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ABSTRACT

The moisture content of cocoa beans is an essential factor in their quality. Modeling it during drying is still
problematic due to the wide variation in drying conditions and the wide variation in cocoa bean varieties. This
article aims to investigate the possibility of modeling the moisture content of cocoa beans as a function of RGB
images features of unshelled cocoa beans. The approach is to extract features, analyze them and then use the most
relevant ones to study Machine Learning models. Features are extracted by calculating mean, standard deviation,
energy, entropy, kurtosis and skewness of the components of the rgb (RGB normalized), HSV, L*a*b*, YCbCr
color spaces without the brightness components. These features are extracted from 4 types of samples, namely 10,
30, 50 and 70 bean samples per image. Features analysis using the F-test and RReliefF methods shows that the
features based on the energy and entropy of the components rg, yb, Cr, Cb, a*, b* and h* are fairly relevant for
predicting the water content of cocoa beans. However, they are highly correlated. The selected predictors allow the
analysis of linear models, such as Ridge Regression (RR), PLS Regression (PLSR) and non-linear models, such
as polynomial, Support Vector Regression (SVR) with rbf kernel, and Decision Trees Regression (DTR). Except
RR and PLSR, the other models were preceded by a principal component analysis (PCA) to handle the collinearity
problem. The non-linear models give good predictions for the training dataset, with coefficients of determination
R? ranging from 0.94 to 0.96 and RMSE from 3.85 to 4.81. However, there is a significant difference between
these results and the predictions of the new datasets. RR and PLSR are stable models, but their predictions are less
than non-linear ones. It is therefore possible to predict the moisture content of cocoa beans from the features of
RGB images.
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1 INTRODUCTION beans are fermented and dried immediately after fer-
mentation to safe moisture content from around 60%

The moisture content of a product is the amount of wa-
ter present in this product. It is important for the micro-
biological and nutritional properties of food products,
as well as for regulatory and economic aspects. As a
result, determining moisture content is one of the most
frequent analyses carried out in the food industry. If
products are to be stored for long periods, they need to
be dried to a certain water content. In the case of co-
coa, after harvesting the ripe cocoa pods, fresh cacao
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to 7-8% (ISO 2451/2014 standard) [DJE09] to facili-
tate storage, transport and guarantee the quality of the
beans. Too high a moisture content can encourage the
development of mold and alter the quality of the final
product, while too low a moisture content can make the
beans brittle and difficult to process. It can cause dam-
age that contributes to the depreciation of bean quality
[HUM10]. Predicting moisture content during drying
is therefore an optimum solution for ensuring quality
drying. The moisture content prediction during drying
requires a non-destructive solution. However, the im-
plementation of such a solution is very complex due
to the instability of drying conditions and the diver-
sity of cocoa beans. Despite this, researchers propose
a few solutions. These include modeling drying ki-
netics [DJE09], [HII11], [IGO15], [KAR18], [CAS23],
predicting moisture content by Near-Infrared spectral
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[HAS18] and designing artificial dryers [KAV21]. De-
spite this research, modeling bean moisture content dur-
ing drying is still problematic, because the models de-
veloped depend on drying conditions. This work in-
volves exploring image features to design a model that
predict the moisture content of cocoa beans during the
drying process. The aim is to identify image features
that are not affected by drying conditions and to design
a model for this prediction. Our approach consists of
two main steps. The first step involves selecting the dis-
criminant predictors and the optimal quantity of beans
by using two variable selection methods: the F-test and
the Regression Relief Features selection (RReliefF) al-
gorithm. The second step is devoted to studying lin-
ear and non-linear Machine Learning models, such as
Ridge Regression (RR), PLS Regression (PLSR), poly-
nomial, Support Vector Regression (SVR) with RBF
kernel and Decision Trees Regression (DTR), the se-
lected relevant features.

The remainder of this work is organized as follows:
Section 2 presents the related solutions. Section 3 and
4 describe the proposed approach and experiments and
the datasets, respectively. Section 5 presents the results
and discussion and section 6 the main conclusions.

2 RELATED WORKS

The related works concern predicting or modeling the
moisture content during drying. The models already de-
veloped are based on drying kinetics and Near-Infrared
spectral.

