
Reevaluation in Rule-Based Graph Transformation
Modeling Systems

Maxime Gaide1 David Marcheix2 Agnès Arnould3

Xavier Skapin3 Hakim Belhaouari3 Stéphane Jean2

1ISAE-ENSMA Poitiers, Université de Poitiers, LIAS, Poitiers, France
2Université de Poitiers, ISAE-ENSMA Poitiers, LIAS, Poitiers, France
3Université de Poitiers, Univ. Limoges, CNRS, XLIM, Poitiers, France

firstname.lastname@{1,2ensma, 3univ-poitiers}.fr

Abstract
In this paper, we widen the naming problem studies to the rule-based graph 3D transformation modeling systems.
We propose a persistent naming method taking advantage of the generalized maps’ and graph transformation rules’
formalization of simple operations. It enables a unique and homogeneous characterisation of entities in all dimen-
sions. Most existing methods require tracking numerous topological entities and consider the persistent naming
problem only from the parameters’ modifications of a parametric specification standpoint. With our solution, not
only the naming problem is tackled within the usual framework of parameters edition, but we also take the specifi-
cation edition into account (addition, deletion and displacement of operations). Moreover, our solution makes use
of directed acyclic graphs to represent the histories of topological entities and to track only the entities used in the
parametric specification and the ones they originate from.

Keywords
Topology-based modeling; Graph transformation rules; Persistent Naming; Reevaluation; Generalized maps;

1 INTRODUCTION
The ability to generate multiple variants of an object
during a construction process is becoming increasingly
frequent in many application areas. Most of the time,
tools and operations used to create those variants are
dedicated to specific fields and the construction pro-
cess is often both tedious and time-consuming. For
example, in the field of Archaeology, remaining data
found on the working field often represent only ves-
tiges of ancients buildings. By means of 3D repro-
duction, archaeologists painstakingly develop a number
of hypotheses they expect to test while being able to
quickly model and visualize them [QB15]. CAD uses
parametric history-based systems; such systems can be
thought as dual structures with, on the one hand, the
geometric model corresponding to the modelled object
and, on the other hand, the successive operations (and
their parameters) recorded during the construction pro-
cess. This process can then be reevaluated after some
slight modifications upon the operations, without start-
ing all over again from the beginning. Nevertheless,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

creating complex objects always requires a substantial
amount of time. Modeling buildings is also of interests
for architects. Grammar-based procedural methods are
commonly used to generate variations of constructions
[HMV09; Mül+06]. But those grammars are based on
a specific corpus of information which is difficult to
transpose to other case studies.

In this paper, we propose to use a rule-based graph 3D
transformation formalism, and more specifically the
Jerboa software [Bel+14], to make the development
of dedicated modelers for specific applications easier.
Rule-based languages for modeling are commonly
used in a number of fields such as plant growth
with L-systems [Lin74; BTG15], wood’s internal
structure [Ter+09], or virtual cities 3D models [ESR;
Bei+10]. Contrary to other approaches, Jerboa is
independent from any specific application field and
does not require ad hoc operations to be manually
coded. Simple operations are formally defined as rules
within the Jerboa interface, thereby facilitating their
rapid development. Furthermore, it guarantees the
topological consistency of the underlying geometric
model, regardless of the applied operations [Arn+22].
Jerboa is based on the generalized maps (or G-maps)
topological model [Lie91; DL14]. This model rep-
resents a specific class of labelled graph and allows
the homogeneous modeling of quasi-manifolds in any
dimension. Number of applications already make use
of Jerboa and/or G-maps in fields such as plant growth

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401
http://www.wscg.eu WSCG 2024 Proceedings

117https://www.doi.org/10.24132/CSRN.3401.13

(a) Initial evaluation

(b) Reevaluation

Figure 1: Parametric specification

[BTG15], architecture [Hor+09; ALS15], geology
[HH00] or physics-based modeling [Ben+17]. Despite
its advantages, Jerboa does not provide the mecha-
nisms required to quickly reevaluate variations from
a base model. Conversely, history-based parametric
systems take advantage of the construction process
recording to make reevaluations as fast and accurate
as possible. Thus, our objective is to extend the
capabilities of Jerboa by incorporating the mechanisms
inherent in parametric systems. Any reevaluation
of the parametric specification entails modifying the
parameters of the operations. Those parameters are
either geometric (such as the length of a groove) or
references topological entities (vertices, edges, faces
and so on) defined at an earlier stage of the modeling
process. Modifying some operation parameters re-
quires ensuring that the subsequent operations are still
valid, even if their own parameters have been updated.
This issue, known as persistent naming, is illustrated
in Fig. 1. The initial parametric specification consists
of three constructive operations (Fig. 1a): 1-Create-
Cylinder(geo_param1); 2-RoundedGroove(f1,

geo_param2); 3-CylindricalProtrusion(f2,

geo_param3). When identifiers or pointers (i.e.
concrete names) to the topological parameters of a
geometric model (e.g. the identifier of the face f2
as a parameter of the CylindricalProtrusion
operation) are used as topological parameters, the issue
of the persistence of these references at reevaluation
comes up. For example, in Fig. 1b, the rounded
groove’s length is reduced. The face f1 is not split
anymore, unlike during the initial evaluation. Thus,
neither face f2 nor face f3 are created: identifiers
and pointers to the entities are obviously different
and, therefore, the cylindrical protrusion can no longer
be re-applied onto f2. Hence the necessity to use
persistent identifiers as operations parameters, which
make possible to unambiguously characterize entities
and find their match at reevaluation. In Fig. 1, using
a persistent name to characterize f2 during the initial
evaluation allows matching it with the face fx at
reevaluation. Although persistent naming has been
studied for decades in the CAD’s field [Wu+01; MH05;
Mar06; Bab10; Xue+16; FH18; Saf+20; CBS23;
DZ24], to our knowledge two preliminary approaches

