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ABSTRACT
In this paper we employ a new genetic algorithm approach for CAD shape reconstruction, where a mathematical
shape representation is reconstructed from point data. We reconstruct planar subdivision curves and 3D subdivision
meshes from ordered input point data by fitting the corresponding subdivision control polygon or control mesh
respectively, from which the smooth subdivision limit surfaces can be derived. For the reconstruction of curves
the system estimates the number and position of control points required to approximate the curve closely. To
reconstruct subdivision surfaces from points, the system determines a sequence of CAD operations which is subject
to mutation in the course of a genetic optimization. We discuss implementation details of the proposed genetic
algorithms and demonstrate our approach on a number of example data.
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1 INTRODUCTION
To recover the shape of a curve or surface from data
points is a challenging problem that appears frequently
in a wide range of applications such as Computer-Aided
Design (CAD), virtual reality and computer graphics,
data visualization and medical imaging. Shape recon-
struction in CAD refers to the process of generating a
smooth and accurate representation of a curve or sur-
face from a set of data points. The goal is to trans-
form discrete data into a smooth and continuous curve
representation suitable for CAD modeling. Shape re-
construction has become a fundamental tool in reverse
engineering, where dense data acquired from physical
objects is converted to a digital representation [6].

In this context B-splines [2] are the preferred approx-
imating functions due to their powerful mathematical
properties and their wide support by CAD/CAM sys-
tems. The B-spline curve or surface approximates the
control polygon given by linearly connected control
points Pi. They are defined over a uniform or non-
uniform knot sequence. The control points and the
knots are the design freedoms to satisfy approximation
requirements. If the degree is fixed and the knot vec-
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tor is fixed and uniform an ordered set of control points
fully define the smooth shape.

Smooth curves may be derived from control polygons
either through the analytic expression of a B-spline
curve or recursively through subdivision [12]. For ar-
bitrary control meshes smooth subdivision surfaces are
derived via subdivision refinement rules [1], where reg-
ular regions of the surface will correspond to B-spline
surfaces.

The reconstruction of subdivision control meshes is a
well researched problem [17, 23, 24, 10]. Traditional
methods often use rather complex, multivariate opti-
mization processes to reverse the subdivision algorithm.
However, the main limitation of this class of algorithms
is that the resulting control meshes usually do not ex-
hibit a topology and distribution of extraordinary ver-
tices that would emerge if the model was manually de-
signed using a CAD system. This makes it more diffi-
cult to continue the design on the reconstructed shape
as it enters a design pipeline.

In this paper, we approach the subdivision shape recon-
struction problem by formulating it as a genetic opti-
mization process. Genetic algorithms are a popular tool
for a variety of search and optimization problems as
they offer the possibility to search through multiple so-
lutions for a given problem in parallel. They are based
on various natural principles found in the real world,
such as evolution, natural selection and reproduction.
In this paper we introduce a genetic approach for B-
spline or subdivision curve reconstruction and another
genetic approach to reconstruct subdivision surfaces.
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In our work we use a genetic optimisation approach to
not only reconstruct the mathematical representation of
the shape, but also a set of CAD operations that define a
modelling process to construct said representation. We
discuss the algorithm for 2D reconstruction in Section
3, the method for 3D reconstruction in Section 4. We
present our results in Section 5 and propose future work
in Section 6.

2 RELATED WORK
Our work relates to two major classes of methods: Ge-
netic Algorithms and Evolutionary Optimization.

2.1 Subdivision Curves and Surfaces
The principle idea of subdivision is to define a smooth
curve or surface as the limit of an iterative subdivision
process in which an initial coarse control polygon or
mesh is repeatedly refined by introducing new vertices
in each subdivision step. Careful selection of the refine-
ment rules ensures that the initial coarse control poly-
gon or mesh converges to a smooth limit curve or sur-
face, referred to as the subdivision limit curve or sur-
face. That is, a subdivision curve or surface is fully
defined by its control cage and a subdivision algorithm.
The concept of subdivision curves was introduced by
Chaikin [12]. Soon after, this approach was extended
to surfaces. The concept of subdivision surfaces was in-
troduced by Catmull and Clark [1] and Doo and Sabin
[5] independently in 1978. Catmull-Clark subdivision
is most commonly found in a wide range of CAD sys-
tems and is a standard representation in the entertain-
ment industry. It is a generalization of uniform bi-cubic
B-splines to arbitrary shapes and is based on quadrilat-
eral meshes, like the Doo-Sabin algorithm. Generaliza-
tions to other domains were proposed by Loop [18] and
Kobbelt [14] amongst others. Numerous different sub-
division algorithms have emerged [19] based on a range
of different types of control polyhedrons.

