sys-
tem’s right-hand side.

The linear system is solved for each coordinate of ver-
tex Fi and time step t ∈ [0,T ]. Our preferred solver is
BiCGStab, but according to [2] the sparse SOR method
can also be used.

3.3 Numerical Stability

Figure 3: Two distinct types of Laplacian co-volumes eval-
uated for icosphere starting surface Fr: Voronoi (a.1) and
barycentric (a.2) [17]. The starting surface can also be com-
puted as a level set Sd0 of the distance field d where the maxi-
mum expected size of the (barycentric) co-volume can be es-
timated from 4 neighboring voxels with side cG > 0 (b).

The stability of the sparse linear system derived from
(2) relies heavily on the spectral radius ρ(A) of the sys-
tem matrix A with non-negative diagonal entries. Ac-
cording to Section 3 in [18], the semi-implicit finite
volume approach for curves in R2 leads to stability con-
straint τ ≈ h2 where h > 0 is a spatial step and τ > 0 a
time step. In the co-volume formulation on F this trans-
lates to τ ≈ µ(V ) where µ(V ) is the measure (area) of
a representative co-volume V . Large deviations result
in the formation of singularities5 in F . However, vari-
ability of measures µ(V ) in unstructured meshes allows
only an approximate control ensuring ρ(A)≤ 1.

5 At first glance, we consider these singularities qualitatively
different from those handled by Kazhdan et al. [19].
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The simplest available curvature-preserving heuristic
involves uniform scaling the evolving surface F and its
corresponding distance field d to target set Γ by factor

φ =
(
τ/(σ µ0(V )))1/2, (6)

where σ > 0 is a, so called, shrink factor which ac-
counts for the decrement in average µ(V ). Whenever
one requires a result F t in the original size we simply
scale by the inverse of (6). The mean initial co-volume
measure µ0(V ) is estimated from the starting geome-
try assuming uniform vertex density over the surface.
In the case of an icosphere with radius r > 0, we put
µ0(V ) = 4πr2/Ns

V , where

Ns
V =

(
N0

E(4
s −1)+3N0

V
)
/3 (7)

is the number of vertices under subdivision level s ≥ 0
with N0

V = 12 vertices and N0
E = 30 edges of the base

icosahedron. For the proof of formula (7) see Chapter
5 in [20]. With initial isosurface F0 = Sd0 , we estimate
µ0(V ) = c2

G(4
√

2)/3 for voxel size cG > 0 (see Fig. 3
(b)).
Throughout our experiments with the shrink-wrapping
evolution we keep track of the value µ(V ) per vertex as
well as its bounds and average.

3.4 Remeshing and Feature Preservation

Figure 4: A trade-off between local triangle quality and fea-
ture preservation: Results after using cosine-based (a) and
curvature-based (b) feature detection. Points of the target set
Γ are shown in blue.

Adaptive remeshing [14] introduces deviations from the
evolving surface F when applied. This can be mitigated
using control functions ε+ and η+ with strictly posi-
tive support for signed distance fields that can even be
shifted by some value d̃0 > 0 to achieve better results.
Sparse point cloud sets Γ, however, do not provide val-
ues d < 0, and require the use of different techniques
for freezing points which should not sink below their
respective feature.
In mesh processing, features refer to distinctive subsets
of the mesh surfaces, such as sharp corners, creases, and
boundaries, which carry important information about
the shape of the object being represented. We need
the sensitivity to true features6, and on the other hand
avoid marking false positives at convex-dominant sad-
dle (CDS) points (see Fig.5 (b)), that is: saddle points
with much higher positive curvature.

6 Stemming from the shape of generating set Γ.

Figure 5: (a): An estimate of mean curvature angle γ at vertex
Fi. (b): The imbalance of principal curvatures κmax and κmin
at a convex-dominant saddle vertex. The color values show
mean curvature H.

