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ABSTRACT

In this paper, we present a method for segmenting 3D discrete objects into discrete plane segments. This
segmentation is the first step in obtaining a polyhedrization of a discrete object with the reversibility property.
This constraint requires that the discretization result for polyhedrization be exactly the same as the initial set of
points. One of our objectives is to reduce the number of planes in our segmentation and achieve more efficient
surface analysis algorithms. In 3D space, direction and starting point are common issues. Our method attempts
to achieve segmentation by considering surfels one after the other and agglomerating them with their neighbours
based on a distance ranking. This method enables the recognition of critical points on the boundary of a plane
segment. A medical application is illustrated by the presentation of a tumour segmentation.
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1 INTRODUCTION
Discrete surface polyhedrization has received increas-
ing interest in discrete geometry and has been studied
in different papers [BB06, CDJS06, LMR20, LRC22,
SC03, SDC04]. The reconstruction of a discrete 3D
surface is a challenging problem, especially when a re-
duced number of polygons is expected and even more,
when a property of reversibility is required. Recon-
struction is reversible when the digitization of the re-
constructed surface corresponds to the original discrete
surface. The reversibility property ensures that no in-
formation is created or lost during the reconstruction
process which is an important property in sensitive ap-
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plications such as medical imaging. A reconstruction
with fewer polygons helps for fluid and interactive visu-
alization in medical imaging where the volume of data
can be important. It represents a bottleneck in medi-
cal virtual reality: in [PCD21], the authors noted that
for Virtual Reality "[...] results suggest that prerequi-
sites such as real-time performance [...] pose the great-
est limitations for clinical adoption and need to be ad-
dressed".

One of the widely used methods for 3D reconstruc-
tion is the Marching Cubes isosurface extraction algo-
rithm [LC87] that proposes reversible solutions, how-
ever, it generates an important number of triangles that
is proportional to the number of voxels or surface el-
ements (surfels) of the discrete surface. In the dis-
crete geometry community, several algorithms were
proposed for discrete surface polyhedrization. These
approaches are usually decomposed into two steps: seg-
mentation of a discrete surface into plane segments
[BF94, DA09, DCA06, KS01, Pap99, SDC04, VC00],
and reconstruction where each of the plane segments is
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replaced by one or more continuous polygons [CDJS06,
CGS04, DA09, DCA06]. Segmentation into discrete
planes is an important step since it can guarantee the
reversibility property and potentially diminish the num-
ber of polygons in the resulting reconstruction. This
paper is focused on this first step. There is however a
major obstacle to this segmentation process: a segmen-
tation in a minimal number of plane segments has been
shown to be an NP-hard problem [SC09].

Figure 1: The standard discretization of a Euclidian
plane (in blue) of equation x+2y+3z = 1

In this work, we seek a solution that would yield fewer
discrete plane segments in most cases than previously
proposed methods [CDJS06, CGS04, DGT]. Our
method considers surface elements (surfels) instead
of voxels for the reconstruction. This means that we
are going to work with standard plane segments (i.e.
6-connected planes segments) [And03]. The Figure 1
shows what a Standard plane looks like and how surfels
are connected (here face to face). When a segmentation
is computed, the starting point and the direction of
traversal has an important impact on the results. While,
in 2D, on curves, only two directions are possible,
in 3D, each surfel has 4 neighbours and selecting a
specific direction introduces a bias in the segmentation
process. We propose thus labelling on the surfels of our
surface, which depends on the planarity of the surfel
by determining the biggest disk centred on the surfel
that would belong to the same plane. We deduce from
that a queue of plane segment centres. Additionally,
we adapted the notion of k-cuspal cells proposed by
M. Rodriguez et al [RLA08] to propose a geometric
criterion for a somewhat subjective question that has
not been considered often so far: some reconstruction
lead to shapes that may feel more natural than others
(see Figure 2 for an example).
This paper is organized as follows: section 2 states
some definitions and notations. Section 3 presents a
state of the problem and of the art on some existing
segmentation and reconstruction methods. Section 4

details our segmentation method and section 5 shows
some results. We finally end with some conclusions
and perspectives in section 6.

