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ABSTRACT
In this study, we perform a comparative evaluation and assessment for the scattered data interpolation using a
quartic polynomial triangular patch with ten control points on a triangular domain. The comparison is made
using two different convex combinations and inner ordinates methods, i.e., cross derivative and cubic precision.
Statistical Goodness-fit measurements used are maximum error, coefficient of determination (R2), CPU time (in
seconds), and contour plot. From the result, the cubic precision method with linear convex combination methods
gave better results with smaller CPU times and higher R2 value. All numerical and graphical results are presented
using MATLAB programming.
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1 INTRODUCTION
Scattered data interpolation is a pivotal technique in
modern computational science, offering a means to esti-
mate values at arbitrary locations within a dataset char-
acterized by irregularly distributed data points. Unlike
structured datasets arranged on grids or meshes, scat-
tered data often emerges from real-world observations
or simulations, where data points are irregularly posi-
tioned in multidimensional space. Interpolating scat-
tered data entails the construction of a continuous func-
tion that approximates the underlying behaviour of the
dataset, enabling the inference of values at unobserved
locations within the dataset’s domain [Fran91].

There are two common categories for scattered data in-
terpolation. The first type involves triangulating the
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data sets, while the second type, mesh-free interpola-
tion, does not require the triangulation. Standard ba-
sis functions utilized in interpolation include Bézier,
B-spline, and radial basis functions (RBFs). Previ-
ous studies [Cav19, Dell20, Dell18, Dell16, Ska23]
have explored the application of the Shepard triangu-
lar method, a part of the meshless approach for sur-
face reconstruction. However, these methods often de-
mand significant computational time to generate inter-
polated surfaces. Alternatively, Bézier or spline tri-
angular methods can construct piecewise smooth sur-
faces with desired degrees of smoothness (e.g., C1 or
C2) while requiring less computational time, provided
that certain continuity conditions are met at the adja-
cent boundary.

Goodman and Said [Good91] developed a C1 triangular
interpolant appropriate for interpolating scattered data.
They achieved this by employing a convex combina-
tion scheme that combines three local schemes. Their
work differs from that of Foley and Opitz [Foley92].
Furthermore, both works established a C1 cubic trian-
gular convex combination scheme. However, limited
research has been conducted to compare the relative
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performance of these two methods. Foley and Opitz
[Foley92] asserted that employing the cubic precision
method resulted in enhanced visual smoothness of the
surface for small scattered data sets, as well as a smaller
root mean square (RMS) error compared to the method
proposed by Goodman and Said [Good91]. Further-
more, two versions of convex combinations exist, dif-
fering only in the degree of the rational function. How-
ever, less research is conducted on determining which
version is better when dealing with large scattered data
sets.

Several studies have investigated the practical applica-
tion of cubic Bézier curves in handling real-life data,
primarily due to their simpler complexity and lower
computational demands. For instance, Karim et al.
[Karim18a] delved into spatial interpolation methods
for rainfall data by employing cubic Bézier triangular
patches to interpolate scattered data points. They
also introduced a novel cubic Bézier-like triangular
patches designed explicitly for interpolating scattered
data [Karim20a]. Additionally, Karim and Saaban
[Karim18b] utilized cubic Ball triangular patches to
generate terrain data. However, the inherent sim-
plicity of cubic Bézier patches is suitable only for
achieving moderate smoothness in large datasets. A
higher-degree polynomial is necessary to achieve a
smoother surface. Quartic Bézier triangular patches
have received less attention from researchers in the
past due to their requirement of 15 control points,
which need optimization techniques to ensure C1

continuity is met on each adjacent triangles. This
optimization process consumes more computational
time, and the quartic scheme is global and not local
[Piah06, Aziz05, Huss14a, Huss14b].