have attempted to use graph transformation rules to
tackle this issue [Car+19; Gai+23b]. In [Car+19], the
authors propose to use History Records (HRs) to rep-
resent the history of any topological entity designated
in parametric specification and Matching Trees (MT)
to match this entity during reevaluation. This is an
interesting initial theoretical approach based on graph
transformation, but the history represented in HR is
limited. In particular, no distinction is made between
the entities at the origin of the designated entity and the
evolution of the designated entity itself. Furthermore,
some elements are omitted in HRs (such as the history
of entities at the origin of the designated entity),
which can lead to mismatches during reevaluation.
In the concise poster paper [Gai+23b], the authors
propose a full persistent naming mechanism based
on graph transformation rules. They also propose
to complete the histories of topological entities by
taking their origins into account and integrate them in
a reevaluation mechanism. In this paper, we base our
work on [Gai+23b] to integrate the complete history
of topological entities. Our contribution is twofold.
First, we widen the naming problem studies to the
rule-based graph transformation modeling systems.
Second, we integrate the mechanisms of reevaluation
for parametric systems into Jerboa.
We propose a persistent naming method taking advan-
tage of the rule-based formalization of operations and
their ability to precisely describe the history of topo-
logical entities, such that these entities are uniquely and
homogeneously characterized for all dimensions. Most
existing methods require tracking numerous topologi-
cal entities and consider the persistent naming prob-
lem only through the prism of parameters modifica-
tions from a parametric specification standpoint[CH95;
Wu+01]. Our solution tracks only the entities used in
the parametric specification and the ones they originate
from. Moreover, not only the naming problem is tack-
led within the usual framework of parameter edition,
but we also take the specification edition (i.e. adding,
deleting and reordering of operations) into account.
In section 2, we present the necessary concepts to carry
out persistent naming mechanisms within the frame-
work making use of graph transformation rules. We
focus on G-maps, Jerboa’s rules, and on how to au-
tomatically detect topological changes (creation, dele-
tion, split, merging, modification) that may occur upon
any rule application. Section 3 is dedicated to the
data structures used by parametric specifications and
persistent naming. Section 4 describes how a para-
metric specification is evaluated or reevaluated through
directed acyclic graphs which track the evolutions of
topological entities and the ones they originate from.
Section 5 presents the matching process between evalu-
ated and reevaluated entities. We conclude in section 6
and present the main directions of our future works.

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401
http://www.wscg.eu WSCG 2024 Proceedings

118https://www.doi.org/10.24132/CSRN.3401.13

(a) (b) (c) (d) (e)

Figure 2: Cell decomposition of a geometric 3D object

a

(a)

a

(b)

a

(c)

a

(d)

a

(e)

Figure 3: Orbit decomposition of a geometric 3D object

2 MAIN CONCEPTS
In this section, we present the generalized maps, graph
transformation rules and their subsequent concepts
which are necessary to the understanding of our
contribution.

2.1 Generalized maps
Generalized maps (or G-maps) [Lie91; DL14] allow the
representation of manifold geometric objects (with or
without boundaries), based on a cellular n-dimensional
topological structure. The representation of an object as
a G-map comes intuitively from its decomposition into
topological cells (vertices, edges, faces, volumes, and
so on). For example, the 3D topological object (Fig. 2a)
can be decomposed into two volumes (Fig. 2b): a cube
and a pyramid. These volumes are linked along their
common faces with a 3-link, drawn in green. The in-
dex "3" means that the link connects two 3-dimensional
(possibly a single one) volumes. In the same way, vol-
umes are split into faces connected with blue 2-links
(Fig. 2c). Then, faces are split into edges connected
with red 1-links (Fig. 2d). Lastly, edges themselves are
split into vertices with black 0-links (Fig. 2e) to produce
the 3-G-map describing the objects shown in Fig. 2a. A
G-map is therefore a graph, the nodes (named darts) are
vertices of edges of faces of volumes and the arcs are i-
links. By convention, border darts have 3 loops which
are not represented to make the figures easier to read.

G-maps have conditions guaranteeing objects consis-
tency, for example, two faces are always linked along
an edge.

Topological cells are not explicitly represented in G-
maps but only implicitly defined as subgraphs named
orbits. They can be computed using graph traversals
defined by an originating dart and by a given set of
link labels. For example, the 0-cell (or the object’s

vertex) incident to some dart a (Fig. 3a) is the sub-
graph which contains a and all darts reachable from a,
using links labelled by 1, 2 or 3 and the links them-
selves. This subgraph is denoted by G⟨1,2,3⟩(a) where
⟨1,2,3⟩ is the type of the orbit and models a vertex.
The 1-cell (or edge) incident to a (Fig. 3b) is the sub-
graph G⟨0,2,3⟩(a) which contains a and all the reach-
able darts using links labelled by 0, 2 or 3 and the cor-
responding links. The 2-cell (or face) incident to a
(Fig. 3c) is the orbit G⟨0,1,3⟩(a). The 3-cell (or vol-
ume) incident to a (Fig. 3d) is the orbit G⟨0,1,2⟩(a).
Note that orbits are more general than cells. For exam-
ple, the volume edge G⟨0,2⟩(a) (Fig. 3e) is the ⟨0,2⟩-
orbit incident to a.

2.2 Graph transformation rules
Jerboas’s [Bel+14; Arn+22] graph transformation rules
allow the formalization of operations over G-maps. In
a few words, a rule r : L −→ R and a match m : L → G
to a G-map G, describe the transformation G −→r,m H
from G to H. The match m allows the replacement of
a subgraph of G described by the left-hand side of the
rule L with another one described by the right-hand side
R, in order to produce H.

Informally, in the extrusion rule (Fig. 4), the left-hand
side is made of only one node n1 (orange) labelled with
the ⟨0,1⟩ face type: this way, it can match any face.
For the match m : n1 7→ 6 from L to G (Fig. 5a), the
node n1 matches the whole face G⟨0,1⟩(6). On the right
side, the node n1 label remains ⟨0,1⟩. This means that,
after applying the rule, the matched face ⟨0,1⟩(6) has
been preserved, in other words G⟨0,1⟩(6) = H⟨0,1⟩(6)
(Fig. 5). In R, the new node n2 (blue) creates, a copy
of the matched face in H. However, n2’s label is
⟨0,_⟩ meaning that 0-links are preserved and 1-links
are deleted. Therefore, n2 creates face edges ⟨0⟩ from

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401
http://www.wscg.eu WSCG 2024 Proceedings

119https://www.doi.org/10.24132/CSRN.3401.13

<0, 1>

n1

2

<0, 1>

n6

<_, 2>

n3

<0, _>

n5

<0, 1>

n1

<0, _>

n2

<_, 2>

n4

0

3

1

3

2

3 3

21

3

Figure 4: Rule extruding a face into a volume

65

(a) Graph G: matched by n1

6
8
9

10

33

35
46
47 11

12

5

(b) Graph H : a cube

Figure 5: Extrusion of a face into a cube (rule Fig. 4)

the edges of the matched face. In a similar way, n3
(pink) creates another copy of the matched face. Be-
cause it is labelled ⟨_,2⟩, 0-links are deleted, 1-links
relabelled with 2, n3 creates edge vertices ⟨2⟩ from the
matched face’s vertices. Finally, the nodes n4, n5, n6
create the same orbits than nodes n3, n2 and n1, respec-
tively. The nodes’ labels, called implicit arcs, match the
highlighted links (Fig. 5b).