2 DEFINITIONS AND NOTATIONS
In this section, we review some notions and definitions
of discrete geometry that will be used in the following
sections. A definition of a discrete plane, for all points
(x,y,z)∈Z3, has been given by JP. Reveilles in [Rev91]
as follow :

−ω

2
≤ ax+by+ cz+µ <

ω

2

with ω the thickness of the plane, the intersect µ and
(a,b,c) the normal of the plane. There are classically
two types of discrete planes that are considered in dis-
crete surface segmentation problems: naive discrete
planes are the thinnest 18-connected planes without 6-
connected tunnels that can be analytically characterized
by a thickness ω = max(|a|, |b|, |c|) [AAS97] ; Stan-
dard discrete planes are the thinnest 6-connected planes
without tunnels that can be analytically characterized
by a thickness ω = |a|+ |b|+ |c| [And03, AAS97]. In
the literature (see next section), two discrete surface
paradigms have been considered: a voxel and a surfel
paradigm. For the voxel paradigm, the discrete surface
of a three-dimensional object is considered to be con-
stituted by the 18-connected voxel outer layer of the
object. Those voxels are then segmented into naive
planes segments. A discrete plane segment is a finite
set of connected points that belong to a discrete plane.
In the surfel paradigm, each voxel is considered to be
a cubical complex where the 2-dimensional elements
are called surfel, the 1-dimensional elements are called
linel and the 0-dimensional elements pointel. The sur-
face of an object is composed of the outer layer of sur-
fels of the object (all the surfels that belong to a voxel
of the object and to the complementary), and the asso-
ciated linels and pointels that form the boundary of the
surfels. Those surfels are then segmented into standard
planes where each pointel of the surfels is seen as a dis-
crete point of the discrete plane segments.

3 STATE OF THE PROBLEM AND
STATE OF THE ART

3.1 State of the problem
In dimension two, the segmentation of a curve (open
or closed) into discrete line segments has been solved
with a solution that is both linear in time and optimal
in the number of line segments [FT05]. However, in
dimension three, decomposing a discrete surface into a
minimal number of discrete planes has been shown to
be NP-hard [SC09]. This is not completely surprising
since there is no natural order in which discrete points
can be added in a seed-based approach (which is the
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most common approach as we will discuss next) in di-
mension three. Sometimes, there is no better solution
than a trivial one for an object such as the one presented
on the left of Figure 2. All the optimal decomposi-
tions into discrete planes will have a number of plane
segments that are proportional to the number of vox-
els/surfels. You cannot do anything here that would be
better than a simple straightforward local segmentation.
This means that in some cases, globally or locally, one
cannot expect a solution that is not proportional to the
number of voxels/surfels of the surface. The minimality
in the decomposition is not the only relevant question.
One aspect of the decomposition of discrete surfaces
that has not often been taken into account is that some
decomposition feel less natural than others. Both the
middle and the left image of Figure 2 present an opti-
mal segmentation of a surfel cube into six planes, how-
ever, the middle image segmentation may be considered
more natural/expected.

Figure 2: Left: limit configuration. Centre: desired op-
timal decomposition. Right: undesired optimal decom-
position.

3.2 State of the art
Let us now discuss some of the previously proposed
approaches to surface segmentation. In his thesis, L.
Papier [FP99, Pap99], first proposed a method that cre-
ates only segments of naive planes that are rectangular
(with a rectangular projection). In a second method,
with standard discrete plane segments, he used an al-
gorithm based on Fourier-Motzkin elimination. He im-
posed geometric and topologic constraints for the plane
segments that are commonly taken into account now:
connected faces that are homeomorphic to disks. The
authors discussed a number of problems with this line
of methods such as how to choose the starting point for
a face and how to select adjacent surfels to a face and
in which order.

In [KS01], R. Klette et al. proposed a segmentation al-
gorithm based on the resolution of a system of inequal-
ities. Surfels are processed by a breadth first traversal
of the graph of surfel adjacency on the surface. How-
ever, no constraints on the recognized plane segment
were imposed which led to thin and awkwardly shaped
segments.

In her thesis [Siv04], I. Sivignon proposed several seg-
mentation algorithms. She proposed to use the notion
of tricubes (planar sets of 3× 3 voxels) to reduce the
number of small plane segments that can be recognized.

She also considered plane segments that are topological
disks which resulted in a smaller number of plane seg-
ments than previous approaches. Lastly, a side effect
of using tricubes is to make configurations such as the
central image of Figure 2 impossible to reconstruct.

In [CGS04], authors proposed a polyhedrization algo-
rithm that has the property of reversibility with the war-
ranty that the obtained polyhedron is topologically cor-
rect; it is based on the simplification of the Marching
Cube surface. This algorithm has then been extended
in [CDJS06] using linear programming techniques to
reduce the number of plane segments.

A last approach [LMR20] uses an arithmetical approach
to incrementally compute the normal of a plane seg-
ment. Although promising, this approach has not yet
resulted in a plane segmentation algorithm.

4 OUR METHOD
In this section, we present our segmentation method to
decompose a discrete surface into discrete planes seg-
ments.