A recent study by Karim et al. [Karim20b] has suc-
cessfully developed a C1 scattered data interpolation
scheme without requiring any optimization, building
upon the extension work by Zhu and Han [Zhu13].
This newly proposed scheme is characterized as local,
and the central processing unit (CPU) time needed for
constructing the surface is notably faster compared to
the quartic Bézier triangular patches in previous stud-
ies [Piah06, Aziz05, Huss14a, Huss14b]. Furthermore,
the proposed scheme ensures positivity preservation in
scattered data interpolation, leading to improved inter-
polated surfaces on the real-life data based on coro-
navirus disease 2019 (COVID-19) cases at Selangor
State and Klang Valley in Malaysia. This advance-
ment overcomes the limitations of previous works by
[Ali20, Dra20, Karim20a], which did not apply pos-
itivity preservation in their interpolations. However,
it is worth noting that this novel scheme has not yet
been tested on other real-life datasets, such as geologi-
cal data.

Motivated by these developments, this study aims to
compare two version of convex combination and meth-
ods for forming local schemes based on the inner or-
dinates, focusing on the quartic Bézier surface interpo-
lation scheme developed by Karim et al. [Karim20b].
The analysis will include error assessment using met-
rics such as R2, maximum error, and CPU time. Addi-
tionally, graphical representations showcasing the sur-
faces and their corresponding contour plots will be pre-
sented. Finally, the proposed scheme will be applied to
construct real-life geologic data, specifically Seamount
data, to demonstrate its applicability in practical scenar-
ios.

This paper is organized into five main sections. The
first section introduces the research topic and outlines
its objectives. The second section provides a review of
related literature and methodologies from related stud-
ies. The third section elaborates on the methods uti-
lized in the research. Subsequently, the fourth section
presents the findings and engages in a comprehensive
discussion. Finally, the fifth section concludes the pa-
per and suggests areas for future work.

2 RELATED WORK
This section discusses the related work on the methods
for forming local schemes for inner ordinates and con-
vex combinations.

Goodman and Said’s method
This method, also known as the cross derivative
method, achieves a C1 surface by prescribing first-
order derivatives at the vertices. This method involves
blending three cubic polynomials to create a rational
function interpolant within each triangle of the domain.
One of the significant advantages of this method is its
locality; the surface at any point depends only on the
data "close" to that point. This local nature makes the
method efficient and well-suited for surface interpola-
tion applications. The method begins by triangulating
the domain using the data points as vertices. Within
each triangle, a local interpolant is defined. To ensure a
smooth surface, specific derivative values are typically
employed on the boundaries of the triangles. The inner
Bézier ordinates, denoted as b111, are determined by
the local scheme to satisfy the C1 requirement along
all edges εi, i = 1,2,3 of the triangular respectively as
shown in Fig. 1.

Foley and Opitz’s method
This method is also known as the cubic precision
method. This method is best represented in Fig. 2 in
which the two adjacent triangles with the vertex of Vi
and Ṽi where i = 1,2,3. The hybrid patch on the left
triangle with boundary control point bi jk is identical
to the right triangle with boundary control point bi jk,
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Figure 1: Triangle with side-vertex blending

where i + j + k = 3. The C1 continuity is achieved
by making sure the sets of four control points along
the edge from both sides of the triangle are co-planar.
Complete derivations can be found in Karim et al.
[Karim20b].
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Figure 2: Two adjacent hybrid cubic patches

Convex Combination
In the literature, there are two common convex combi-
nation schemes that can be used in scattered data in-
terpolation for calculating the inner ordinates bi

111, i =
1,2,3 where the barycentric coordinate (u,v,w) on the
triangle is defined by u + v + w = 1, where u,v,w ≥
0. Eqn. (1) represents a linear convex combination,
whereas Eqn. (2) represents a square linear convex
combination which can be shown as below:

b111 = ρ1b1
111 +ρ2b2

111 +ρ3b3
111

where

ρ1 =
vw

uv+ vw+wu
, ρ2 =

wu
uv+ vw+wu

,

ρ3 =
uv

uv+ vw+wu

(1)

or

ρ1 =
v2w2

u2v2 + v2w2 +w2u2 , ρ2 =
w2u2

u2v2 + v2w2 +w2u2 ,

ρ3 =
u2v2

u2v2 + v2w2 +w2u2

(2)