Since we require an automatic process during surface
evolution, we propose a vertex-based detection evaluat-
ing the angle of mean curvature γ = Hl where l is the
arc length of smooth surface F . In the discrete setting
we evaluate γ i at vertex F i = Fi using neighborhood
mean edge length7: l = 1

m ∑
m
p=1 ∥Fip −Fi∥ where m is

the valence of vertex Fi, and the cotangent estimate of
mean curvature H from [17].
Using γ we convert mean curvature H to a scale-
invariant quantity. Vertices with γ = 2lH < γcrit are
marked as feature. Unfortunately, this alone leads to a
decrease of mesh quality in CDS points – saddle points
where |κmax| < K|κmin| for curvature imbalance factor
K > 1. Such feature elements can be false positives,
and we propose not to mark them. Additionally, we
should also not mark vertices with valence m > 6
because the following adaptive remeshing steps will
avoid fixing them.
Considering the extent of sizes βmin, βmax of axis-
aligned bounding box of Γ and box expansion factor
ζ > 0 for the distance field d we use empirical estimate

r ≈ 0.4(βmin +(0.5+ζ )βmax) (8)

for the radius of the starting icosphere with subdivision
level s. The sizing for remeshing [14] is computed as

lmin = 2λminr sin
(
γico2−(s+1)), lmax = λmaxlmin, (9)

where γico = 2π/5 is the angular segmentation of the
base icosahedron, and λmax > λmin > 0 are controllable
scale factors. Throughout experiments in Section 4 we
empirically put λmin = 0.14, and λmax = 4. For the iso-
surface evolution we change the minimum edge length
factor to λmin = 0.4 and put

lmin = λmin
√

2cG, lmax = λmaxlmin, (10)

where cG is the cell size of the distance field grid. Com-
bined with error εrem = max{∥F −F∥} between linear
approximation F and surface arc F , we obtain adaptive
sizing values for all edges [14] (we set this value to
(lmin + lmax)/4). For our evolving surface, the sizing
needs to be adapted to stabilized scale φ .

7 Also used by [6] to estimate the local radius of curvature for
a surface update term.
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Figure 6: The effect of changing approximation error εrem af-
ter 80 time steps for adaptive remeshing as a multiple of min-
imum edge length lmin = 0.0799 of Armadillo (in stabilized
scale φ = 0.0261).

It should also be noted that strong (low-εrem) adaptiv-
ity may adversely affect co-volume sizing necessary for
stability (see Fig. 6), especially for feature vertices.
To achieve higher level of detail for surface F close to
Γ, the mesh sizing parameters λmin and λmax can be de-
creased for chosen time steps to achieve the effect seen
in Fig. 1. The time step size τ must be adjusted accord-
ingly, to ensure stability as described in Section 3.3.

3.5 Triangle Quality Metrics

Figure 7: Two quality metrics with preference for equilateral
triangles: double inradius over circumradius ratio (a), and Ja-
cobian of the unit equilateral triangle (b) to the planar repre-
sentation T = {v0,v1,v2} in triangle plane: PT .

As mentioned in Section 3.3, the semi-implicit formu-
lation of (2) places restrictions on sizes of co-volumes
and their uniformity across the surface. The resulting
surface FT can then be used, for example, in mechan-
ical FEM analysis [21]. Most importantly, however,
our motivation to ensure that most triangles are as close
to equilateral as possible stems from the possibility of
fast visualization. The rendering of almost-equilateral
triangles can then be accelerated by treating them as
discs, i.e.: fish-scale mesh8 [22]. More information on
the quality of linear elements can be found in Section
1.1.2 of [23].
We choose two metrics measuring "equilateralness",
namely

1. 2rin/rcirc ∈ [0,1] where rin is the inradius and rcirc
is the circumradius of the triangle, implemented in
MeshLab™. For an equilateral triangle 2rin = rcirc.

2. Our customized condition number κ(J∆) of the
equilateral triangle Jacobian J∆ : R2 → R2 inspired
by [24].

8 It is faster to compute disc-ray intersection than triangle-ray
intersection.

When expressing the planar vertex position in the re-
spective basis, we normalize the edge lengths with re-
spect to basis vectors, shown in Fig.7, to account for
scaling.

3.6 Experimental Setup
We implemented our framework in C++ with the help
of the PMP Library9 [15] which provides a versatile
half-edge (suface) mesh representation [26]. As men-
tioned in Section 3.2, we chose the BiCGSTAB solver
with IncompleteLUT preconditioner from the Eigen
library10.

3D visualization of the VTK polydata output is accom-
plished using ParaView from Kitware™. Since VTK
supports only vertex values, we average metrics from
Section 3.5 across triangles adjacent to each vertex.

First, we show the validity of the stabiliza-
tion heuristic from Section 3.3 by measuring
µmax = maxi=1,...,NV µ(Vi), µmin = mini=1,...,NV µ(Vi)

and the mean µ(V ) = 1
NV

∑
NV
i=1 µ(Vi) for all time steps

t ∈ [0,T ]. We also observe how the use of remeshing
reduces the range of values [µmin,µmax].