The arc between n1 and n2, called explicit arc, is 2-
labelled in the extrusion rule (Fig.4) and 2-links one-
to-one the preserved orange darts and the created blue
darts (Fig. 5). Similarly, the explicit arc between n2 and
n3, 1-links one-to-one the blue and pink darts.

The node n1 (Fig. 4) is a preserved node because it be-
longs to both the left and right-hand sides of the rule.
Nodes n2 to n6 are created nodes because they belong
only to the right-hand side. Deleted nodes belong only
to the left-hand side. Note that the extrusion rule does
not have any deleted node.

The orbit notion is extended to patterns of rules.

Jerboa’s rules provide syntactic properties which guar-
antee the preservation of the consistency of G-maps
[Arn+22].

2.3 Orbit tracking

<0, 1, 3>

n0

<1, 2, 3>

n2

<0, _, 3>

n0

<_, 2, 3>

n1

1 0

Figure 6: Rule triangulating a face

33

(a) Graph H: front face
matched by n0

127

(b) Graph I: triangulated
front face

Figure 7: Triangulation of a face (rule Fig. 6)

Rules contain the necessary information characterizing
the topological changes affecting an orbit throughout an
application [Gai+23a]. Thus, the tracking of an orbit is
automatically made without any addition other than the
rules’ syntactic analysis.

Consider the example of the triangulation (Fig. 6) and
its application on H’s dart 33 (Fig. 7a). The left-hand
side of the rule matches the whole green square face
H⟨0,1,3⟩(33) while its right-hand side splits it into four
green triangles in graph I (Fig. 7b).

Similarly to G-maps’ orbits, in the left-hand side of the
rule, the ⟨0,1,3⟩-orbit incident to n0 is the orbit contain-
ing the node reachable through arcs labelled in ⟨0,1,3⟩
and those same arcs. This left-hand side orbit is writ-
ten L⟨0,1,3⟩(n0). Therefore, L⟨0,1,3⟩(n0) is the orbit
matching the green face.

In green (Fig. 6), an 1-arc connects the nodes n0 and
n1 and a 0-arc connects n1 and n2, thus forming the
⟨0,1,3⟩-orbit (face) incident to n0. This orbit matches
the four faces resulting from the application of the rule
(Fig. 7b). The syntactic analysis of the rule allows us
to deduce that the face orbit is split along its implicit 1-
arcs because the second implicit 1-arc of n0 in the left-
hand side is relabelled outside of the face ⟨0,1,3⟩-orbit
type in the right-hand side. Consequently, the matched
face of graph H is split along its vertices’ 1-links and
into four faces in graph I. Similarly, a rule merges two
or more ⟨o⟩-orbits when a k-th implicit arc is relabelled
from i to j, where i ̸∈ ⟨o⟩ and j ∈ ⟨o⟩, while there was
no such k-th implicit arc in any node of the left-hand
side.

In red, the vertex orbit R⟨1,2,3⟩(n2) incident to n2,
matches the vertex I⟨1,2,3⟩(127). Since R⟨1,2,3⟩(n2)
only contains n2 which has been created, thus the orbit
itself is created and the application of the rule creates
the vertex I⟨1,2,3⟩(127).

In blue, the face vertex ⟨1,2⟩-orbit incident to the pre-
served node n0 matches the face vertices of the green
face such as the vertex orbit H⟨1,2⟩(33). The node n1
is added to the orbit through a 1-arc, R⟨1,2⟩(n0), thus
modifying it. Consequently, the matched face’s vertices
of graph H are modified in graph I.

Finally, the face edge ⟨0⟩-orbit incident to the preserved
node n0 matches the green face’s edges in H. Since no
node is added nor deleted from the orbit nor any arc is
relabelled, thus the orbit is not modified.

Through this analysis, topological changes can be
logged within bulletin boards which are automatically
computed without requiring any other intervention.

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401
http://www.wscg.eu WSCG 2024 Proceedings

120https://www.doi.org/10.24132/CSRN.3401.13

6

(a)

46

(b)

47

(c)

33

(d)

63

(e)

55

(f)

35

(g) (h)

Figure 8: Evaluation (a) 1-square(pos); (b) 2-extrude(PN1,vec); (c) 3-insert(PN2); (d) 4-extrude(PN3,vec); (e) 5-
triangulate(PN4); (f) 6-collapse(PN5); (g) 7-chamfer(PN6); (h) 8-colour(PN7)

3

(a)

6

(b)

59

(c) (d)

35 50

(e)

71

(f)

63

(g)

)

37 52

(h) (i)

Figure 9: Reevaluation (a) 1-square(pos); (b) ADD1-insert(3); (c) 2-extrude(PN1,vec); (d) DELETE 3-insert(PN2);
(e) 4-extrude(PN3,vec); (f) 5-triangulate(PN4); (g) 6-collapse(PN5); (h) 7-chamfer(PN6); (i) 8-colour(PN7)

3 PARAMETRIC SPECIFICATION
During an object’s construction, a parametric specifi-
cation records both the rules representing the applied
operations and their parameters (both topological and
geometric) in order to describe the modeling process.
Editing a parametric specification means that rules may
be added, deleted, moved, and their parameters can be
changed. With such changes, the topological parame-
ters may have different concrete names, be deleted and
so on. As a result, using the parameters’ concrete names
eventually lead to unexpected results (at best) or failure
at runtime. To this end, persistent names are required to
robustly identify topological parameters across an ob-
ject reevaluation.

This section will follow the evaluation (Fig. 8) of a
modeling process as an example in order to illustrate
the creation of a parametric specification and its persis-
tent names. Its reevaluation (Fig. 9) illustrates a variant
modeling process where a rule is added between appli-
cations 1 and 2, and where the application 3 is deleted.