Drying kinetics-based modeling

Drying kinetic modeling solutions are based on math-
ematical and artificial neural network models. Hii C.
L. et al. have used Fick’s theoretical model to study
the drying kinetics of cocoa beans. They obtain coeffi-
cient of determination R? of training data ranging from
0.9845 to 0.9976. But they mention that the drying pro-
cess is highly unsteady due to the fluctuating ambient
conditions [HIIO9]. A. Djedjro et al. evaluate a suit-
able drying mathematical model for describing the dry-
ing curves. Among the mathematical models studied,
the logarithmic model satisfactorily described the dry-
ing behavior of cocoa beans with a coefficient of deter-
mination 0.976 and RMSE 0.0128 [DJE09]. Nogbou
A. et al. described the behavior of cocoa beans in pre-
dicting their moisture content during intermittent mi-
crowave drying at different power levels (450 W, 600
W, 700 W). They proposed a recurrent artificial neu-
ral network model using drying time, microwave power
and moisture content as inputs. They obtained a co-
efficient of determination ranging between 0.9967 and
0.9993. [IGO15]. Daouda K. et al. proposed a math-
ematical model of the evolution of cocoa beans mois-
ture content as a function of time using an artificial
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neural network during the sun drying. They found the
multilayer perceptron with two neurons on the input
layer to be the most suitable. The coefficient of de-
termination of the linear regression between observed
and predicted water content values was 0.99 [KAR18].
Eduardo Castillo et al. fitted a diffusion approxima-
tion model using nonlinear regression to the moisture
ratio of the CCNS51 cocoa bean with the drying time
for the constant drying temperatures of 40,50,60, and
70°C. The coefficient of determination for all cases was
0.9999 with RMSE 0.0044 [CAS23].

Near-infrared spectrum-based modeling

Hashimoto et al built PLS regression models from near-
infrared diffuse reflectance spectrum for the prediction
of several cocoa bean quality parameters including wa-
ter content. The coefficient of determination of mois-
ture content prediction is 0.67. [HAS18].

The majority of papers found focuses on Drying kinet-
ics. The advantage of these solutions is that they give
a good prediction of moisture content for the training
data. The disadvantage is that they depend on drying
conditions, i.e. temperature and drying time. How-
ever, under natural drying conditions, time and temper-
ature are highly unsteady due to the fluctuating ambient
conditions [HII09]. The other solution, which is inde-
pendent of theses conditions, uses near-infrared spectra,
which has a low prediction rate. The proposed approach
uses image features to propose model independent of
drying conditions.

3 PROPOSED SOLUTION

The proposed solution is based on prediction of co-
coa beans moisture content using color features. It in-
volves acquiring images of batches of cocoa beans dur-
ing drying at regular time intervals to designing the best
Machine Learning model for predicting moisture con-
tent. The differents stages of the proposed solution are
shown in the block diagram in figure 1.

Models  |!
testing g

Model |i
selected

Candidate
featl
extra

Figure 1: Proposed solution steps

3.1 Image processing

The image processing involves extracting cacao beans
from the blue acquisition background. Then, the RGB
images are segmented using color thresholding in
L*a*b* space. A region of interest (ROI) are created
firstly with Matlab Color Thresholder app [MATSG24],
then apply morphological opening and closing with the
optimal structuring element(disk) to perfect the edges
of the extracted beans (figure 2).
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Figure 2: Image segmentation

3.2 Extraction of color-based features

Features are extracted from RGB images, using statisti-
cal Moments such as mean, standard deviation, energy,
entropy, kurtosis and skewness. These methods were
applied to the color components of the rgb [RAS06],
HSV YCrCb and L*a*b* spaces, and the chromatic
components in spherical coordinates 6 and ¢ [RAS06],
without the luminance components. We also have the
components rg (red-green) and yb (yellow-blue) de-
rived from rgb space [WAN14] and C* and h* derived
from L*a*b* space. HSV,YCDbCr and L*a*b* space
components are derived from RGB images, using the
corresponding MATLAB functions. Expressions for
the other components (from equation (1) to equation
(9) and the statistical Moments (from equation (10)
to equation (15)) are following, where R, G,B are the
components of RGB space, N is the number of bean
pixels in the image, A; is the gray level of pixel i and
hy is the normalised histogram of gray level A of the
image I.
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3.3 Variable selection methods

Variable selection is a step that precedes model design.
It allows to analyze the potential explanatory and selec-
tion variables most relevant to a model design. It also
provides the necessary information on each of the ex-
planatory variables for better use and interpretation in a
model. To select discriminating predictors, we use two
different methods. The F-test method to assess the sig-
nificance of candidate variables and Regression Relief
Features selection (RReliefF) algorithm to assess their
relevance.

