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ABSTRACT
Using a neural network approach, a shape may be compressed to a one-dimensional vector, the so-called latent
dimension or latent vector. This latent shape dimension is examined in this paper.
This latent vector of a shape is used to identify the corresponding shape in a database. Two types of networks are
evaluated in terms of lookup accuracy and reconstruction quality using a database of Lego pieces. Even with small
training set a reasonable robustness to rotation and translation of the shapes was achieved.
While a human can interpret uncompressed data just fine, the compressed values of the network might be cryptic
and thus offer no insight regarding the uncompressed input. Therefore, we introduce a latent dimension editor
which allows the user to examine the geometry content of the latent vector and its influence on the decoded shape.
The latent vector editor enables the visual exploration of the latent vector, by making changes to the latent vector
visible in real-time via a 3D visualization of the reconstructed object.
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1 INTRODUCTION
Extracting the defining features of a geometry allows
us to represent a 3D object more efficiently, e.g. one
could describe a Lego piece by precisely defining its
geometrical shape, even though the same information
can be condensed into its structural attributes, such as
size and stud count.

In this paper we use neural networks to extract con-
densed information to a concise descriptor with a lower
dimension than the original representation of the pro-
vided object.

Autoencoders [1], a subclass of neural networks (NN),
are used to learn an efficient encoding of their input data
in terms of latent dimensions in compact form. The au-
toencoder first encodes the input into a lower dimen-
sional latent representation. The outcome of the com-
pression is then decoded to reconstruct the original in-
put.

The latent representation is a central part of this paper.
The latent shape descriptor is useful in many applica-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

tions, e.g. for storing large amounts of data efficiently
due to its dimension and size.

To assess the applicability of using the latent vector in
context for 3D object retrieval (3DOR) we derive the
database lookup accuracy for a range of Lego pieces.
Using a Lego database [12] as an example, we demon-
strate that a fast and accurate retrieval of an arbitrary
3D shape can be achieved.

To visually examine the latent vector and its geometry
encoding, we present a real-time latent vector editor.
By visualizing the reconstructed 3D objects such that
alteration to the shape latent dimension becomes visi-
ble in real-time, the user gets immediate feedback on
how any changes applied to the latent vector affect the
reconstruction and, thus, the encoding of the geometry.
This feature opens up a world of exciting experiments
in which the user gains insight into how the latent vec-
tor relates to the uncompressed input geometry. While
in this paper we focus on two shape representations,
namely a voxel or signed distance field (SDF) repre-
sentation the approach may be extended to other shape
representations.

2 RELATED WORK
Neural networks in combination with 3D voxel grids
and SDF have been used frequently in context of ma-
chine learning geometry.

Voxel grids have been employed e.g. in surface recon-
struction by Brock et al. [3]. Their generative convolu-
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tional autoencoders achieved a good reconstruction for
3D voxel grids, and discriminative convolutional neural
networks achieved a robust classification of the latent
dimension values. Wang et al. [16] proposed a network
which uses voxel and SDF data of an object as its in-
puts. It processes the given data using a convolutional
neural network, autoencoders, and an extreme learning
machine. The primary purpose of said configuration is
for 3D shape classification tasks. Maturana and Scherer
[13] proposed a classification network, that uses a voxel
occupancy grid as an input. They also showed some ro-
bustness to rotation. Wu et al. [18] proposed a method
to recognize different shapes as voxel grids from a 2.5D
input image. They applied their method to real world
data.

Wang et al. [15] propose a new way of storing informa-
tion in a Oct-tree and using it as an input for a Neural
Network. They show their method on object classifica-
tion, shape retrieval and shape segmentation.

Wohlhart et al. [17], trains a convolutional neural net-
work (CNN) to perform object recognition and 3D pose
estimation by computing the similarity of different de-
scriptors through their Euclidean distance and employ-
ing nearest neighbor search to handle large amounts of
objects.

The method proposed by Girdhar et al. [8] works by
combining two encoder networks to produce one latent
vector and one decoder network reconstructing a vox-
elized representations of the shape. In the testing phase
the shape is reconstructed from the image alone. They
further analyzed the latent vector for meaningful feature
values.

DeepSDF [14] focuses on an auto-decoder neural net-
work learning a continuous signed distance function
representation of a class of shapes for shape represen-
tation, interpolation, and completion, even from partial
and noisy 3D input data. It is a generative model that
produces a continuous signed distance field given, for
example, a depth map.

Chen et al. [5] proposed their implicit field decoder,
called IM-NET to auto-encode 3D meshes by training
it to a certain category of meshes. They also proposed
a method to generate and interpolate between meshes
using their Network setup. Further, the researchers pro-
posed using 2D images as an input in order to generate
and interpolate 2D shapes and reconstruct 3D shapes
from a single image (Single-view 3D reconstruction).

The compressed latent vector has frequently been pro-
posed as a tool to edit the geometry and often used
in generative models such as Variational Autoencoders
(VAEs) or Generative Adversarial Networks (GANs),
see e.g. [4, 6, 10].