In this paper, all the figures were generated using Jer-
boa and the software overlay developed to implement
the concepts presented in this section and the follow-
ing ones. An overview of the results can be found here:
http://xlim-sic.labo.univ-poitiers.fr/jer

boa/doc/model-reevaluation-based-on-gra

ph-transformation-rules/

3.1 Persistent name
Since rules use darts as topological parameters, it fol-
lows that each persistent name must represent a unique
dart. As it happens, rules make it possible to determine
unambiguously, which node filters or creates any dart.

<>
n4

<>
n1

<>
n3

<>
n7

<>
n6

<>
n2

<>
n0

<>
n5

1

2

23

0

2

2
2

3

11

2

0

3
1

2
32

3

3
0

3

0

3

ø

Figure 10: Rule creating a square face

For example, the square rule (Fig. 10) creates 8 darts
ex nihilo (Fig. 8a), one per node. Thus, dart 3 is cre-
ated during the first application, by the square’s node
n3. The history of dart 3 is noted [1n3]. Similarly, since
dart 5 (resp.) 6 is created by node n5 (resp. n6), its
history is [1n5] (resp. [1n6]).

The second application (Fig. 8b and for more details
Fig. 5) of the face extrusion rule (Fig. 4), creates darts
from the matched darts. This rule is applied on the
square face created during the first application. Since
this face contains 8 darts, each of them is matched by
node n1 of the extrusion rule (Fig 5). As a consequence,
nodes n2 to n6 create darts copied from the 8 matched
darts. Therefore, dart 6’s history is now [1n6;2n1], its
copy 8’s history is [1n6;2n2], its copy 9’s history is
[1n6;2n3], its copy 10’s history is [1n6;2n4] and so on.
Similarly, histories of darts 46 and 47 are [1n5;2n5] and
[1n5;2n6], respectively.

For the same reason, histories of darts 33 and 35 are
[1n3;2n2] and [1n3;2n4], respectively. It follows that
the cube’s 48 darts all have a different history.

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401
http://www.wscg.eu WSCG 2024 Proceedings

121https://www.doi.org/10.24132/CSRN.3401.13

http://xlim-sic.labo.univ-poitiers.fr/jerboa/doc/model-reevaluation-based-on-graph-transformation-rules/
http://xlim-sic.labo.univ-poitiers.fr/jerboa/doc/model-reevaluation-based-on-graph-transformation-rules/
http://xlim-sic.labo.univ-poitiers.fr/jerboa/doc/model-reevaluation-based-on-graph-transformation-rules/

<0, 2, 3>

n0

<1, 2, 3>

n1

<_, 2, 3>

n0

0

Figure 11: Rule inserting a vertex on an edge

The third application (Fig. 8c) uses the rule inserting a
vertex on an edge. Both darts 46 and 47 are matched
by node n0 of the insertion rule. Their respective his-
tories are [1n5;2n5;3n0] and [1n5;2n6;3n0] now. Con-
versely, darts 33 and 35 have not been not matched dur-
ing the vertex insertion and their respective histories re-
main [1n3;2n2] and [1n3;2n4]. The object’s 52 darts,
again, have each a different history.

In short, the history of any dart of the topological model
is entirely defined by the rules applied during the evalu-
ation process. This process guarantees to associate each
dart with a unique history; hence, we use this history as
the persistent name of the dart. Therefore, PN1 = [1n6],
PN2 = [1n5;2n5], PN3 = [1n5;2n6;3n0] and so on.

3.2 Parametric Specification syntax
A number of fields are used to describe an application
within a parametric specification, namely an applica-
tion number, a rule application with the topological pa-
rameters and the geometric parameters.

Listing 1: Initial parametric specification
1-square(pos)
2-extrude(PN1=[1n6], vec)
3-insert(PN2=[1n5;2n5])
4-extrude(PN3=[1n5;2n6;3n0], vec)
5-triangulate(PN4=[1n3;2n2])
6-collapse(PN5=[1n4;2n6;4n6])
7-chamfer(PN6=[1n5;2n6;3n0;4n4;6n2])
8-colour(PN7=[1n3;2n4;5n0])

The parametric specification above represents the mod-
eling process of an initial evaluation (Fig. 8) where each
persistent name uses the history of the dart’s number
displayed in the previous construction step (dart 6 for
PN1, 46 for PN2, 47 for PN3, 33 for PN4 and so on.).
Furthermore, a set of tags are used to describe an ap-
plication whenever it is either added (ADD), deleted
(DELETE) or moved (MOVE) at reevaluation. Thus, the
initial parametric specification, once edited as shown
in List 2 produces the reevaluation process shown in
Fig. 9.

Listing 2: Edited parametric specification
1-square(pos)
ADD1-insert(3)
2-extrude(PN1=[1n6], vec)
DELETE 3-insert(PN2=[1n5;2n4])
...
8-colour(PN7=[1n3;2n4;5n0])

4 EVALUATION
Although a persistent name represents the history of a
dart, an orbit is subject to topological changes and, thus,

requires the construction of its own history in order to
be accurately matched at reevaluation. Once the ini-
tial evaluation (Fig. 8) is done and its parametric spec-
ification (1) has been built, an evaluation’s Directed
Acyclic Graph (or DAG) must be issued for each per-
sistent name before any parametric specification can be
reevaluated. An evaluation DAG traces the history of
each topological parameter back to the first created or-
bits it originates from, thus allowing the matching of
the corresponding topological parameter at reevaluation
time.

4.1 Evaluation DAG
An evaluation DAG is built parsing the applications and
nodes of a persistent name from end to start. It is sorted
by levels representing the different applications inside
a history. Each level is made of an orbit level and an
event level. The orbit level contains a node’s name and
some orbits. The event level contains a rule’s applica-
tion number and some events.

For example, let us consider PN3 = [1n5;2n6;3n0]
(Fig. 8d). PN3 represents the topological parameter
upon which the face extrusion rule is applied. This
rule is filtered by hook n1, matching the face ⟨0,1⟩(47)
(Fig. 8c). The matched orbit’s history is built from its
dart’s history (i.e. its persistent name). The DAG is
built bottom-up by a backward traversal through the
persistent name. Since PN3 is made of 3 parts, its
evaluation DAG contains 3 levels. The last part of PN3
is 3n0, meaning that the dart of interest is filtered by the
node n0 of the third operation in the initial parametric
specification. Therefore, the Orbit level 3 contains both
n0 and the matched orbit ⟨0,1⟩. As shown in (List. 1),
the third operation is the vertex insertion on an edge
(Fig. 11). The right side of this rule has modified the
orbit ⟨0,1⟩(n0). We infer that the Event level 3 contains
the third operation (3-insert) and the event’s name
MODIFICATION.