F-test

The F-test is a statistical test that compares the vari-
ances of two samples, or the ratio of variances between
several samples. It is often used to test equality of
means in an analysis of variance, or to test the goodness
of fit of a regression model. The F-test is based on the
F-statistic. It is the ratio of the variance explained by
the model to the residual variance. The observed p,q,.
are used to interpret the F-test. Higher the F-statistic,
the smaller the p,q.., thus better the model fits data.
We use it to assess the goodness of fit of each candi-
date variable in a linear regression model with mois-
ture content. This involves examining the importance
of each candidate color feature, then ranking them us-
ing the pyq,e of the F-test statistics. The score for each
candidate variable is determined by the following rela-
tionship [MATFT24], [OME14]:

S= _IOg(pvalue> (16)
Regression Relief Features selection (RReliefF)
algorithm

The RReliefF algorithm is an extension of the Relief
algorithm, which is a variable selection method based
on assigning weights to variables. It detects relevant
variables by considering interactions between variables
and noise in the data. It also penalizes the predictors
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that give different values to neighbors with the same re-
sponse values, and rewards predictors that give differ-
ent values to neighbors with different response values.
However, it uses intermediate weights to compute the
final predictor weights. Then, it calculates the predic-
tor weights W; after fully updating all the intermediate
weights [ROB97].

Waj —Wiaynaj)
m— Wy,

Wi — Wiayndj) _
J Wdy

a7

Wy, and Wy, are the weights of having different val-
ues for the response y and predictor x;, respectively.
Wiaynaj) 1s the weight of having different response y
and different values for the response y values and dif-
ferent values for the predictor x;. m is the number of
iterations.

The selected variables will be used to analyse the pre-
diction of water content using Machine Learning mod-
els.

3.4 Machine Learning regression models

Different types of regression models are explored,
namely: Ordinary Least Squares, Kernel Support Vec-
tor, Decision Trees, Ridge and Partial Least Squares
models.

Ordinary Least Squares regression (OLSR)

We analyse the Multiple linear Regression (MLR) and
Polynomial Regression (PR) Models. The sample re-
gression model has the form [MONT21]:

k
yi=Po+ Y Bjxij+é& (18)
j=1
Where x;; and y; are the k predictors and the response
respectively of ith observation. The parameters f3;,
j=0,1,...,k are the regression coefficients. OLS is the
most popular estimation method; its purpose is to find
the unbiased coefficients = (ﬁo,ﬁl,...,ﬁp)T which
minimize the residual sum of squares:

N

2
RSS(B) =), <yi —Bo— ixuﬁ,) (19)
=

i=1

Support Vector Regression (SVR) with the radial
basis function (RBF) kernel

SVR is based on the Support Vector Machine algorithm.
It also based on the computation of a linear regression
function in a multiple variables feature space where the
input data can be used via a non-linear regression func-
tion. Unlike OLSR that aim to minimize the error be-
tween the predicted and actual values, SVR aims to fit
as many instances as possible within a margin while
limiting violations of the margin and controlling the
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margin width, in other words find a hyperplane that best
fits as many data points as possible while minimizing
the margin violations. The margin is defined as the re-
gion between the hyperplane and the support vectors. A
nonlinear function has the form [CAS20]:

f(xi) = 0" ®(x;) +b (20)
Given training vectors x; € R”, i =1,..,N, and a vector
y € RV SVR solves the following primal problem:

. 1 N .
M 0,p.2.2%) <2wTﬂ> +CY G+ )) 1)
i=1

subject to y; — @’ ®(x;) —b < e+,
qu)(xi)+b_yi S £+C,'* 5 ghgi* Z Oal: 1a"7N

Where o is the weight vector, b is the bias, and ®(x;)
is the high dimensional feature space. C < 0 is a pre-
specified constant that is responsible for regularization
and represents the weight of the loss function. The
first term of the objective function ®” @ is the regular-
ized term and the second term CYY | (¢ + &) is called
the empirical term and measures the €—insensitive loss
function. §; and {* are the slack variables to guard
against outliers, they represent the distance between the
potential support vector and the potential outliers.