Since our implementation currently supports two types
of starting surface — icosphere and isosurface (see
Fig.3) — we naturally choose the latter option to
shrink-wrap target data with higher genus. To compare
the efficiency of shrink-wrapping in other approaches,
we select the closest predecessor [7] and the latest work
on Repulsive Surfaces by Yu et al. [4]. Since these
methods achieve a somewhat "incomplete" wrapping
result, we distinguish between two scenarios
• obstacle, with D2 = 0,

• and full-wrap, with D2 > 0,
where D2 is from the advection control function (5).

We judge the experiments based on two criteria:
1. Distance-based: How well the result FT approxi-

mates the target set Γ.

2. Quality-based: What is the triangle quality distribu-
tion of FT according to Section 3.5.

The first criterion can be measured by simply sampling
d on its domain per vertex as d

∣∣
Ft using trilinear in-

terpolation, or we can approximate the Hausdorff dis-
tance:

dH(F t ,Γ) := max
{

sup
p∈Ft

d(p,Γ),sup
q∈Γ

d(F t ,q)
}
, (11)

where d(p,Γ) ≈ d
∣∣
Ft and d(F t ,q) is the value of the

distance field to surface F t at a point q ∈ Γ for all t ∈
[0,T ].

9 The library is inspired by the book with the same name [25].
10 PMP also uses Eigen internally for matrix and vector repre-

sentations.
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Figure 8: The range of co volume measures [µmin,µmax] tested for two target meshes (Armadillo and Bunny), for four different
settings (of constant D2 and with or without adaptive remeshing) with resulting meshes F80τ on the right.

Note that compared to [27] and [28] we choose to
utilize trilinear interpolation within already computed
distance fields over regular grids.

Furthermore, we divide our experiments into the com-
parative and demo categories, with the latter being fo-
cused solely on mesh simplification.

It can be observed that evolutionary algorithms (men-
tioned in Section 2) have a large variety of parameters
to fine-tune. We also deem our overall surface extrac-
tion algorithm to have too many parameters to cover
in this paper. We shall henceforth only mention some
of them while, regarding the rest, we refer to our source
code on GitHub [29] which will also contain the param-
eter settings which will yield the comparative, as well
as, "most representative" results shown in Section 4.

4 RESULTS
4.1 Stability
Since scaling (6) can be weighed by shrink factor σ > 0,
we first assume σ = 1, and observe the values of co-
volume measures µ(V ) for each vertex during Nt = 80
steps. From measures shown, for example, in Fig. 8
we deduce µ(V ) ≈ τ/5 most of the time, so we put
σ = 1/5. It is evident that without remeshing, values
µ(V ) fluctuate even above the time step size τ .

4.2 LSW for Surface Reconstruction
For the comparative evaluation we choose the Bunny
mesh uniformly sampled11 to 12K vertices. Compar-
ing the resulting values in three distinct histogram eval-
uations for the final time step (see Fig. 9), yields a clear
improvement of our method when compared with that
of Daniel et al. [7] in terms of both face quality metrics
due to remeshing. As mentioned in Section 3.6, it was
also important to see how far away the resulting surface

11 From the uniform distribution over all mesh vertex indices
from the original file.

stays from the target point cloud Γ. Clearly, the distri-
bution of distances is smallest for our full wrap config-
uration with the maximum fit. However, in order to im-
prove the effectiveness of feature detection (see Section
3.4) for point cloud targets, we chose value d̃0 =

3
√

3
4 cG

which is the 1.5-multiple of the voxel diagonal half-
length, which is evident in the shift of the histogram
of d

∣∣
F when compared to the results from [7] and [4]

(see Fig. 9).

Figure 9: Comparison of four different LSW experiments via
histograms of per-face (see Section 3.5) and per-vertex metric
d
∣∣
F for the last time step.

Figure 10: Evaluation of (11) throughout evolution.
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Figure 11: Evaluation of κ(J∆) (see Section 3.5) on the shrink-wrapping results from icosphere setup (a), and the higher-genus
isosurface starting surface with given isolevel values d0 > 0.

Figure 12: Comparison of our isosurface setup with the "Enveloping CAD" approach by Hurtado et al.[1].

When examining Hausdorff distance (11), we observe
fast and stable convergence of F towards the target
point cloud Γ in both our Obstacle and FullWrap con-
figurations. Due to the lack of the corrective term with
coefficient D2 in (5), the implementation by Daniel et
al. [7] hangs without reaching the surface with sig-
nificant oscillations. The completely different global
method by Yu et al. [4] finds it difficult to converge to
the target altogether even after more time steps (see Fig.
10).