In this paper we propose a method able to automate
the generation of control polygons and meshes for
subdivision algorithms based on quadrilateral meshes
which resemble manually created subdivision models.
Throughout the paper we derive the corresponding limit
curves using Chaikin [12] or uniform B-splines, and
derive subdivision surfaces using the Catmull-Clark [1]
subdivision.

2.2 Genetic Algorithms
There are many different types of evolutionary opti-
mization, showing the potential and diversity in this
area of optimization algorithms. In order to choose the
best suited algorithm one has to look at different proper-
ties of the algorithms, for example their suitability for
integer optimization or how they handle local optima.

The fitness function, defined as a measure of the feasi-
bility of a found solution, needs to be carefully designed
as it guides the optimization to the global minimum.

Genetic Algorithms belong to the group of evolutionary
algorithms, but differ in the reproduction process and
gene encoding, e.g. genetic algorithms rely more on
recombination than mutation for producing offspring,
while evolutionary programming in contrast strongly
relies on mutation. Evolutionary strategies use real-
valued encoding for their genes [31].

Genetic algorithms were first introduced in 1970 by
John Holland. They are employed to search and opti-
mization problems where a large amount of variables
are to be considered. They are based on evolution and
natural genetics [27], modelling nature’s principle of
natural selection or "survival of the fittest". The mea-
sure of fitness varies with each application and is an
important aspect in any evolutionary algorithm. While
the weak are more prone to go extinct, the fitter indi-
viduals will be able to pass on their genetic information
via reproduction [27]. As in nature, the offspring in ge-
netic algorithms are also susceptible to mutation, which
means that small parts of the inherited genes differ from
their parents due to copying errors for example. We
refer the reader to a comprehensive review on genetic
algorithms and evolutionary optimization by Katoch et
al. [13].

We chose genetic algorithms for our approach, since
our goal was to not only be able to reconstruct the math-
ematical representation of the shape, but also define a
set of CAD modelling operations which, applied to a
template mesh, will yield the smooth shape which fits
the data points.

2.3 Evolutionary Algorithms in Shape
Reconstruction

Evolutionary approaches have been applied to curve
and surface reconstruction using various types of algo-
rithms.

Takeuchi et al. [28] proposed an algorithm able to re-
construct B-Spline surfaces from dense triangle meshes
using Quadric Error Measures and elaborate ways of
splitting triangle meshes into quad meshes. Xiyu et.al.
[32] introduced a combination of genetic algorithms
with Neural Networks to reconstruct 3D shapes. They
used an encoding based on the principle genes, cells
and organs. Combination operations were introduced
to combine genes to cells and cells to organs or jelly.
Galvez et al. [9] proposed genetic algorithms to re-
construct B-spline surfaces by first obtaining a param-
eterization for the surface and then determine the knot
vectors and then calculating the control point positions
according to the least squares approach. Galvez et al.
improved their method to be able to execute in just
one step [8]. They changed the optimization algorithm
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from a genetic approach to a particle swarm approach.
They combined their previous 2 algorithms into one and
solved the surface fitting problem by means of Least
Squares. Sabsch et.al. [22] proposed an implementa-
tion of NSGA-II [3] to approximate different datasets
with open B-spline curves of degree 3 with a fixed,
clamped and uniform knot vector. The researchers op-
timized the number of control point positions and their
position. Robustness to noise was shown, but not to
sparsity or intersections. Wang et al. [30] used the Loop
subdivision scheme in order to reconstruct cavities of
the human body from volumetric data, gathered from
different imaging modalities (MRI and CT). Rahamath-
ulla and Misro [21] used genetic algorithms to aid in
reconstruction of a craniofacial fracture. They pro-
pose an algorithm adjoining two curves together with
a degree 5 B-spline curve with different continuity con-
straints. The number of control points was fixed. The
input curves were extracted from a scan. Moulaeifard
et al. [20] used Particle Swarm Optimization in order
to reconstruct a geological model, which is watertight
and controllable by a control mesh. They targeted the
specific use case of geological simulations, therefor a
low number of control vertices is desirable. Komar
and Augsdörfer [15] used a Particle Swarm Optimiza-
tion to approximate data using B-splines and rational
B-splines. Similar to the approach presented here, they
optimised control point positions to fit a B-spline curve
to input data using a evolutionary approach different
from the one explored in this paper.
In the following two sections we introduce a genetic
algorithm which outputs a 2D vector of control point
positions that define a clamped, uniform B-spline curve
optimised to represent the input data. We also propose
a genetic algorithm for surface reconstruction that takes
a point cloud as an input and outputs a Catmull-Clark
subdivision control mesh. In both cases, the genetic al-
gorithms output a sequence of CAD operations to an
initial template control polygon or mesh in order to
create a CAD model of the control polygon or control
mesh that approximates the input.