Kernel methods achieve flexibility by fitting simple
models in a local region to the target point x. Localiza-
tion is achieved via a weighting kernel K, and individ-
ual observations receive weights K (x;,x), so the Radial
basis function is written as:

f@x) =} (=0 )K(xi,x)

ieSv

(22)

With K (x;, x) = exp(—7 || 5 —x ||*)
o; — o are coefficients of the support vector in the de-

cision function, ¥ is the kernel coefficient and x is the
center of feature.

Decision Trees Regression (DTR)

DTR uses a tree-like structure to model the relationship
between the set of predictors and the response. The tree
is composed of nodes that represent the possible values
of the predictors or the response. Its purpose is to find
the best split at each node. The quality of a candidate
split 6 of node m is then computed using an impurity
function or loss function H(Q,,), the choice depends
on the task being solved:

nleft nright )
G(Qn,0) = ~"—H(Q;:"(6)) + —"—H (0" (6))
m m
(23)
Select the parameters that minimizes the impurity:
0* = argmingG(Qy,, 0) (24)
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O, is the data at node m partitioned into Q" and Q}¢™
with n,, sample. H(Q,,) is the Mean Squared Error

(MSE) such as (¥, is the mean of predicted value):

H(Qm) = ni Y 0=n) (25)

m yeOm

Ridge Regression (RR)

RR shrinks the Least Squares unbiased coefficients
by imposing a penalty on their size. It produces
biased estimators of regression coefficients, that have a
small variance and more stable than the Least Squares
unbiased coefficients, which called ridge estimators.
The coefficients minimize a penalized residuals sum
of square. For a given value of A, a non-negative
parameter, RR solves the problem [ROD22]:

N

1 P
min g, g) (2]\, Y i—Bo—x/B)*+2 Zl ﬁf) (26)
=

i=1

where N and p are the observation and predictor num-
bers, respectively.

Fartial Least Squares Regression (PLSR)

PLS regression constructs a set of latent variables.
These latent variables are linear combinations of the
original predictors, created in such a way that they ex-
plain the maximum covariance between the predictors
and the response variable. PLSR model with /4 latent
variables can be expressed as follows [CHOO5]:

X=TP +E 27)

y=Th+f (28)

In Equation (27,28) X (n x p),T(nx h),P(p x h),y(n x
1) and b(h x 1) are respectively used for predictors,
X scores, X loadings, response, and regression coeffi-
cients of T. The k — th element of column vector b ex-
plains the relation between y and #;, the kK — th column
vector of T. Meanwhile, E(n X p) and f(n x 1) stand
for random errors of X and y, respectively.

4 EXPERIMENTS AND DATA SETS

4.1 Experiments
4.1.1 Sample preparation

The experiments were conducted on well-fermented
commercial cocoa beans from the same harvest south
of Ivory Coast. We extracted 15kg from 25kg fer-
mented cocoa beans on the last day of fermentation (day
7). Once in the laboratory, the beans are distributed in
batches of 10, 30, 50 and 70 in polystyrene bags, then
stored in a cold room at —10°C throughout the handling
process. Before using, the cocoa beans are defrosted at
room temperature in the laboratory.
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4.1.2 Experimental process

The experimental process is composed of three steps:
drying, image acquisition, and weight determination, as
shown in the experimental cycle (figure 3).

e Cocoa drying: the cocoa bean batches were dried
in a domestic microwave oven (SHARP R-75 MT).
Intermittence drying is used with a pulsing ratio
(Equation 29) of 4 to limit local overheating and a
drying power of 270W. This means 2 minutes of mi-
crowave start-up and 4 minutes of shutdown. Dry-
ing was stopped when the moisture content reached
around 7%. Data are acquired at regular time inter-
vals during drying, this resulted in 30 to 45 observa-
tions per batch

o Weight determination: the weight of the beans batch
is determined by a digital precision scale with 0.01g
precision.