3 METHOD
This section describes the construction of quartic trian-
gular patches on a triangular domain.

3.1 Quartic Triangular Patches
Since we are dealing with triangulation, the barycen-
tric coordinates (u,v,w) on the triangle T with vertices
V1,V2 and V3 is defined by u+v+w= 1, where u,v,w≥
0. Set the point inside the triangle as V (u,v,w) ∈ R2 (as
shown in Fig. 3), which can be expressed as:

V =uV1 +uV2 +uV3
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Figure 3: Triangle T
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Figure 4: Basis functions for quartic triangular patch

Fig. 4 shows the basis functions for quartic triangu-
lar patch. The basis functions satisfy the properties of
non-negativity, partition of unity and symmetry (full de-
tails of the properties can be referred to Zhu and Han
[Zhu13]). Thus, the quartic triangular patch from Zhu
and Han is further defined by

R(u,v,w) =u4b300 + v4b030 +w4b003 +u2v(3+u)b210+

(3+u)u2wb201 +(3+ v)v2ub120+

(3+ v)v2wb021 +(3+w)w2ub102+

(3+w)w2vb012 +6uvwb111
(3)
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3.2 Scattered Data Interpolation Using
Quartic Triangular Patches

In this section, the following scattered data interpo-
lation scheme is constructed based on Karim et al.
[Karim20b].

3.2.1 Boundary Ordinates
The boundary ordinates are calculated based on Good-
man and Said [Good91] method for each triangle, as
represented in Fig. 5.
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Figure 5: Control points for quartic triangular patch

Based on the literature review from Sec. 2, the vertex is
given as F(V1) = b300, F(V2) = b030, and F(V3) = b003.
The other six boundary ordinates are expressed as:

b210 = b300 +
1
4
((x2 − x1)Fx (V1)+(y2 − y1)Fy (V1))

b201 = b300 −
1
4
((x1 − x3)Fx (V1)+(y1 − y3)Fy (V1))

b021 = b030 +
1
4
((x3 − x2)Fx (V2)+(y3 − y2)Fy (V2))

b120 = b030 −
1
4
((x2 − x1)Fx (V2)+(y2 − y1)Fy (V2))

b102 = b003 +
1
4
((x1 − x3)Fx (V3)+(y1 − y3)Fy (V3))

b012 = b003 −
1
4
((x3 − x2)Fx (V3)+(y3 − y2)Fy (V3))

3.2.2 Inner Ordinates
The remaining inner ordinates, bi

111, i = 1,2,3, are
obtained by first using the cross derivative method by
Goodman and Said [Good91]. Then, after the inner
ordinates are calculated, the second inner ordinates
are then calculated using cubic precision by Foley and
Opitz [Foley92].

3.2.3 Final Scheme
The final interpolating scheme can be written as

R(u,v,w) = ∑
i+ j+k=3

i. j.k ̸=1

bi jkB3
i, j,k(u,v,w)

+6uvw
(
ρ1b1

111 +ρ2b2
111

+ρ3b3
111

) (4)

where B3
i, j,k(u,v,w) represents the Bernstein polyno-

mial of degree 3, and ρ1, ρ2, and ρ3 are determined
by Eqn. (1) or (2).