3 2D CURVE RECONSTRUCTION
To reconstruct subdivision curves the algorithm re-
ceives as input a two-dimensional array, containing
x and y values of points along a planar curve. Each
individual member of the population describes a con-
trol polygon. The control polygon is an ordered array
of 2D control points, which defines a B-spline. The
proposed algorithm also provides a list of operations,
the chromosomes, that describe which operations
were applied to an initial template polygon to arrive
at the control polygon of the curve which optimally
approximates the input data. In case of curves, the
operations are limited to adding or deleting control
points or translating existing control points.

The general structure of the genetic algorithm is based
upon the algorithm proposed by Holland [11]. A ge-
netic algorithm maintains a list of individuals, called
population. The characteristics of each member of the
population is defined by an individual chromosome, that
corresponds to a solution to the given problem. Each
individual is then ranked based on an objective value,
its fitness, describing how well the proposed solution
performs. In each generation, pairs of individuals are
selected according to their fitness to produce offspring,
whose properties are defined by a combination of its
parents chromosomes, for the next round of evolution
until a predefined termination criterion is met [29].

In our work each individual is represented as a sequence
of CAD operations, which applied to the starting con-
trol polygon in order, gives the solution proposed by the
individual. The initial population in genetic algorithms
hugely influences its performance, that is a well condi-
tioned starting population comes with a higher chance
of finding a satisfying solution. One way to influence
the quality of the first generation of individuals is the
population size. In general, using too few individuals
leads to worse solutions, while having a large popula-
tion leads to higher computation time [4]. In our work
we employ a mixed strategy: The algorithm is given a
large initial population, thus increasing the initial diver-
sity. During selection the population is then reduced to
only 1/10th of the initial population, encouraging more
diversity in the starting solutions. As a result, the first
evolution round takes more time. To create the popu-
lation, the algorithm creates 1000 individuals, all con-
taining four to eight random CAD operations as genes
in their chromosome. Each individual therefore repre-
sents a polygon which evolves to a control polygon of
a uniform B-spline curve approximating the input data.

Each individual created is initialized with four control
points. The first and last control point are placed on the
first and last points of the input curve, as the curve gen-
erated by this algorithm is clamped. The two remaining
control points then consist of the swapped x and y coor-
dinates of the endpoints. The bounding box of the input
curve is used to restrict the area in which control points
can be moved or added. The quality of each individual
is assessed by its fitness function.

The chromosome of each individual is a list of genes,
which are the set of CAD operations applied to an initial
template polygon. These operations can either be the
addition of a new point to the current polygon or the
translation of a point. If a new point is introduced, the
index of the new point is added in the control point array
together with its position. If the point is translated, its
position is updated. The first and last control points are
barred from being translated. Since they lie on the end
points of the input point set.
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The fitness function determines how well a candidate
solution performs and is an important part in the selec-
tion mechanism. In the proposed algorithm this func-
tion takes an individual as input, derives the B-spline
or subdivision curve using its control point positions
and calculates the Euclidean distance between the sam-
ples lying on the reconstructed curve and the samples
on the target curve, calculated index wise. We sample
the curve to have the same number of points as the tar-
get curve, therefore the distance calculation can be car-
ried out index-wise. The fitness value is then the sum
over all euclidean distances. After calculating the fit-
ness value for each member of the population, the algo-
rithm can begin with the reproduction of the individuals
for the next generation.

We use the roulette wheel selection to select parents for
reproduction [13]. Each individual is given a weight
based on its fitness value. After two parents have been
selected, the algorithm computes a crossover which
produces offspring by combining their genes. In our
work single-point crossover [26] is used to combine two
individuals to their offspring. Different length parents
can also be combined, by choosing the crossover point
according to the shorter length.