* Image acquisition: A setup for capturing customized
images has been developed. It is composed of: a
color coupled charge device (CCD) camera (SONY
XCG-5005CR, Japan), which is specifically stan-
dardized for machine-vision applications based on
Gigabit Ethernet technology, a lens zoom 16 mm
(Fujifilm corporation, model HF16HA-1B, Japan).
The image acquisition card (Mil Matrox) is used
for transferring information from camera to com-
puter (Core-i7 CPU: 2.5 GHz; RAM: 4 GB). And
two 8.5 watts white LED, which cover the visible
wavelength, to ensure correct and consistent lighting
throughout the acquisition process. The set is placed
in a closed box to control the lighting. The images
have been acquired in tiff format, 2448 x 2048 def-
inition, 96 ppi (horizontal) and 96 ppi (vertical) and
unit 8.

figure 4 shows some cocoa beans images at different
times with their moisture content.

PR— CyclePoweronTime + CyclePowerof f Time

CyclePoweronTime
(29)

4.1.3 Moisture content computation

At the end of the drying process, the dry mass of each
batch is determined by drying the dried beans in an oven
at 103°C for 16 hours to determine the dry weight. The
weights determined during drying are used to calcu-
late the water content using the following formula (ISO
2451/2014 standard):

ny — my

MC; (wet base) = (30)

ny

With MC the moisture content, m, the weight at time t
and my the dry weight.



ISSN 2464-4617 (print)
ISSN 2464-4625 (online)

W

ACQUISITION

Computer Science Research Notes - CSRN 3401

http://lwww.wscg.eu

Figure 3: experimental cycle.

MC=12.5%

MC=10.6 %

bebd 00 04
S ANIXY
990009400
00Pp00 00

..l.....
oeQ 00009
X YRX LA
o000 000

1

seepoe 000°0,0
Q‘..:..' .0'000000
00000800 9000000
0009009 ® 000000

MC=7.7% MC=8.8%

Figure 4: Cocoa bean images as a function of MC

4.2 Dataset description

The data come from 4 different samples, depending on
the number of beans per batch or per image. E10, E30,
E50 and E70 samples, with 10, 30, 50 and 70 beans per
batch respectively. Each sample consists of 5 batches.
For the variable selection, the dataset of a sample is
made up of all the observations of the 5 batches of this
sample. For the model analysis, the dataset consists of
80% of the dataset for training and 20% for test. The
dataset consists of color features from segmented im-
ages, as predictors and moisture content as response.
Application of extraction methods to the color com-
ponents yielded 90 candidate variables. The database
for each sample is then standardized using the z-score
method. The Z-score standardization involves trans-
forming each feature in the dataset such that it has a
mean 0 with a unit standard deviation (Equation 31).

(x—n)
o

€19}

Where u, ¢ and x are the mean, the standard deviation
and the feature value of the original dataset.
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5 RESULTS AND DISCUSSION
5.1 Features extraction and selection

Figure 5a to figure 6d show the importance scores of
each candidate variable for each sample, which (a), (b),
(c) and (d) correspond to samples E10, E30, E50 and
E70, respectively. The variables are ranked in impor-
tance order.

Ftest E10

Ftest E30

F-test E50

(c) (d

Figure 5: F-test predictor importance score

RReliefF E10 RReliefF E30

RReliefF E50 RReliefF E70

Predictor importance

B
Predictor rank

(@)

Figure 6: RReliefF predictor importance score

Figure 5a to Figure 5d display the significant score for
the F-test method. The predictors importance score
maximums are 36.36, 100.36, 113.10 and 196.30 from
respectively samples E10, E30, E50 and E70. The sig-
nificance of each variable increases as the number of
beans per image increases, and the sample E70 gives the
best scores. Sample E70 allows to distinguish the most
significant predictors. The most significant features are
those that stand out from the others in the E70 sam-
ple. Their scores range from 99.73 to 196.30. There are
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14 of them, with scores ranging from 99.73 to 196.30.
Even if samples £30 and E50 don’t help to distinguish
them, they are still ranked in the same order, except in
sample E10.

Figure 6a to Figure 6d show the RReliefF predictor im-
portance weight. The weights reflect how each feature
discriminates between instances of different classes or
categories in the dataset. Unlike F-test, the predictor
importance score don’t increase as the number of beans
per image increases. Although the weights are differ-
ent, the 4 samples display the same list of the most rel-
evant features. The most relevant features are those that
have positive weights.

Using both methods and based on several experiments,
a feature is said to be relevant when its F-test score
is greater than 55 and its RReliefF weight is positive.
Thus, the relevant features for predicting moisture con-
tent are energy and entropy of rg,yb,Cb,Cr,a*,b* and
h* components. This result is confirmed by the four
samples. Of these features, energy-based variables are
better than entropy-based features. On can also observe
that the energy-based features have approximately the
same scores in the F-test and RReliefF.