We also mark the time steps when mesh sizing changes
with symbol ∆. In case of [7] it takes place of a 4:1
triangle subdivision, whereas we use a decay factor of
0.7 for λmin (see Section 3.4) which is, analogously to
[7], applied to time step size τ to ensure stability. In the
case of our implementation and that of Yu [4], remesh-
ing takes place whenever necessary for all time steps.

4.3 High-Quality Simplification
Treating our model as an enveloping tool for mesh
simplification presents its own benefits and challenges.
Most importantly, the simpler topology of the starting

icosphere surface F0 yields higher simplification ra-
tio considering meshes with internal simplices, that is:
those embedded inside the enveloping boundary of the
surface, as in Hurtado et al. [1]. On the flip side, the
shrink-wrapping of datasets with higher-genus envelop-
ing boundaries leads to self-intersections of F . Without
the ability to fix self-intersections by incrementing the
surface genus, we are bound to the genus of the starting
surface F0. That being said, if we construct F0 from a
higher-genus isosurface of the target set distance field
d, we are bound to keep internal cavities if the data al-
ready has some larger than voxel size cG > 0 (see Fig.
12).

In this section, we also present quality assessment via
κ(J∆) of the resulting surfaces FT for a wide variety of
datasets as shown in Fig. 11. Even with a few iterations
of adaptive remeshing whenever the range of κ(J∆)
per triangle exceeds our chosen range in our experi-
ments: [1,1.5] (which slightly exceeds that recomended
in [24]), we are able to maintain the quality of almost all
faces for all time steps. For meshes with significant fea-
tures, such as Armadillo, Bunny, and the higher-genus
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isosurface evolution datasets (Fig. 11 (b)) the use of
curvature-based feature detection as described in Sec-
tion 3.4 inhibits adaptive remeshing on vertices marked
as feature.

Figure 13: Comparison of point cloud reconstruction results
from the Ball-pivoting algorithm and our full-wrap LSW with
sizing 0.005. Boundary edges of the non-watertight resulting
surface are highlighted in green.

5 DISCUSSION AND FUTURE WORK
Our scale-based heuristic shows stable results with ico-
sphere starting surfaces F0 (see Section 4.1). How-
ever, adjusting parameters is necessary for isosurface
F0 to ensure stability. The LSW method excels in
providing the best fit for full-wrap configurations, sur-
passing other surface evolution techniques in Haus-
dorff distance evaluation, demonstrating LSW’s ability
to closely approximate target meshes without sacrific-
ing surface integrity.

When compared to shrink-wrapping techniques like Yu
et al. [4], our approach offers competitive face qual-
ity and significantly better fit via distance-based eval-
uation, particularly excelling in the full-wrap configu-
ration (see Section 4.2).

In addition to the results presented in Section 4, we
must also qualitatively compare our reconstruction
approach to the Ball-Pivoting Algorithm (BPA) [30]
which, unlike the widely-used Poisson Reconstruc-
tion [31], does not require normals for the input point
cloud (see Fig. 13). Unlike BPA, which can introduce
holes, LSW with the full-wrap configuration stands
out in producing watertight surface reconstruction
without the need for point normals. It should be noted,
that unlike BPA, shrink-wrapping approaches merely
approximate the original points.

As a mesh simplification tool, our model offers both
benefits and challenges. The use of an icosphere Fr as
a starting surface simplifies topologies effectively, yet
produces self-intersections for higher-genus target data
Γ. This stems from the fact that the comparison prin-
ciple (see Huisken [32]) no longer holds for the forced
MCF (2). The use of isosurface Sd0 with isolevel d0 > 0,

Figure 14: The formation of self-intersection polylines PI at
time tI > 0 when shrink-wrapping a double torus. Faces inter-
secting at least one other face from surface FtI are highlighted
in red.

on the other hand, does not solve this problem for gen-
eral target data Γ because it preserves undesired cavities
(see Fig. 12).

In our future work we focus on solving the issue of
compatibility with higher-genus data by removing sur-
face patches with inverted normals, and properly con-
necting the remaining faces (see Fig. 14). This will
automatically increment the genus of the evolving sur-
face F whenever self-intersections are detected at time
tI > 0. This approach is the time-inverse of the surgery
technique by Kovács [33], but requires only combina-
torial adjustment when the self-intersection polyline PI
is computed.