In the mutation operation, the algorithm loops over the
chromosome and, for each gene, draws a random mu-
tation probability value. After comparing different mu-
tation probability values, a constant probability of 5%
has been shown to perform well. If a gene is chosen to
be mutated, the algorithm chooses with a probability of
1% to delete the current gene. Otherwise, the gene is
mutated by replacing it with a randomly generated op-
eration. After looping over all genes of the individual,
another check is performed if a new operation should be
appended to the list. This is also done, if a chromosome
is left with less than three genes after too many dele-
tions, as this would result in errors during a crossover
operation.

The last step of the mutation function is to check
whether all operations in the mutated individual are
still valid. The validity might not be given if an
operation that adds a control point is removed, as a
move operation might access the control point later in
the chromosome. The algorithm iterates through the
chromosome, and checks whether each operation can
be executed. If not, the operation is removed from the
chromosome. Lastly, it also checks the length of the
chromosome again, to ensure the required minimum
length is still given, otherwise it would add as many
random operations as needed to make sure crossover
can be executed.

In this work the steady-state technique was used [25].
After the population is sorted according to the fitness
value of each individual, the top 20% are moved into
the next generation. The remaining 80% open spots

Figure 1: Illustration of the distance function from a
single vertex a to the target mesh T. dmin(x,M) repre-
sents the minimum distance from a vertex x to any ver-
tex on a mesh M.

are filled with offspring, created using the reproduction
steps described above.

The steps above constitute the evolution of one genera-
tion. This process is repeated for as many generations
as desired, or until a certain termination criterion is met.
One typical termination criteria used is that one candi-
date solution satisfies a specified minimum threshold of
the fitness value [16], which we employed in the opti-
misation presented in this paper.

4 3D SHAPE RECONSTRUCTION
Surface reconstruction closely follows the approach
employed in genetic curve reconstruction. However,
the design of 3D shapes on a CAD system involves
numerous operations. We demonstrate our approach
considering seven CAD operations defined in Blender
[7], five of which are shown in Figure 2. However,
our approach may be extended to more types of
operations. The algorithm then derives control meshes
by combining a set of modelling operations in a genetic
approach. The set of CAD modelling operations, when
applied in sequence to an initial template mesh, yield
a subdivision control mesh which defines a smooth
surface, the reconstruction solution. The resulting
meshes, see Figures 5 and 6, exhibit features which
are typically found subdivision surface which has been
designed on a CAD system.

A good fitness function defines the quality criteria of
the surface reconstruction. We employ the mixed mean
distance between the limit surface corresponding to the
found control mesh and the input sample point which
belong to a target surface.

The first step in the evaluation of the fitness is the calcu-
lation of the mixed mean distance between the meshes,
which is illustrated in Figure 1. For every vertex v on
the mesh computed by the algorithm (Mesh A) the fol-
lowing is calculated. First, the closest vertex t by Eu-
clidean distance on the target mesh (Mesh T) is found.
Then, starting from the vertex t the closest vertex a by
Euclidean distance on mesh A is found. The relevant
part for the mixed mean distance is the Euclidean dis-
tance dmin from vertex v to vertex t. Finally, if vertex
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(a) [L] (b) [E] (c) [V] (d) [B] (e) [I]

Figure 2: Five of the seven operations used in our
method. (a) Loop insertion, which introduces a new
edge in the middle of an edge which is continued
through the model, (b) face extrusion along the face
normal, (c) vertex translation in a random direction, (d)
bevelling of an edge and (e) face inset.

v and vertex a are not the same, the distance is set to
the bounding box diagonal. The mean of this distance
is calculated over all vertices of mesh A to mesh T and
vice versa. The mixed mean distance is then the max-
imum of the two and the fitness is the inverse of the
mixed mean distance.

The quality of the fitness function is essential. A simple
mean distance measure proved insufficient to capture
the error between meshes well and did not converge.
One of the problems was overlapping regions in one of
the shapes, which caused the simple mean distance to
be very small. Various other distance measures could
be used here, but need to be evaluated carefully. We
observed that a Hausdorff distance, for example, is not
expressive enough for this kind of optimization. It only
captures the maximum distance and therefore, does not
consider all parts of the mesh. This leads to small ad-
justments being discarded.

Our genome is a design code, comprised of a set of
modelling operations applied to an initial template
mesh. This template mesh may be any quadrilateral
mesh and can be chosen by the user. We demonstrate
our approach using a unit cube as an initial template
mesh.