Continuing through the persistent name’s backward
traversal, the previous element 2n6 allows determining
the DAG’s second level in a similar way. Finally,
1n5 allows computing the first level. At last, the
produced evaluation DAG (Fig 12) represents the
volume face ⟨0,1,3⟩-orbit’s history resulting from
applying 4-extrusion. This DAG can be read
top-down:

Level 1 The application 1-square creates the volume
face ⟨0,1⟩(n5).

Level 2 From this volume face, 2-extrusion creates
the volume face ⟨0,1⟩(n6).

Level 3 Finally, this latter volume face is modified by
3-insert, inserting a vertex on its edge.

The application of the extrusion rule matches face
⟨0,1⟩(n5). Then, the extrusion creates the face

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401
http://www.wscg.eu WSCG 2024 Proceedings

122https://www.doi.org/10.24132/CSRN.3401.13

CREATION

⟨0, 1⟩

CREATION

1

⟨0, 1⟩

n5

MODIFICATION

2-extrusion

⟨0, 1⟩

n6

3-insert

n0

1-square Event level 1

Orbit level 1

Event level 2

Orbit level 2

Event level 3

Orbit level 3

Figure 12: PN3’s evaluation DAG

⟨0,1⟩(n6) (Fig. 8b). Finally, applying the vertex
insertion rule modifies the face ⟨0,1⟩(n0) (Fig. 8c).

The syntactic analysis of the rules enables events to be
computed only once. These events can be stored in
cache to automatically build other evaluation DAGs.

4.2 Traces and origins
In order to accurately represent the history of an orbit,
two types of arrows are used in an evaluation DAG (and
later in the reevaluation DAG): black trace arrows and
red origin arrows.

A black trace arrow allows orbit evolution tracing. For
example, the triangulation rule splits an initial face into
multiple subfaces. If one of these subfaces is referenced
in the DAG, it is connected by a trace arrow to the initial
face. Therefore, a trace arrow connects two orbits of the
same dimension. A red origin arrow allows linking an
orbit with the orbit that generated it, thereby connecting
two orbits of potentially different dimensions. For ex-
ample, continuing with the triangulation rule (Fig. 6),
we observe that upon applying this rule, each edge of
the initial face generates a different subface. If any of
these subfaces is referenced in the DAG, it is then con-
nected by an origin arrow to the edge that generated it.
This is what can be observed considering again the ex-
ample in Fig. 8 and more precisely the colour rule’s PN7
parameter. PN7 represents dart 35’s history and PN7’s
evaluation DAG (Fig. 13) represents the history of the
volume face that needs to be colored (the volume face
adjacent to dart 35). This volume face ⟨0,1⟩(n0) is the
result of operation 5-triangulate which splits the
volume face ⟨0,1⟩(n4) and has the face edge ⟨0⟩(n4) as
its origin (respectively represented by a black and red
arrow between orbit level 2 and event level 3).

As explained in section 4.1, this DAG is built using a
traversal of PN7 and a bottom-up construction. This
process is done in a similar way for both traces and ori-
gins, allowing for an efficient persistent naming mech-
anism that also takes into account the impact of ori-
gin modifications during reevaluation. To illustrate
this, let us consider the previous face edge ⟨0⟩(n4),

which is the origin of the volume face ⟨0,1⟩(n0) that
needs to be colored. Suppose that, due to the addi-
tion of an operation in the edited specification, this ori-
gin may be split into two face edges. Upon applying
5-triangulate, these two face edges will generate
two volume faces, which can then be matched during
reevaluation to the face to be colored, leveraging on the
origin orbit recorded in the DAG.

In a formal way, an origin orbit can be automatically
deduced through the syntactic analysis of a rule. More
precisely, if n is a hook and n′ is not a preserved node
different from n, the origin of an orbit R⟨o⟩(n′) is the
suborbit L⟨o′⟩(n) consisting of the set of n’s implicit
arcs which are:

• rewritten on R⟨o⟩(n′);

• not rewritten on R⟨o⟩(n′) and belonging to ⟨o⟩.

For example, let us calculate the origin of a volume face
(⟨0,1⟩-orbit) resulting from a split in the triangulation
rule (Fig. 6). Only the implicit arc 0 in the L⟨0,1⟩-
orbit incident to the hook n0 is rewritten on R⟨0,1⟩(n0)).
Hence, the origin orbit of a volume face split by the
triangulation rule is a face edge (⟨0⟩-orbit). When the

CREATION

⟨⟩

CREATION

CREATION

⟨0⟩

CREATION

1-square

⟨0⟩⟨0, 1⟩

n3

SPLIT

2-extrusion

⟨0, 1⟩

n4

5-triangulation

n0

Event level 1

Orbit level 1

Event level 2

Orbit level 2

Event level 3

Orbit level 3

Figure 13: PN7’s evaluation DAG

orbit is either split or merged, the syntactic analysis al-
lows the deduction of an origin in addition to a traced
orbit. When the orbit is created, if the left-hand side
of the rule is empty (meaning the orbit is created from
scratch), there is neither trace nor origin (event level 1
in Fig. 13 where the 1-square rule creates the edge face
⟨0⟩(n3) from scratch). Otherwise, there is no trace but
an origin (event level 2 in Fig. 13 where the 2-extrusion
rule creates the front face ⟨0,1⟩(n4) of the cube from
the origin previous face edge ⟨0⟩(n3)). When the orbit
is just modified or not modified, there is only a traced
orbit (event level 3 in Fig. 12 where the 3-insert rule
modifies the top face ⟨0,1⟩(n6) of the cube inserting a
vertex on its boundary).