We shall also examine the stopping criterion for LSW
to achieve full versatility. Evolution can, for example,
terminate when at least 98% of the points no longer
move, or change their distance d to Γ. Such criteria
need to be formulated for general target data with arbi-
trary genus and features.

Furthermore, our feature detection techniques are in-
sufficient for very sharp features in Γ (see the T-Rex
dataset in Fig. 12), and require further inquiry with var-
ious projection-based techniques.

When it comes to the applications, we consider using
our method for progressively streaming very large mesh
files only by passing well-sampled subset of its ver-
tex table and then reconstructing the sample as a point
cloud. Feature-sensitive stochastic sampling has been
done by Li et al. [34], yet may benefit from our ap-
proach which does not require normals in the input data
Γ. We propose that this progressive vertex-focused file
parsing provides reasonable preview for very large data,
often acquired by modern 3D scans.

6 CONCLUSION
In this work, we have introduced a novel approach
to automated surface extraction that significantly en-
hances the efficiency and accuracy of shaping complex
objects from simple surfaces. By integrating adaptive
remeshing and curvature-based feature detection into
the process of Lagrangian Shrink-Wrapping (LSW), we
have shown that our method not only maintains high
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mesh quality but also ensures proximity to target data
across various configurations.

Our findings demonstrate that the scale-based heuristic
provides a stable foundation for the evolution of ico-
sphere starting surfaces, albeit requiring nuanced pa-
rameter adjustments for other surfaces like isosurfaces.
Notably, our method achieves superior surface fitting in
"full-wrap" configurations, outperforming existing evo-
lutionary methods when assessed using Hausdorff dis-
tance. This precision in approximation without sacri-
ficing surface integrity highlights the potential of our
approach for applications requiring accurate and high-
quality surface reconstructions.

Moreover, our method presents a competitive alterna-
tive to existing surface reconstruction and mesh sim-
plification techniques, such as those proposed by Yu
et al. [4], especially in terms of face quality and the
preservation of intricate geometric features. The abil-
ity of LSW to produce watertight tessellations without
the need for normals in the input data, unlike the Ball-
Pivoting Algorithm, further underscores its utility for
seamless model generation from point cloud data.

As an enveloping tool for mesh simplification, our
approach exhibits a comparable simplification ratio
for meshes with internal simplices, aligning with
the observations of Hurtado et al. [1]. However,
we also recognize the challenges posed by datasets
with higher-genus enveloping boundaries introducing
self-intersections during evolution, which will be the
focus of our future work.

Looking forward, we aim to address the limitations en-
countered with higher-genus data and explore the de-
velopment of more robust feature detection techniques
to capture sharper features accurately. The potential
application of our method for progressive streaming
of large mesh files presents an exciting avenue for re-
search, promising a significant impact on the field of
geometry processing and beyond.
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[20] Martin Čavarga. Mesh primitive counting for-
mulas for subdivision surfaces. In Proc. of the
9th Slovak-Czech Conference on Geometry and
Graphics 2023, pages 67–76, 2023.

[21] Dan Neumayer, Madhukar Chatiri, and Matthias
Höermann. Drop test simulation of a cooker in-
cluding foam packaging and pre-stressed plastic
foil wrapping. 2006.

[22] Radim Sara and Ruzena Bajcsy. Fish-scales: Rep-
resenting fuzzy manifolds. In Sixth International
Conference on Computer Vision (IEEE Cat. No.
98CH36271), pages 811–817. IEEE, 1998.

[23] S.W. Cheng, T.K. Dey, and J. Shewchuk. De-
launay Mesh Generation. Chapman & Hall/CRC

Computer and Information Science Series. CRC
Press, 2016.

[24] Sandia National Laboratories. Metrics for tri-
angular elements. https://www.sandia.
gov/files/cubit/15.3/help_manual/
WebHelp/mesh_generation/mesh_
quality_assessment/triangular_
metrics.htm, 2017.

[25] Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre
Alliez, and Bruno Lévy. Polygon Mesh Process-
ing. AK Peters / CRC Press, 2010.

[26] Daniel Sieger and Mario Botsch. Design, imple-
mentation, and evaluation of the surface_mesh
data structure. In Proc. of the 20th International
Meshing Roundtable, pages 533–550, 2012.

[27] Dejun Zhang, Fazhi He, Soonhung Han, Lu Zou,
Yiqi Wu, and Yilin Chen. An efficient approach
to directly compute the exact hausdorff distance
for 3d point sets. Integrated Computer-Aided En-
gineering, 24:261–277, 2017.
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