In this paper, we examine two autoencoder networks
and explore their latent dimension of geometry for use

in several tasks. The latent vectors are used for database
queries and shape reconstruction. The look-up accuracy
achieved demonstrates that the latent vector indeed is a
well compressed representation of the shape. To visu-
ally explore the compressed latent shape representation
further we introduce a latent editor, which enables the
user to modify the latent dimension and visualize its ef-
fect on the decompressed geometry real-time, thus en-
abling the user to visually inspect the latent vector wrt
geometry changes.

3 METHOD
We use deep neural networks (DNNs) [19] to encode
and decode 3D geometry. Such networks consist of
multiple layers of nodes (neurons), each having one or
numerous in- and outputs. Each neuron generates an
output by summing up its weighted inputs and bias and
then evaluating an activation function. The activation
function describes when the neuron "fires" and can be
applied on a layer-per-layer basis.

We combine multiple such layers, each with its indi-
vidual assigned activation functions, to build a network
that can be split into two halves: The first half encodes
a given input to a latent dimension. By forcing the net-
work to trade information for a lower dimension, it must
extract features representing the input well enough for
the compression to be viable. The second half takes
this representation and expands it into a reconstruction
of the input. The error (loss) between input and output
is used to adjust the weights and biases of the network
such that the reconstruction quality improves with each
epoch.

An implicit representation can depict arbitrary geome-
try at a fixed size, thus fulfilling the fixed input-output
constraints of any network. In this paper, we use an im-
plicit representation where each voxel of the input and
output data contains a floating point value that indicates
whether the voxel is outside (+1.0), inside (−1.0), or
directly on the surface (+0.0) of the volume.

This representation may be expanded to contain the ac-
tual distance of the cell center to the closest object’s
surface, essentially becoming a signed distance field
(SDF). In this paper we assess whether this additional
information increases the accuracy of the networks pre-
diction. For the networks, the aim was to obtain a 1D
latent vector which could be further employed in a la-
tent modelling interface.

We compare the results of two types of autoencoder net-
works, a densely connected NN and a large CNN:

The first network we trained and tested features vari-
ous densely connected LeakyReLU and batch normal-
ization layers and its structure is shown in Figure 1.
LeakyReLU was chosen due to its fast computation
time [9] and to enable negative float values to pass
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Figure 1: Structure of the first network.

Figure 2: Structure of the second network. Decoder
part is mirrowed from the encoder part and hidden due
to limited space.

through the network. Batch normalization layers are
employed to avoid vanishing gradients [7]. The en-
coder half of this network consists of four layers. First
a densely connected layer reducing the size from 323

to 322, followed by a batch normalization layer, then
a densely connected layer reducing the size to 32, fol-
lowed by a batch normalization layer. The decoder half
has the same structure as the encoder part, just mir-
rored.

The encoder of the second network is considerably
deeper and consists of eight 3D convolution layers fol-
lowed each by a batch normalization layer. The struc-
ture is visualized in Figure 2 The decoder consists of
seven 3D convolution layers, again each followed by a
batch normalization layer.

In our work, the input volumes are compressed into a
1D latent dimension vector containing 32 values. This
value was found to be the lowest, where meaningful re-
sults could be achieved.

The network’s input and output have the same dimen-
sionality, size, and data type. We compute the recon-
struction quality of the autoencoder network using a
loss function based on the mean squared error between
the implicit shape of the network’s input and output.

Both networks are trained for 250 epochs using an
80/20 split for training and test data and use the Adam
[11] as their optimizer. The networks are trained and
tested with cuDNN-enabled Python using TensorFlow
and the Keras API. cppflow was utilized to port the
trained networks to C++ to visualize the output.

Ground Truth

Voxel NN

SDF NN

Voxel CNN

Figure 3: Examples of 3D shape reconstruction using
two different shape representations (voxel or SDF) and
two different NNs (a dense NN or a CNN).

To train and test the networks we gathered data from an
online library of Lego meshes called LDraw [12]. The
meshes of the Lego pieces are converted the CAD rep-
resentation of the Lego pieces into their voxel and SDF
representation. To gather sufficient data takes time,
we therefore randomly rotate (max. ±180◦), trans-
late (max. 10%), and scale (max. 10%) the converted
shapes to expand the data set from 40 to 4000 shapes,
each consisting of 323 cells. Finally, the dataset is nor-
malized, such that all values lie in the interval [−1,1].

4 RESULTS
We explored the results of the two autoencoder net-
works, by comparing the quality of their 3D reconstruc-
tion. We also test the applicability of the latent code
in various tasks, like 3D object retrieval (3DOR), real-
time latent editing, and morphing shapes.

4.1 3D Reconstruction
The decoder half of the network and the latent dimen-
sion vectors are loaded into the visualization frame-
work, which calculates and displays the resulting vol-
umes.
The reconstruction results in Figure 3 depict the refer-
ence and reconstructed volumes. The colors represent
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Figure 4: Database lookup accuracy of the dense and convolutional network with voxel and SDF input. The lookup
accuracy decreases as the volumes are scaled, rotated, and translated.

the normal vectors of the object. The mean squared er-
ror of both depicted samples is below 0.1 for the SDF
input. Since we can set negative values to −1.0 and
positive values above zero to +1.0 as a post-processing
step of the voxel output, we can simplify our measure of
reconstruction error by simply counting the cells which
have an incorrect sign. The percentage of cells with an
incorrect sign of the two depicted samples equals 17%
(left) and 14% (right) for the dense network with voxel
input and 15% and 12% for SDF input.