For the recognition algorithm, we are using an incre-
mental algorithm (COBA) that consists in adding dis-
crete points one after another [CB08]. The recognition
problem in Z3 is transformed into a feasibility problem
in Z2. The function corresponds to the parameter of the
two parallel planes enclosing points, and the diagonal
distance between these two planes. The time complex-
ity of this algorithm in the worst case is O(n log(n)). It
is thus an efficient algorithm for discrete plane recogni-
tion. This algorithm does not provide the preimage of
the set of discrete points but gives the two supporting
planes of the segment. In this work, we recognize stan-
dard discrete planes using the pointels (in the boundary
of surface surfels) of our object.

We work with face-connected voxel objects. From this
set of voxels, we compute a surfel-adjacency graph of
the surface of our object. The discrete surface that we
obtain is closed, thus each surfel has exactly four neigh-
bours.

4.1 Context
Firstly, we need to retrieve the surface of a discrete ob-
ject composed of voxels to obtain an unoriented graph
of surfels. If the surface is closed, each vertex of the
graph has exactly four neighbours, and we limit our
work to this type of object (i.e. manifold). For the
recognition of discrete plane segments, we use the Stan-
dard model to have standard surfaces, edges and ver-
tices [And03].

We recognize standard discrete planes considering the
four pointels of each surfel of our graph as the discrete
points of these planes. A surfel can be added to only one
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plane segment, thus the boundaries between our differ-
ent plane segments are formed of lignels and pointels.
The method implemented in our algorithm consists in
two passes over our set of surfels. The first is used to
compute surfel weights by computing an approxima-
tion of the size of the maximal plane it can belong to
(see section 4.2). The second pass then computes the
segmentation based on the weights while taking care of
special cases (see section 4.3).

4.2 First pass
In this subsection, we present the way we compute the
weights. The weight of each surfel corresponds to the
radius of the biggest Manhattan disk centred on the sur-
fel that corresponds to a standard plane segment. It
is computed with a Breadth-First Search order, with a
method akin to classical distance map computation al-
gorithms.
A surfel priority queue sorted by decreasing surfel
weights is maintained throughout the process.
Figure 3 presents the weight of the surfels on a cube, an
octahedron, and a sphere with a colour gradient from
green to red. Red surfels represent surfels where it is
impossible to create a large plane segment and dark
green are those where a larger plane segment can be
created. We can see that some edges are recognizable
in red. Red points are akin to 3D discrete cusp intro-
duced by M. Rodriguez [RLA08]. In 2D, a point is a
discrete cusp of a discrete curve iff a line segment of
length five centred on this point is not a discrete seg-
ment [BSDA03]. M. Rodriguez [RLA08] generalized
this notion to dimension three.

Figure 3: The weighted surfels of our surface on: a
cube, an octahedron, a digitized mesh of a sphere

4.3 Second pass
In this second pass, we take the surfels one by one in the
surfel priority queue (surfels with the biggest weights

first). The four direct neighbours of the surfel are tested
and depending on the configuration (see Figures 4 and
5), different type decisions are taken. These different
configurations can be described as follows:

• First configurations: The current surfel has no
neighbour already inside a discrete plane segment
where it can be added: either because the neigh-
bours have not yet been treated (Figure 4a) or
because the current surfel cannot be added to any
of the already existing planes (as they wouldn’t
be planes anymore. See Figure 4b). For these
configurations, a new plane segment is created.

• Second configuration: The current surfel has one
and only one discrete plane segment already con-
structed in its neighbourhood where it can be added.
The surfel is simply added to this plane (Figure 4c).

• Third configuration: The current surfel has more
than one discrete plane segment in its neighbour-
hood to which it can be added. To select the best
plane segment to add the surfel to, we choose
to compare the normals of the different plane
segments. We calculate a scalar product between
the normals before and after adding the surfel to
each plane and retain the solution that modifies the
normal the least. The union of the point sets of two
discrete plane segments can also be a discrete plane
segment. Once the segment on which the surfel
is to be added has been selected, we then check
whether other plane segments in the neighbourhood
can be merged with the selected segment. This
configuration potentially reduces the number of
recognized planes at this step (Figure 4).

Figure 4a and 4b describe two different cases related to
the first configuration. In Figure 4a, the yellow surfel
is the one with the biggest weight when compared to
its fours neighbours; it cannot be added to an existing
plane since no plane exists yet in his neighbourhood. In
Figure 4b, the yellow surfel cannot be added to the al-
ready existing red plane since the red plane is no more
a standard plane when adding this surfel. In these two
cases for configuration 1, a new plane segment is cre-
ated that can then aggregate other surfels.