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401
http://www.wscg.eu WSCG 2024 Proceedings

123https://www.doi.org/10.24132/CSRN.3401.13

<0, 1, 3>

n0

<0, _, 3>

n1

<_, 2, 3>

n2

12
<1, 2, 3>

n2

Figure 14: Rule collapsing a face into a vertex

CREATION

⟨0, 1⟩

CREATION

CREATION

⟨1⟩

CREATION

⟨0, 1⟩⟨1⟩

n5

MODIFICATIONNOMODIF

⟨0, 1⟩⟨1⟩

n6

CREATIONCREATION

3-insert

@1.@2.⟨0, 1⟩⟨1, 2⟩

n0

MERGE

4-extrusion

⟨1, 2⟩

n4

6-collapse

n2

2-extrusion

Event level 1

Orbit level 1

Event level 2

Orbit level 2

Event level 3

Orbit level 3

Event level 4

Orbit level 4

Event level 5

Orbit level 5

1-square

Figure 15: PN6’s evaluation DAG

4.3 Paths to origins
We have defined the origin of an orbit R⟨o⟩(n′) when
n′ is not a preserved node different from the hook. In
the opposite case, it is necessary to add to the origin the
path that allows reaching the implicit arcs of the hook
from n′, because the implicit arcs of an origin are those
of the hook, not those of n′.

For example, in the face collapse rule (Fig. 14), node
n2 is a preserved node different from the hook. As-
sume we want to define the origin of the volume vertex
⟨1,2⟩(n2). A path represents the traversal in the right-
hand side of the rule from the node n2 to the hook node
n0. The traversed explicit arcs from n2 to n0 are, in the
following order, 1 and 2 (written @1.@2 in the evalu-
ation DAG). This can be seen in the PN6’s evaluation
DAG (Fig. 15), where applying 6-collapse gener-
ates a merge of vertices and the origin of the volume
vertex ⟨1,2⟩(n2) is the volume face @1.@2.⟨0,1⟩(n4).
Actually, node n4 of the extrusion rule (Fig. 4) used
at the previous level of the DAG (level 4) matches
dart 55 on the lateral faces of the cube (Fig. 5) be-
cause it is the dart matching the history stored in PN6
DAG (1-square creates the initial bottom volume
face ⟨0,1⟩(n5). Then, 2-extrusion applied on this
bottom face creates the volume face ⟨0,1⟩(n6) which
is then modified by 3-insert in ⟨0,1⟩(n0). Finally,
4-extrusion applied on this modified volume face
creates node n4, which matched dart 55). The volume

face @1.@2.⟨0,1⟩(n4) reached starting from dart 55
and following links 1 and 2 is indeed the top face ex-
pected to be collapsed.

5 REEVALUATION
Each evaluation DAG represents an orbit’s history
which is valid with regards to the initial evaluation.
When reevaluating, editing the parametric specification
makes the topological parameters subject to changes.
Thus, it is necessary to build reevaluation DAGs from
the evaluation DAGs in order to update topological
parameters. Once built, a reevaluation DAG can
designate one, several, or no orbit depending on the
editing of the parametric specification.

In this section, we keep using the previous example
(Fig. 8 and 9) and its edited parametric specification
(Lists 1 and 2), containing an added vertex insertion on
the square’s edge right after its creation and the deletion
of the vertex insertion on the cube’s edge.

5.1 Reevaluation DAG

CREATION

⟨0, 1⟩

CREATION

1

⟨0, 1⟩

5

NOMODIF

2-extrusion

⟨0, 1⟩

59

DELETE 3-insert

59

1-square Event level 1

Orbit level 1

Event level 2

Orbit level 2

Event level 3

Orbit level 3

Event level 4

Orbit level 4

MODIFICATION

⟨0, 1⟩

ADD1-insert

5

Figure 16: PN3’s reevaluation DAG

Contrary to the related evaluation DAG, a reevalua-
tion DAG is built top-down throughout the reevaluation
process. While an evaluation DAG represents the or-
bit’s history of a topological parameter, the reevaluation
DAG represents the history of this very same orbit after
editing the parametric specification.

For example, let us consider PN3 being the topologi-
cal parameter of 4-extrusion, which extrudes the
cube’s top face to produce a second cube. The reeval-
uation process builds PN3’s reevaluation DAG (Fig. 16
step-by-step from its evaluation DAG (Fig. 12):

Level 1 The application 1-square has no topological
parameter and, thus, is identically reevaluated. Once

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401
http://www.wscg.eu WSCG 2024 Proceedings

124https://www.doi.org/10.24132/CSRN.3401.13

again, its node n5 creates a single dart 5 and the volume
face ⟨0,1⟩(5) is identically reevaluated. This is why the
orbit level 1 of the reevaluation DAG references dart 5.

Level 2 The second application is an added one.
ADD1-insert does match an edge of the tracked
volume face ⟨0,1⟩(5) and modifies it, as deduced
from the rule. Therefore, the event level 2 contains
MODIFICATION and the orbit level 2 contains the
same dart 5 and orbit ⟨0,1⟩.
Level 3 The third application is the extrusion of the
square face into a cube. During its application, dart 5 is
matched by the hook n1 (Fig. 4). From the evaluation
DAG, the tracked dart is the copy of dart 5 created by
node n6. Applying the rule allows finding out this dart,
numbered 59.

Level 4 Finally, the last application of PN3 is deleted.
Consequently, the modification that occurred during the
initial evaluation does not occur at reevaluation. There-
fore, the event level 4 contains NOMODIF and the orbit
level 4 contains the same dart 59.

The reevaluation DAG identifies the concrete name us-
ing its persistent name. PN3’s concrete name is 59 (cf.
Fig. 9c and 9e). We now study a more complex exam-

CREATION

⟨0, 1⟩

CREATION

CREATION

⟨1⟩

CREATION

⟨0, 1⟩⟨1⟩

5

NOMODIFNOMODIF

⟨0, 1⟩⟨1⟩

59

CREATIONCREATION

DELETE 3-insert

@1.@2.⟨0, 1⟩⟨1, 2⟩

59

MERGE

4-extrusion

⟨1, 2⟩

63

6-collapse

63

2-extrusion

Event level 1

Orbit level 1

Event level 2

Orbit level 2

Event level 3

Orbit level 3

Event level 4

Orbit level 4

Event level 5

Orbit level 5

Event level 6

Orbit level 6

1-square

MODIFICATION

⟨0,1⟩

NOMODIF

⟨1⟩

ADD1-insert

5

Figure 17: PN6 reevaluation DAG

ple with the reevaluation DAG of PN6 (Fig. 17),which
represents the pyramid’s top vertex (Fig. 8f):

Level 1 to 4 These three levels are similar to PN3’s
reevaluation DAG (Fig. 16), with the tracking of

the volume face vertex ⟨1⟩-orbit in addition to the
⟨0,1⟩-orbit one. The ⟨1⟩(5)-orbit is created by the
1-square application. ADD1-insert matches and
preserves one dart of this orbit with the node n0 of
the insertion rule (Fig. 11). Thus, the event level 2
contains NOMODIF. Then, this orbit is copied to create
a new volume face vertex by 2-extrusion. Again,
DELETE 3-insert does not modify the orbits.