As a reminder, the database used for feature selection
is made up of a set of observations from several differ-
ent batches of beans. Thus, the redundancy of features
can be explained by poor correlation with the moisture
content or by the instability of features. In the case of
instability, the feature may correlate well with the mois-
ture content for a given batch. However, the values of
this feature vary from batch to batch. The poor results
for the features selected for samples E10 and E30 can
be explained by the wide range of cocoa bean colors.
These samples don’t contain enough beans to take into
account the maximum colors of cocoa bean.

The almost identical scores of energy-based features on
the one hand and entropy-based features on the other
may be due to the multi-collinearity between features.
To confirm this hypothesis, we calculated the Variance
Inflation Factors (VIF) of each selected feature by equa-
tion (32). VIF values range from 57.54 to 1.1x107°.
These values, being well above 10, show that the se-
lected features are highly correlated [MONT21].

1

TR
J

(32)

where R? is the coefficient of multiple determination
obtained from regressing predictor x; on other predic-
tors. As the selected variables are highly correlated, if
they are directly included in the models, this can create
instability and over-fitting model due to the inflation of
regression coefficients. Thus, for the model analysis in
the next paragraph, PCA is used to select decorrelated
variables.
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5.2 Machine Learning models

The data is randomly divided into training and testing
sets 20 times during the 20 training sessions of the mod-
els. The models are analyzed on two sets of predic-
tors. The first set is made up of all selected predic-
tors, and the second set is made up of energy-based
predictors. The scikit-learn library in Python is used
for this analysis. Coefficient of determination (R?)
and Root Mean Square Error (RMSE) are the metrics
used to evaluate models, by calculating the mean and
SD of the five datasets. The hyper-parameters of each
model are found with the Grid Search Cross-Validation
(GridSearchCV). The hyper-parameters of SVR/RBF
are regularization parameter C =10, y = 0.055 and
€ = 0.01. Ridge trace using all predictors gives ridge
parameter & = 0.001. For all selected predictors, there
are 8 principal components for MLR, SVR, DTR, and
PLSR models, and 35 principal components for the
polynomial model with interaction. For the energy-
only predictors, 5 principal components for MLR, SVR,
DTR, and PLSR models, and 30 principal components
for the polynomial model with interaction.

Table 1 and table 2 show the standard deviation (SD)
and the mean of evaluation metrics for the models. SD
is used to assess the stability of models. Concerning
model training with all selected predictors (Table 1),
more than 94% of proportion of variance in the MC is
predicted from the predictors, for polynomial, SVR and
DTR models. These models have mean errors of less
than 5% of MC. On the other hand, for Ridge and PLSR
models, less than 90% of variability in the training MC
explained by the models and have mean errors of more
than 5% of MC. The standard deviations of coefficient
of determination for all models are less than 1%, indi-
cating their stability during training. When testing the
models with all selected predictors (Table 1), less than
90% of variability in the training MC explained by the
models and less than 6% of mean errors of MC. There
is a significant difference between the training and test
of Polynomial, SVR, and DTR models, but this is not
the case for Ridge and PLSR models. We also note
that the SDs of testing are larger, more than 2% for
the coefficient determination. The same observation for
models trained with the energy features. However, the
predictions with all selected predictors are better than
energy predictors. All the models studied, for both sets
of predictors, have results far better than Hashimoto et
al, who obtained a coefficient of determination of 0.67
by predicting water content with near-infrared diffuse
reflectance spectra [HII09]. These results are still infe-
rior to those obtained using drying time as a predictor
[IGO15], [KAR18].