Evolving the sequence of modelling operations rather
than the explicit shape representation itself leads to a
procedural genome that reflects closely the variety of
results produced by a design process using these mod-
elling operations. To this end, we use seven types of op-
erations widely used in CAD modelling. Five of these
operations are shown in Figure 2:

Op: V An arbitrary vertex is translated. Parameters are
the vertex and the vector of translation. The vec-
tor of translation is defined by three random sam-
ples chosen in the interval [−bboxd ,bboxd ], where
bboxd is the length of the bounding box diagonal of
the mesh.

Op: E A face is extruded along its normal. Parameters
are the face and the distance of extrusion. The max-

imum distance of extrusion is limited by the length
of the bounding box diagonal.

Op: L An edge loop is inserted. Here, the parameter
is a single edge. The edge loop operation is applied
to the middle of an arbitrary edge but results in a in-
sertion of a number of edges, each splitting along the
middle edge of all edge in a mesh which are opposite
to each other (Figure 2(a)). It is the only operation
which affects the whole mesh. When the edge loop
meets a non-quadrilateral face it terminates, creat-
ing a T vertex, that is added to the non-quadrilateral
face.

Op: B Bevelling creates an angled face between two
adjacent faces. Parameters are the edge between two
faces and the length to be cut off. Applying the bevel
operation on an edge with an extraordinary vertex,
an additional extraordinary vertex with the same va-
lence is created.

Op: I Face inset creates another face inside an existing
face and connects the new vertices to the vertices of
the outer face. Parameters are the face and length of
inset.

Op: F Face translate displaces a face along its normal.
No new vertices are added. Parameters are the face
and the offset of the movement.

Op: S Scale operation scales the whole mesh by a fac-
tor. Parameter is the scaling factor.

The genome is initialized with one or two random mod-
elling operations which are sequentially applied to arbi-
trary parts of a mesh. Each operation builds on its pre-
decessors and can change geometry newly introduced
by previous operations.

5 RESULTS
Figures 3 and 4 show results derived by our genetic
approach. To demonstrate our approach we recon-
struct cubic B-spline curves from ordered points sam-
pled from cubic B-spline curves, Figures 3(a) - (c), non-
parametric curves, Figures 3(d) - (f), noisy data, Figure
4a, and data sampled at non-equidistant points along a
B-spline curve, Figure 4b.

The top row of Figures 3 and 4 show the reconstructed
curve (red or colored) plotted on top of the target B-
spline curve (black). The colors of the reconstructed
curve indicate how close it is to the target curve, scaled
by the maximum distance measured. The color red cor-
responds to a smaller distance, whereas blue describes
a larger distance.

The center row in Figures 3 and 4 shows a comparison
between the control polygon used to create the target
curve (black) and the control points generated by the
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(a) Heart (open curve,
n = 7)

(b) Random curve
(n = 5)

(c) Random curve
(n = 7)

(d) Non-parametric
curve f1 from [15]

(e) Non-parametric
curve f3 from [15]

(f) Non-parametric
curve f4 from [15]

Figure 3: Curves reconstructed using our algorithm. Top: target data points (black) and derived B-spline curve
colored by the Euclidean distance to the target curve (red = low, blue = high). Center: result control polygon
(red) overlaid on the control polygon of the reference B-spline curve sampled by the target points (black). Bottom:
Visualization of the resulting chromosome as a sequence of genes. Yellow bar: vertex insertion operation. Red
bar: vertex movement (bar height indicating movement distance).

(a) Noisy input (b) Sparse input

Figure 4: (a) Result after adding Gaussian noise (σ =
0.7% of the bounding box diagonal) to the target sam-
ples (black). (b) Reconstruction from sparse data, after
randomly removing 75% of the point samples. Top: Re-
sult curve (red) overlaid on target points (black). Mid-
dle: Comparison of control polygons. Bottom: Chro-
mosome visualization as in Figure 3.

algorithm (red). Because curves 3(d) - (f) are not de-
rived from B-splines, a comparison is not possible.

As evident from these examples, the algorithm derives
the same number of control points as was used to cre-
ate the target curve and matches their positions closely,

without any prior knowledge of the control polygon
structure. Since the algorithm is not restricted on how
many points are to be used in the solution, we expect
curves to also be derived by more or less control points
than the original target curve.

The bottom row in Figures 3 and 4 depicts the chro-
mosome of each solution, consisting of operations that
are applied to generate the control polygons shown be-
low of each of them. The operations are applied to the
template mesh in sequence starting from left. The last
operation is on the very right. A vertex insertion is in-
dicated by a yellow bar, while a vertex translation is
shown in red. The size of the bar indicates the distance
of the translation. We observe that translation opera-
tions applied to vertices at a later stage the modelling
process tends to decrease. This is not explicitly encoded
in the algorithm and shows that the algorithm tries to
first move the control points reasonably close and then
looks more closely to refine the position.