Level 5 The fifth application 4-extrusion of the ex-
trusion rule (Fig. 4) matches the volume face ⟨0,1⟩ with
its hook n1 and creates a copy of dart 59 dart 63. As in
the initial evaluation, it creates a volume vertex and a
face. Then, the event level contains two CREATION.
The orbit level references dart 63 and contains both or-
bits ⟨1,2⟩ and @1.@2.⟨0,1⟩.
Level 6 Finally, while the tracking of 5-collapse
shows that the application keeps merging the volume
vertices incident to the matched face, it preserves dart
63 which is matched by node n2. Therefore, the event
level contains one MERGE and the orbit level references
dart 63 and contains the volume vertex ⟨1,2⟩.
At last, PN6’s concrete name is dart 63 (cf Fig. 9g).

These two examples here are quite straightforward as
there was only one possible candidate dart each time.
However, in some complex specifications, there can be
more than a single dart to choose between.

5.2 Parameter matching strategies
The editing of the parametric specification leads to hav-
ing a different DAG at reevaluation (with event lev-
els and/or branches being added, deleted or both). For
example, an orbit split present in the evaluation DAG
may disappear during the reevaluation, a merging can
be added and so on. Several matching strategies can
then be considered depending on the application’s con-
text. This can be illustrated with PN7’s example which
designates the face that must be coloured (Fig. 8h). The
addition of ADD1-insert application at reevaluation
splits the origin of designated face, resulting in the ad-
dition of a branch in the reevaluation DAG. Let’s work
through PN7’s reevaluation DAG shown in Fig. 18:

Level 1 As seen previously, 1-square creates the
tracked orbits traced in the evaluation DAG.

Level 2 ADD1-insert matches dart 3. Since the ver-
tex insertion rule (Fig. 11) splits the volume face edge
⟨0⟩(3), its history is also split and there are two con-
crete names to consider. It follows that the event level
contains two SPLIT, one for each volume face edge
suborbit, and two NOMODIF, one for each dart 3 and 4.

Level 3 2-extrusion extrudes the square face into
a cube. The extrusion rule (Fig. 4) matches dart 3 with
its hook n1. It extrudes the face edge ⟨0⟩(3) into a vol-
ume face, the dart ⟨⟩(3) into a face edge and its node n2
creates the dart 37 as a copy of dart 3. The same goes

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401
http://www.wscg.eu WSCG 2024 Proceedings

125https://www.doi.org/10.24132/CSRN.3401.13

CREATIONCREATION

⟨⟩⟨0⟩3

1-square

NOMODIFSPLITADD1-insert

⟨⟩3

CREATIONCREATION

⟨0⟩⟨0, 1⟩

SPLIT

2-extrusion

⟨0, 1⟩

37

5-triangulation

37

⟨0⟩⟨0, 1⟩52

SPLIT5-triangulation

⟨0, 1⟩52

SPLIT

4 ⟨⟩

NOMODIF

CREATIONCREATION2-extrusion

Level event 2

Level event 1

Level orbit 1

Level Orbit 2

Level event 3

Level orbit 3

Level event 4

Level orbit 4

⟨0⟩⟨0⟩

Figure 18: PN7 reevaluation DAG

for the history on the right. The rule matches dart 4, it
creates the same two orbits and a dart 52 as a copy of
dart 4. both event levels contain two CREATION. Both
orbit levels contain orbits ⟨0,1⟩ and ⟨0⟩.
Level 4 5-triangulation triangulates the faces
designated by the level above. Both darts 37 and 52
are matched and preserved by the rule.

Upon reevaluation, PN7’s DAG matches to different
darts. An option would be to colour only one face (ei-
ther ⟨0,1⟩(37) or ⟨0,1⟩(52)). Another option would be
to apply 8-colour two times, one for dart 37 and one
for dart 52 (as shown in Fig. 9i which represent our de-
fault strategy). In case the reevaluation DAG has two or
more leaves, it shows all the possible entities that can be
matched for a specific persistent name and to set a strat-
egy up. Either way, such a strategy allows users to have
a choice and best fit their modeling intents, depending
on the application’s context.

6 CONCLUSION
In this paper, we widen the naming problem studies to
the rule-based graph transformation modeling systems.
We take advantage of the formalism of both general-
ized maps and graph transformation rules to tackle the
reevaluation mechanism task. Generalized maps offer
an homogeneous representation of an object in all di-
mensions while Jerboa’s rules define geometric model-
ing operations on which it is actually possible to per-
form syntactical analysis. We implement: a persistent
name scheme where each persistent name represents
a unique dart’s history through the successive applica-
tions of rules and their matching nodes. Then, for each
persistent name, an evaluation DAG is built in order to
trace an orbit’s history from the bottom and up to the or-
bits it originates from. To our knowledge, unlike other
methods, our solution tracks only the entities used in
the parametric specification and the ones they origina-
te from. Representing the complete history of an orbit

in an evaluation DAG allows for an efficient persistent
naming mechanism that takes into account the impact
of both origins and traces modifications during reevalu-
ation. Finally, reevaluation DAGs are built from a top-
down traversal of evaluation DAGs and allow matching
each topological parameter on one or more, sometimes
none, values depending on the editing of the paramet-
ric specification. Thanks to our method, not only the
naming problem is tackled within the usual framework
of parameters edition, but we also take the specifica-
tion edition into account (operation addition, deletion or
move). Moreover, this approach provides all the possi-
ble updated values of the parameters and, thus, enables
implementing different strategies.

More complex operations can make use of several
rules brought together in a script. Later works will
revolve around widening this reevaluation mechanism
to scripts.

REFERENCES
[ALS15] K. Arroyo Ohori, H. Ledoux, and J.