3.3 Algorithm
This section shows the overall algorithm used in this
study, as represented in Algorithm 1.

Algorithm 1 Quartic Triangular Patches for Scattered
Data Interpolation

1: Input: scattered data points
2: Estimate the partial derivative at the data points by

using [Karim20a];
3: Triangulate the data points by using Delaunay tri-

angulation;
4: Calculate the boundary control points;
5: Calculate inner control points for the local scheme,

bi
111, i = 1,2,3 by using the cubic precision method

as in Foley and Opitz [Foley92];
6: Construct the interpolated surface using the convex

combination method of three local schemes defined
by Eqn. (4)

4 RESULTS AND DISCUSSION
In this section, we will compare the performance be-
tween the different convex combination and methods
for forming the local scheme. The proposed scheme
is tested with one well-known function, Franke’s expo-
nential function:

F1(x,y) =0.75e−
(9x−2)2+(9y−2)2

4 +0.75e−
(9x+1)2

49 − (9y+1)2
10

+0.5e−
(9x−7)2+(9y−3)2

4 −0.2e−(9x−4)2−(9y−7)2

The error norms are computed using a 33×33 uniform
rectangular grid of evaluation points in the unit square
for 36, 65 and 100 data points. Fig. 6 shows the De-
launay triangulation for sample of 36, 65 and 100 data
points. The error measurements used are (a) Coefficient
of determination, R2, (b) maximum errors and (c) Cen-
tral Processing Unit (CPU) time in seconds. The simu-
lation is conducted using MATLAB 2023a version.

Fig. 7 shows an example of scattered data interpola-
tion using quartic triangular patches based on F1(x,y)
function based on 65 data points. The scattered data
interpolation is performed within each mesh triangle,
which is then evaluated at points on a 33×33 uniform
rectangular grid within the unit square domain. This
evaluation involves applying the interpolant function to
each grid point to estimate the function value based on
the test function F1. The contour plot of the respective
surface interpolation is shown in Fig. 8.
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(a)

(b)

(c)
Figure 6: Delaunay triangulation for (a) 36 data points;
(b) 65 data points and (c) 100 data points

Based on Fig. 7, there are no significant differences be-
tween the surface of the F1 function and the four inter-
polated surfaces. However, when it comes to the con-
tour plot, which can be referred to in Fig. 8, there are
no exact similarities between the four contour plots for
the interpolated surface. These differences indicate that
different methods with different convex combinations
give different appearances, and it’s worth further inves-
tigating which one of them is actually the best. A better
comparison between the methods is represented with
error analysis, which is shown in Table 1.

Based on Table 1, the cubic precision method with lin-
ear convex combination shows the best performance
in terms of higher R2 value and smaller CPU time (in
seconds) as compared to the three methods. Interest-
ingly, the linear convex combination also favors the
cross derivative method, where its performance is bet-
ter than the one with the square convex combination.
This observation tells us that selecting the convex com-
bination depends on which method is acquired for scat-
tered data interpolation. This observation will help re-
searchers to be able to select the best choice for select-
ing which convex combination to choose when it comes
to different methods for calculating the inner ordinates.

Another interesting observation is that the performance
of both proposed methods significantly improved as the
number of data points increased from 33 to 100, as ev-
idenced by higher R2 values, reduced maximum errors,
and more efficient CPU utilization. This improvement
can be attributed to the increase in triangulation den-
sity from coarse to fine, enabling the capture of subtle
variations and features of the underlying surface of the
test function F1. This pattern is also reflected in the
contour plot shown in Fig. 8, where visual smoothness
is observed to increase with the higher density of data
points. Finer triangulation are adept at accurately rep-
resenting intricate details of the surface but may lead to
increased computational complexity and runtime. On
the other hand, coarser triangulation simplify the sur-
face representation but can potentially result in a loss
of detail and accuracy.