In Figure 4a the data sampled for curves has been al-
tered by introducing noise to each data point. While
the algorithm found control points close to those from
which the target curve has been defined, they are not as
precise as without noise. The average distance between
our reconstructions from the noisy data points and the
original curves, have an average Euclidean distance of
0.075.

To test the performance of our algorithm with sparse
data points sampled from the target curve, we reduced
the sampled points by 75% by randomly deleting data
points. Results are displayed in Figure 4b. In the recon-
struction the algorithm created control points similar to

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

320https://www.doi.org/10.24132/CSRN.3401.34



the ones used in the original input. The example results
in an average Euclidean distance of around 0.02 mea-
sured from the generated to the original curve.

Although noisy data effects our algorithm more than
sparse data, it is quite robust to both.

The parameters used in the calculation of the results
of our 3D reconstruction shown on top in Figure 5 for
the genetic algorithm were 100 individuals, 200 gen-
erations and 20 parents which were combined to gen-
erate up to 10 children. The operations of the 10 best
individuals were mutated specifically. 10 newly cre-
ated individuals were added per generation and a limit
of 3 individuals with the same genome was enforced.
For the bottom row of Figure 5 the parameters were
the same with the exception of the number of iterations
which was 1000 and the limit of individuals with the
same genome which was 10.

Figure 5 show results of the algorithm performing the
fitment of a straightforward control mesh to a limit sur-
face. It has no information about the control mesh
which was used to generate the target and compare their
resulting limit surfaces to the given target. The color-
ing indicates the relative distance from the point on the
generated mesh to the target. The red color indicates a
small distance to the target. The closer the color is to
blue the further the target mesh is away. In Figure 5 top
we observed distances from 0 to 0.001 and a mean of
0.0001 for the best individual of the genetic algorithm.
Execution time was 240s. In Figure 5 bottom we ob-
served distances from 0 to 0.005 and a mean of 0.002
for the best individual of the genetic algorithm. Execu-
tion time was about 1400 seconds. The distances were
normalized by the bounding box diagonal. The control
meshes show that our algorithm is able to identify the
specific operations needed to generate to target control
polygon.

In Figure 6 we test our genetic approach with slightly
more challenging reconstruction problems. The shape
on top was specifically modelled to enforce the algo-
rithm to reconstruct exact sets of operations. While the
best individual in the first generation has an extrusion
without a prior face inset, by the 50th generation the
correct set was identified and only positions were re-
fined afterwards. The shape on the bottom was pro-
duced using a random set of operations. After 1000
generations our method was able to find the combina-
tion of operations very similar to the ones used to create
the mesh. However, an extra edge loop was inserted in
the top part, which, after 1000 generations remained in
the shape. This demonstrates a limitation of the genetic
reconstruction approach.

6 CONCLUSION
In this paper we introduce a genetic approach to the re-
construction of B-spline or subdivision curves and sub-

division surfaces. The genetic algorithm takes a list of
data points as input and evolves a control polygon or
control mesh by applying a set of operations. The sub-
division curves or surfaces corresponding to the derived
control polygon or mesh approximates the input data
closely. The algorithm derives the number of control
points required as well as their position to optimise the
approximation to the input data.
We proposed a genetic algorithm based on a modelling
process, which is novel in the context of reconstruction
surfaces or curves.
For the case of planar curve reconstruction our pro-
posed method using two operations showed some
promising results in reconstruction. The algorithm
handles noise and sparsity well, although it struggles
with more complex shapes like in Figure 3 (f), where it
does tend to get stuck in local optima.
For the reconstruction of highly complex curves we
suggest a pre-processing step in form of a curve
segmentation algorithm at high curvature region to
split up the reconstruction problem. Additionally, to
speed up reconstruction of highly complex curves,
future work will include extending this algorithm by
a pre-processing step which derives an approximate
minimum to the number of control points required to
reconstruct the curve.
The 3D case is not a straightforward extension of the
2D case and requires a larger set of operations. Al-
though results were impressive for the examples given
in this paper, the algorithm struggles with convergence
for more complex shapes. Future work will focus on
solving the convergence problem by employing a more
sophisticated approach, e.g. using NSGA-II [3], and
multiple fitness functions, constraining the algorithm to
converge faster.
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