Stoter. “A dimension-independent extru-
sion algorithm using generalised maps”.
In: International Journal of GIS 29.7
(2015), pp. 1166–1186.

[Arn+22] A. Arnould et al. “Preserving consis-
tency in geometric modeling with graph
transformations”. In: Mathematical Struc-
tures in Computer Science 32.3 (2022),
pp. 300–347.

[Bab10] M. Baba-Ali. “Systeme de nomina-
tion hierarchique pour les systemes
parametriques”. PhD thesis. 2010. URL:
http://theses.univ-poitiers
.fr/notice/view/5362.

[Bei+10] J.N. Beirao et al. “Implementing a Gen-
erative Urban Design Model: Grammar-
based design patterns for urban design”.
In: eCAADe. 2010, pp. 265–274.

[Bel+14] H. Belhaouari et al. “Jerboa: A graph
transformation library for topology-based
geometric modeling”. In: International
Conference on Graph Transformation.
Springer. 2014, pp. 269–284.

[Ben+17] F. Ben Salah et al. “A general physical-
topological framework using rule-based
language for physical simulation”. In:
12th International Conference on Com-
puter Graphics Theory and Application
(VISIGRAPP/GRAPP). 2017.

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401
http://www.wscg.eu WSCG 2024 Proceedings

126https://www.doi.org/10.24132/CSRN.3401.13

http://theses.univ-poitiers.fr/notice/view/5362
http://theses.univ-poitiers.fr/notice/view/5362

[BTG15] E. Bohl, O. Terraz, and D. Ghazanfarpour.
“Modeling fruits and their internal struc-
ture using parametric 3Gmap L-systems”.
In: The Visual Computer 31 (2015),
pp. 819–829.

[Car+19] A. Cardot et al. “Persistent naming based
on graph transformation rules to reeval-
uate parametric specification”. In: CADA
16.5 (2019), pp. 985–1002.

[CBS23] D. Cascaval, R. Bodik, and A. Schulz.
“A Lineage-Based Referencing DSL
for Computer-Aided Design”. In: Pro-
ceedings of the ACM on Programming
Languages 7 (2023), pp. 76–99.

[CH95] X. Chen and C. M. Hoffmann. “On ed-
itability of feature-based design”. In: CAD
27.12 (1995), pp. 905–914.

[DL14] G. Damiand and P. Lienhardt. Combina-
torial Maps: Efficient Data Structures for
Computer Graphics and Image Process-
ing. A K Peters/CRC Press, Sept. 2014.

[DZ24] F. Dai and W. Zhao. “A Persistent Nam-
ing Discrimination Method Based on
the Sweeping Direction”. In: 2024 4th
International Conference on Consumer
Electronics and Computer Engineering
(ICCECE). IEEE. 2024, pp. 75–83.

[ESR] ESRI. ArcGIS CityEngine product page. h
ttps://www.esri.com/en-us/ar
cgis/products/arcgis-cityeng
ine/overview. Accessed 2023-05-09.

[FH18] S. H. Farjana and S. Han. “Mechanisms
of persistent identification of topological
entities in CAD systems: A review”.
In: Alexandria engineering journal 57.4
(2018), pp. 2837–2849.

[Gai+23a] M Gaide et al. “Automatic Detection of
Topological Changes in Geometric Mod-
eling Operations”. In: Computer Graphics
and Visual Computing. 2023, pp. 9–18.

[Gai+23b] M. Gaide et al. “Model Reevaluation
Based on Graph Transformation Rules”.
In: Computer Graphics and Visual
Computing. 2023, pp. 61–63.

[HH00] Y. Halbwachs and Ø. Hjelle. “Gener-
alized maps in geological modeling:
Object-oriented design of topological
kernels”. In: Advances in Software Tools
for Scientific Computing. Springer. 2000,
pp. 339–356.

[HMV09] S. Haegler, P. Müller, and L. Van Gool.
“Procedural modeling for digital cultural
heritage”. In: EURASIP Journal on Image
and Video Processing (2009).

[Hor+09] S. Horna et al. “Consistency constraints
and 3D building reconstruction”. In: CAD
41.1 (2009), pp. 13–27.

[Lie91] P. Lienhardt. “Topological models for
boundary representation: a comparison
with n-dimensional generalized maps”.
In: CAD 23.1 (1991), pp. 59–82.

[Lin74] A. Lindenmayer. “Adding continuous
components to L-systems”. In: L systems
(1974), pp. 53–68.

[Mar06] D. Marcheix. “A persistent naming of
shells”. In: International Journal of
CAD/CAM 6.1 (2006), pp. 125–137.

[MH05] D. Mun and S. Han. “Identification of
topological entities and naming mapping
for parametric cad model exchanges”. In:
International Journal of CAD/CAM 5.1
(2005), pp. 69–81.

[Mül+06] P. Müller et al. “Procedural modeling of
buildings”. In: ACM SIGGRAPH Papers.
2006, pp. 614–623.

[QB15] R. Quattrini and E. Baleani. “Theoretical
background and historical analysis for 3D
reconstruction model. Villa Thiene at Ci-
cogna”. In: Journal of Cultural Heritage
16.1 (Jan. 2015), pp. 119–125.

[Saf+20] M. Safdar et al. “Feature-based translation
of CAD models with macro-parametric
approach: issues of feature mapping,
persistent naming, and constraint trans-
lation”. In: Journal of Computational
Design and Engineering 7.5 (2020),
pp. 603–614.

[Ter+09] O. Terraz et al. “3Gmap L-systems: an ap-
plication to the modelling of wood”. In:
The Visual Computer 25 (2009), pp. 165–
180.

[Wu+01] J. Wu et al. “A face based mechanism
for naming, recording and retrieving topo-
logical entities”. In: CAD 33.10 (2001),
pp. 687–698.

[Xue+16] G. Xue-Yao et al. “Name and Maintain
Topological Faces in Rotating and Scan-
ning Features”. In: International Journal
of Grid and Distributed Computing 9
(Mar. 2016), pp. 21–26.

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401
http://www.wscg.eu WSCG 2024 Proceedings

127https://www.doi.org/10.24132/CSRN.3401.13

https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/overview
https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/overview
https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/overview
https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/overview

ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401
http://www.wscg.eu WSCG 2024 Proceedings

128https://www.doi.org/10.24132/CSRN.3401.13