Figure 4c shows an example of the second configura-
tion. The yellow surfel has one of its neighbours in the
green plane it can be added to. This plane is the only
current plane segment in its neighbourhood, it will thus
be added to this plane.

Figure 5a shows an example of the third configuration
where the yellow surfel can be added to two different
plane segments in its neighbourhood, the green plane
and the blue plane. In this case, the green and the
blue plane segments along with the yellow surfel can
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be merged. This is what happens in this case. Figure 5b
shows an example of the third configuration where the
yellow surfel can be added to two different plane seg-
ments in its neighbourhood (green and blue) that cannot
be merged into one plane segment. In this case, the yel-
low surfel will be added to the green plane as it doesn’t
modify the normal of the green plane, while it would
modify the normal of the blue plane.

(a) (b) (c)

Figure 4: The two first configurations. (a) first config-
uration: no neighbours have already been treated, (b)
first configuration: the current surfel (yellow) cannot
be added to the red plane segment, (c) second configu-
ration when a surfel has exactly one neighbouring plane
to which it can be added.

(a) (b)

Figure 5: The third configuration when the surfel can
be added to at least two plane segments. (a) Merging
the planes is possible and will be done. (b) Merging is
not possible and the normal is used to decide in which
plane segment the surfel is added (here the green one).

Figure 6: An example of the particular case where a
surfel of distance 1 (in red) should not be computed be-
fore the grey ones also of distance 1.

There is however one special case to consider: it occurs
when a surfel and all its neighbours of a surfel have a
weight equal to 1. In Figure 6, the red surfels could
form an autonomous plane, although each of those sur-
fels can be added to other planes that may be created
later on. The idea here is to wait before such surfels are
handled. In this example, the red surfels will be treated
after the grey ones, an then end up being added to three
different planes. To avoid this case from happening, the

weight of such surfels can be diminished to let neigh-
bour surfel (grey in Figure 5) be computed first.

Algorithm 1: Second pass
input : The queue resulting from the first pass

and G the graph of adjacency of surfels
output: a segmentation of the set of surfels into a

discrete plane segment
segmentation←{}
while queue ̸= {} do

sur f el← queue[0]
queue← queue\ sur f el
potential← GOOD_NEIGHBORS(sur f el)
if size(potential) = 0 then

Create a new discrete plane segment P
segmentation← segmentation∪P
P← P∪ sur f el

else
if size(potential) = 1 then

potential[0]← potential[0]∪ sur f el
else

foreach P in potential do
P_temp← P∪ sur f el
pre_n← normal of P
post_n← normal of P_temp
scalar← pre_n · post_n

B← P with the minimal scalar
B← B∪ sur f el
foreach Pi in potential \B do

Try to merge Pi with B

Algorithm 1 shows the second pass of our algorithm.
The GOOD_NEIGHBORS function retrieves all the di-
rect plane segments in the neighbourhood of the current
surfel.

5 RESULT
This section shows the results of applying our algorithm
on different 3D surfaces. The first three synthetic ob-
jects denoted Cube, Octahedron and Sphere Mesh are
all obtained from the digitization of a mesh; the last ob-
ject denoted Parametric Sphere is a parametric sphere
voxelized using Gaussian digitization. These four ob-
jects are described as follows:

• Cube: a cube (6 face, 8 vertices) of size 10×10×10
voxels.

• Octahedron: an octahedron (8 triangle, 6 vertices)
of height 16 voxels.

• Sphere Mesh: a low polly sphere (320 triangles, 162
vertices) of radius 64 voxels.

• Parametric Sphere: a sphere with a radius of 64 vox-
els.
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Algorithm Cube Octahedron Sphere Mesh

Our Algorithm

DGtal Algorithm

Table 1: The segmentation of the surface of a cube; an octahedron; a digitized sphere mesh using our algorithm
and using the DGtal library algorithm.

Table 1 and Figure 7 show the results of applying our
algorithm and the algorithm presented in DGtal library,
on the Cube, Octahedron, Sphere Mesh and Paramet-
ric Sphere. Table 2, highlights some details about these
results. In this table, we discuss, for each object, the
number of faces (triangles or polygons) in the mesh be-
fore digitization (Nb Faces) and the number of surfels
after digitization (Nb Surfels).
We compare our algorithm to the segmentation method
present in DGtal (DGTal is an open-source library
where state-of-the-art algorithms in digital geometry
are integrated) [DGT]. As this method allows the
recognition of thick planes, we limit ourselves to
standard planes, in order to maintain a criterion of
reversibility. In addition, in order to maintain homo-
geneity with our method, each surfel is treated as a set
of 4 pointels.
The results obtained using this algorithm are listed in
Table 2. The results are compared on several metrics:
the number of plane segments (Nb PS) generated by
each segmentation method, the number of surfels inside
the biggest (PS Max Size) and smallest plane segments
(PS Min Size), the average (PS Mean Size) and me-
dian size (PS Median Size) of a plane segment. We also
take the number of plane segments smaller than a de-
fined size, here segments smaller than three and smaller
than five in order to see if a method tends to produce
small plane segments. These metrics are present in the
literature and can be retrieved in several publications
[Siv04].
For the Sphere Mesh, the number of segments recog-
nized is greater than the number of triangles present in
the initial mesh which is what we expected to retrieve.
Furthermore, a lot of little segments are present in the
segmentation, the presence of these little segments in