Figure 7a to Figure 11b displays the moisture content
predicted value by the model versus the true value. The
training and test data fit well on the straight line for the
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Rt2ruining thesting RMSElmmmg RMSEfeS’i"g

Models hyperparameters Mean SD | Mean SD | Mean SD | Mean SD

PCA + Polynomial degree =2 0.94 0.004 | 0.83 0.11 | 4.81 02 | 759 220
PCA + SVR rbf 095 0.003 | 090 0.02| 454 0.16 | 6.02 0.66
PCA + DTR depth =71, min —samp.—spl. =15 | 096 0.004 | 0.86 0.07 | 385 022 | 7.00 1.83
Ridge R. alpha = 0.001 0.89  0.01 0.86 0.08 | 650 043 | 7.01 1.66
PLSR component = 8 0.86  0.01 0.83 0.09| 724 041 | 770 1.90

Table 1: results of training and testing models for all selected predictors

tzraining tzesting RMSEfmi"i"g RMSEWSfing

Models hyperparameters Mean  SD | Mean SD | Mean SD | Mean SD
PCA + Polynomial degree =2 093 0.005| 082 0.10| 528 020| 7.73 215
PCA + SVR rbf 0.88  0.01 087 0.05] 672 033 | 6.80 1.38
PCA + DTR depth=15 ,min—samp.—spl.=10 | 094 0.004 | 0.83 007 | 459 020 | 7.59 1.62
Ridge R. alpha = 0.001 0.86  0.01 0.84 0.07 | 720 055 | 736 1.53
PLSR component =5 0.85 0.01 0.84 0.07 | 752 045 754 1.60

Table 2: results of training and testing models for energy predictors

Scatter plot of predicted vs True values Scatter plot of predicted vs True values

(a) (b)

Figure 7: Scatter plot of predicted vs True values for
PCA + Polynomial model for all selected predictors;
(a) training (b) testing

Scatter plot of predicted vs True values Scatter plot of predicted vs True values

Predicted values
5 B ¥ 5 8 8

(a)

(b)
Figure 8: Scatter plot of predicted vs True values for

PCA + SVR model for all selected predictors; (a) train-
ing (b) testing

non-linear models, Polynomial, SVR, and DTR (Figure
7a to Figure 9b. The linear models, Ridge and PLSR
reveal outliers and significant deviations in the 30 to
50 MC range (Figure 10a to Figure 11b). This shows
that the evolution of MC during drying is not linear.
The tree-like structure is more effective in fitting all the
training data as compared to the other two non-linear
structures. It is important to note that the model per-
forms well for MC values above 45%, while the fit is
slightly less for values below 45%. Both the training
and the test data show good results for the given model.
The ideal moisture content for declaring cocoa to be dry
is 7-8%. Thus, the most important MC range is below
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Scatter plot of predicted vs True values Scatter plot of predicted vs True values

(a) (b)

Figure 9: Scatter plot of predicted vs True values for
PCA + DTR model for all selected predictors; (a) train-
ing (b) testing

Scatter plot of predicted vs True values Scatter plot of predicted vs True values

(a) (b)

Figure 10: Scatter plot of predicted vs True values for
RIDGE model for all selected predictors; (a) training
(b) testing

10%. Support Vector Regression predicts 95% of train-
ing moisture content, 90% of new moisture content, and
well the moisture content below 10%. The standard de-
viation shows that this model is more stable than oth-
ers. Therefore, For this particular study, it has shown
the most promising results in predicting the moisture
content of cocoa beans during the drying process. The
model uses predictors based on the energy and entropy
of rg, yb, Cb, Cr, a*, b*, and h* components. However,
it’s important to note that the mean error still high in
predicting new data.
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Figure 11: Scatter plot of predicted vs True values for
PLSR model for all selected predictors; (a) training (b)
testing

6 CONCLUSION

This article aims to analyze the color features of
unshelled cocoa beans during the drying process.
Additionally, it studies various linear and non-linear
Machine Learning models to predict moisture content
based on color features. The article analyzes the mean,
standard deviation, entropy, energy, kurtosis, and
skewness of the components of the RGB, YCbCr, HSV,
and Lab color spaces, without luminance components,
using both the F-test and RReliefF methods. The
analysis is performed on samples of 10, 30, 50, and 70
beans per batch. The color components that are most
relevant for predicting moisture content during drying
are derived from the energy and entropy of YCbCr, and
Lab color spaces. The relevance of these components
becomes more important as the number of beans in
a batch increases. Additionally, the selected features
are highly interdependent. Non-linear models provide
more accurate moisture content predictions during
drying than linear models, precisely Support Vector
Regression with radial basis function performs better.
To conclude, moisture content can be predicted during
drying with color image features. This article opens
the way for the study of cocoa beans moisture content
prediction using image data. It provides relevant
information on the evolution of water content during
drying as a function of colour characteristics and also
in the different colour spaces.
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