In general the convolutional network produces
smoother surfaces with less noise. It also achieves
higher reconstruction accuracy. Using voxels the CNN
achieves an incorrect cell sign percentage of 14% and
8% for both samples, respectively. The improvement
is even more significant when using SDF as shape
representation.

4.2 Latent based Object Retrieval
We prepared the data base by compressing all shapes
to their 1D latent vector. After also deriving the latent
shape for the query shape, the corresponding shape was
retrieved from a database of shapes by finding the clos-
est match between the query latent vector and those in
the data base. The shape was retrieved with high accu-
racy from the shape data base.

The database lookup accuracy is given by the percent of
correctly identified input samples. The database lookup
accuracy depicted in Figure 4 shows that the retrieval
accuracy is reasonably high for quiery shapes which
are rotated up to 45◦ rotation from the target shape but
drops significantly afterward.

The dense autoencoder network, combined with SDF
input data, yields the best results, with the convolu-
tional network with voxel input data performing sim-
ilarly. The dense network with voxel data performs
significantly worse. Increasing the maximum possible
translation and scale to ±10% reduces the accuracy by

twenty percent on average when no rotation is applied
and reduces with increasing rotation.

4.3 Real-time Latent Editor
To examine the latent dimension further we imple-
mented an interactive latent modelling editor which en-
ables direct modification of the latent vector by the user.
The user can alter the latent dimension of an input ge-
ometry and see the affected shape changes in the de-
coded result in real-time. The user can choose from a
collection of 3D volumes, choose from two input repre-
sentations, analyze the reconstruction error, rotate and
scale the 3D volumes, and alter or set individual latent
dimension values.

Some interesting results obtained by modifying the la-
tent dimension values can be seen in Figure 5. In this
example, the latent dimension vector of a 2x1 Lego
piece represented as voxels is edited and decoded by the
trained CNN decoder network which was loaded into
the visualization framework. The editor is flexible such
that it allows to upload any trained en- or decoder in
order to experiment with the latent shape code.

Using more expressive latent vectors with this method,
shapes that do not exist in the database could be cre-
ated. This has a lot of potential in a creative workflow
and designers could benefit from this ability. Another
potential use case could be creating a design process
based on this. A basic model can be encoded in a mean-
ingful latent vector and then edited to add more features
or quickly change the look of the created object.

4.4 Latent Editor: Morphing Shapes
We extended the Latent Editor to enable the user to se-
lect a source and target volume. The morphing tool of
the editor then defines new shapes in between both by
slowly linearly interpolating between the latent dimen-
sion vector of the source volume and the latent dimen-
sion vector of the target volume.
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a) b)

c) d)
Figure 5: Examples of increasingly altering the latent
dimension values of a Lego piece sample. Left: original
Lego piece [2].

The result of this operation is the source volume slowly
morphing into the shape of the target volume, as visible
in Figure 6. This may be interesting in an entertainment
context. But geometry which emerges during the mor-
phing may also be interesting in a process, for example
it could be used as inspiration for new shape designs.

Figure 6: Morphing a Lego piece into another one via
linear interpolation of the latent dimension values.

5 SUMMARY AND FUTURE WORK
In this paper we evaluate different shape representations
and networks and their corresponding latent vectors in
various scenarios. We evaluated the networks based on
the quality of their 3D reconstruction and how accurate
their corresponding latent vector succeed to retrieve 3D
objects from a data base. We also evaluated two im-
plicit shape representations, namely a simple voxel oc-
cupancy grid and a SDF. SDFs have performed signif-
icantly better than simple voxels when reconstructing
shapes, as more information is contained in the input
from which the network can learn. We explored the
latent vector for two different types of autoencoder net-
works, namely a dense NN and a CNN.
While the latent vector derived using a CNN leads to a
more accurate and smoother reconstruction of the origi-
nal shape, a simple NN set may already suffice in using
the latent code to retrieve a corresponding shape from a
shape data base.
The shown results indicate that executing a database
lookup favors a specialized network trained to do clas-
sification instead of using an autoencoder, as it is, in
essence, a classification task. Future research will in-
clude developing and testing two separate networks,
one for reconstruction and one for classification, and
comparing the obtained results to the results described
in this paper.

We also present an interactive tool that enables the user
to interactively alter the latent vector and immediately
explore the changes in the reconstruction. This tool can
be used to explore the geometric meaning captured in a
latent vector. It also enables the user to look into a po-
tential meaning for the latent vector values and analyze
each component on its own in real time. With interpo-
lation between the database entries of different shapes
a user can examine what different shapes lie between
values and travel along the latent space.

Future research questions will focus on extending the
capability of the editor and analyzing the latent dimen-
sions with the proposed tool.
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