the segmentation is a well-known problem and appears
at the end of the algorithm when segments are strongly
constrained and new surfels cannot fit the actual dis-
crete plane recognition. However, 98,7% of the sur-
fels are in the 320 biggest plane segments. A post-
processing stage could reduce those cases, as discussed
in the perspectives.

For the Parametric Sphere (see Figure7) we have a
greater number of plane segments for a roughly simi-
lar number of surfels. This result was to be expected
since the parametric sphere is not derived from a mesh
and has no plane in its geometry. However, results are
competitive with previously proposed methods even if
some surfels are embedded in plane segments. The per-
centage of small segments (less than 5 surfels) for the
Parametic Sphere (28%) is just above the one for the
Mesh Sphere (24%).

Figure 7: Our algorithm on a parametric sphere (left:
first pass, right: second pass).

Overall, our method generates fewer plane segments
than the method proposed in the DGtal library, particu-
larly in terms of small pieces of planes.

As noted in section 1, the reconstruction of 3D surfaces
can be really useful in medical imaging. Figure 8 shows
a head-and-neck tumour semi-automatically segmented
from PET image with the algorithm FLAB [HLRT+09]
and Figure 9 shows our segmentation and the recon-
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Object Cube Octahedron Sphere Mesh Parametric Sphere
Nb Faces 6 8 320

Nb Surfels 600 864 77 270 77 118
Algorithm Our DGtal Our DGtal Our DGtal Our DGtal

Nb PS 6 85 8 81 456 2233 1183 2552
PS Max Size 100 41 108 45 551 354 356 159
PS Min Size 100 1 108 1 1 1 1 1

PS Mean Size 100 7 108 10 169 34 65 30
PS Median Size 100 8 108 9 203 31 52 39
Nb surfels ≤ 3 0 24 0 5 83 313 276 370
Nb surfels ≤ 5 0 39 0 29 100 427 335 554

Table 2: Quantitative information obtained after applying our algorithm and the algorithm presented in DGtal.

struction of the tumuor. From the clinical point of
view, the tumor shape is important in cancer prog-
nosis and therapy choice analysis [HLRA+21], there-
fore it is crucial to have its realistic 3D representa-
tion, which provides more precise shape descriptors.
Such shape information combined with other image-
based characteristics (often called "radiomics"), such
as intensity and texture features, can be used to cre-
ate prediction models for therapeutic choices and for
survival prediction via machine and deep learning ap-
proaches [TTL+22, HLRA+21, BTT+20].

Figure 8: A head-and-neck tumour semi-automatically
segmented from PET image with the algorithm FLAB
(left : sagittal plane, right : axial plane).

6 CONCLUSION
In this paper, we have presented a new segmentation
method for 3D digitized objects. Our method uses crit-
ical point detection based on surfel analyses based on a
distance map. It retrieves fewer plane segments that are
better distributed on the object than the state-of-the-art
methods [FP99, KS01, Pap99, Siv04].
Surfel analysis however needs to be improved: some
surfels having very different neighborhoods are labelled
in the same way which is not accurate. We want to
further analyse the topological configuration of surfel
neighbourhoods and adjust the weight computation ac-
cordingly to better discriminate between cases.
Moreover, we have to study the criteria used to decide,
when a surfel can be added to more than one plane and
which one is the "best". We may, for those particu-
lar surfels, use a post-treatment to swap them from one

(a) (b)

(c)

Figure 9: Polyhedrization and our algorithm surface de-
composition on a head-and-neck cancer tumour. (a)
The first pass, (b) the segmentation on discrete plane
segment, (c) a reconstruction using Marching cube op-
timisation algorithm [CGS04] on our segmentation (b).

plane segment to another to optimize the reconstruc-
tion. A way to reach our goal may be to define a Ma-
chine learning model to optimize our results.

Other post-treatments can be considered: cutting the
large plane segments to add smaller segments to ho-
mogenize the size of the polygons for example.
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