Nevertheless, the cubic precision method with linear
convex combination still performs the best based on the
four-method comparison. By having this result, the best
performing method will be used to reconstruct real-life
geologic data, which is the Seamount data. Seamount
data sets obtained from MATLAB represent the surface
of the Mount under the sea located on Louisville Ridge
in the South Pacific in 1984. Fig. 9 shows the Delaunay
triangulation of Seamount with 294 data points as well
as the 3D interpolation of those data points. Fig. 10
shows the surface of the Seamount data points as well
as the interpolated surface using cross derivative and
cubic precision with linear combination. The interpo-
lated surface consists of 566 triangles and is evaluated
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by subdivision of the triangles. Table 2 shows the CPU
time comparison between the two methods. The CPU
time is taken by averaging three runs of the experiment
to prevent bias. Based on the table, the cubic precision
with linear convex combination takes a lower time to
reconstruct the Seamount data points at 3.3901 seconds
faster than cross derivative with the linear combination.
This observation shows that the cubic precision method
developed by Foley and Opitz [Foley92] is more accu-
rate and faster than the cross derivative by Goodman
and Said [Good91].

A claim by Foley and Opitz [Foley92] mentioning that
their method works better than cross derivative is valid
in this case even though the differences are not signif-
icant. These small differences can lead to big changes
in performance when it comes to interpolating more big
data points. Furthermore, the CPU time required to re-
construct seamount data by using a cubic Timmer tri-
angular patch developed by Ali et al. [Ali20] scheme
is 123.9761 seconds. Meanwhile, the proposed quar-
tic triangular patch has achieved an average CPU time
of 83.4646 (cross derivative) and 80.0745 (cubic pre-
cision) for linear convex combination. Based on this
result, the proposed scattered data interpolation scheme
by using quartic polynomial is at least 1.5 time faster
than scattered data interpolation scheme based on cu-
bic triangular Timmer developed by Ali et al. [Ali20].
This result is significant because the proposed scheme
has quartic degree, meanwhile the existing schemes are
cubic degree.

5 CONCLUSION
In conclusion, this study conducted a comparative
evaluation of scattered data interpolation using quartic
polynomial triangular patches with ten control points
on a triangular domain. The comparison focused on
two different methods: convex combination with inner
ordinates using cross derivatives and cubic precision.
The results of our evaluation indicate that the cubic
precision method, coupled with linear convex com-
bination schemes, outperformed the cross derivative
method. Specifically, the cubic precision method
exhibited shorter CPU times and higher R2 values,
demonstrating its effectiveness in interpolating scat-
tered data using quartic polynomial triangular patches.
Furthermore, our study highlights the efficacy of the
linear convex combination scheme in conjunction with
the cubic precision method for scattered data inter-
polation. This combination yielded superior results,
particularly in reconstructing geologic real-life data,
such as Seamount, and outperformed the linear convex
combination scheme with the cross derivative method
in terms of computational efficiency. Future studies
will focus on implementing these successful schemes
on GPU platforms using machine learning techniques.

This strategic approach aims to enhance computation
time for surface reconstruction while simultaneously
improving accuracy. Overcoming challenges in GPU
implementation and leveraging machine learning
algorithms will contribute significantly to advancing
the field of scattered data interpolation.
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(a) F1 test function

(b) Cross derivative method with linear convex combination (c) Cross derivative method with square convex combination

(d) Cubic precision method with linear convex combination (e) Cubic precision method with square convex combination
Figure 7: Example of surface interpolation based on F1 test function

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Computer Science Research Notes - CSRN 3401 
http://www.wscg.eu WSCG 2024 Proceedings

346https://www.doi.org/10.24132/CSRN.3401.37



(a) F1 test function

(b) Cross derivative method with linear convex combination (c) Cross derivative method with square convex combination

(d) Cubic precision method with linear convex combination (e) Cubic precision method with square convex combination
Figure 8: Contour plots of surfaces presented in Fig. 5
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(a) (b)
Figure 9: Example of (a) Delaunay Triangulation of Seamount with 294 data points and (b) 3D interpolation of
Seamount data points

(a) Seamount surface generated in Matlab

(b) Cross derivative method with linear convex combination (c) Cubic precision method with linear convex combination
Figure 10: Example of surface generated based on Seamount real data points
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