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ABSTRACT

In active vision systems, attentional control is used to determine the relevant parts of a scene and to
direct perception towards these parts. To test and evaluate active vision systems, we have implemented
a 3D simulation framework capable of simulating a broad scope of environments from simple block
worlds to complex photorealistic scenes. The simulator allows full control of all aspects of the simulation,
acting and moving inside virtual environments. In this paper, we demonstrate its use for evaluating our
attentional control system. The attention model is based on a novel two-stage selection mechanism and

especially focuses on the dynamic and three-dimensional aspects of its environment.

Keywords: active vision, virtual reality, attentional control, 3D simulation.

1 INTRODUCTION

By selecting relevant parts of the available input
data, attention serves different purposes in active
vision systems. A simple reduction of the data to
be computed is the main goal to be achieved. Of-
ten, attention is used to serialize complex opera-
tions, like object recognition, so they may be ap-
plied only to one object after another. Another
important function is the removal of distracting in-
formation belonging to neighboring objects in or-
der to facilitate the perception of a single target.
Due to the impressive performance of the human
visual system, modelling of attentional control is
heavily influenced by natural visual attention re-
search. While we will not discuss this aspect here,
it was relevant in the design of our model and an
extended discussion can be found in [Backe01].

In order to be used in active vision systems,
a model of attentional control has to cope with
dynamic environments, moving objects and occlu-
sions. We will focus on the dynamic aspect of as-
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signing attention towards moving objects in the fol-
lowing discussion. Another important problem is
the representation of the world inside the atten-
tional system. Our model uses a three-dimensional
representation of saliency to appropriately reflect
the properties of the environment.

Because evaluation by subjective judification of
example performance seems nonsatisfying, we chose
to employ a simulation environment capable of pro-
viding us with a range of environments of variable
qualities from simple block worlds up to complex
photorealistic environments. As no existing simula-
tor framework met our demands, we decided to use
the simulation framework Orbital 3D, currently
being developed at the IMA lab [Bunge01]. This
framework allows us to use virtual sensors and actu-
ators in environments of scalable quality and com-
plexity with controllable parameters for systematic
experimenting.

The rest of the paper is organized as follows.
Section 2 gives a short overview of models of visual
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attention and of approaches to simulating environ-
ments for active vision systems. A description of
our system architecture is given in section 3, while
the simulation framework is introduced in section
4. Experimental results (section 5) and a conclu-
sion complete the paper.

2 RELATED WORK

2.1 Models of attentional control

Many aspects present in current models of atten-
tional control can already be found in the ground-
breaking work of Koch and Ullman [Koch85], which
was influenced by research on human visual atten-
tion. It consisted of a parallel computation of fea-
ture maps indicating the presence of a particular
feature at each location. These maps were inte-
grated into a master map of attention, describing
the saliency of each location, and for which a WTA-
process determined the location of the focus of at-
tention (FOA). After attention was deployed to this
location, it was stored in a so-called inhibition map
which inhibited the master map of attention which
allowed the focus to be moved to another place.
The group at Caltech is still improving the orginal
Koch and Ullman model by examining methods of
integrating different features [Itti01] and including
object recognition methods [Miau0l]. The group
around Eklundh developed models of visual atten-
tion for active vision systems using depth informa-
tion [Maki96] and integrating depth and motion to
form a target mask [Maki00]. Kopecz [Kopec96]
used dynamic neural fields to integrate selection and
tracking for a visual attention system.

2.2 Simulation environments

While in other domains using a simulator for pro-
viding virtual 3D environments is a common task,
not much work has been devoted to the design
and use of simulators for active vision systems and
mobile robots. Most systems used in the context
of robotic applications [Act01, Miche96, Konol97,
Balch00] only employ a two-dimensional map of the
scene, which obviously does not meet our require-
ments. In [Matsu99] the view of a mobile robot is
simulated using specialized dedicated hardware not
available to us. The quality of the generated views
cannot be scaled up for more complex lighting mod-
els. The simulator introduced in [Lu00] provides
some relevant features, but is also not usable in our
environment.

3 ATTENTIONAL CONTROL

Our model differs from the ones described in section
2 in a number of notable ways. First, we abandon
the all-to-one selection scheme. Instead we intro-
duce a first selection stage responsible for select-
ing a small number of salient items (all-to-some).
These items are selected for different computations,
among which are tracking and collecting feature,
location and motion information. The second se-
lection stage, providing a classical single focus of
attention, operates on the result of the first stage
(some-to-one). The contents of the focus of atten-
tion are subject to high-level-computation like ob-
ject recognition.

The decision for two distinct selection stages is
based on the need to track all salient objects simul-
tanously to achieve an effective inhibition of mov-
ing targets. When serializing high-level operations,
tracking is also necessary for binding extracted in-
formation to an object instead of an outdated lo-
cation. The tracking mechanism in our model is
integrated with the selection mechanism and based
on dynamic neural fields. The representation of
saliency in three dimensions is another difference
from other models using two-dimensional maps for
saliency values.

3.1

Local saliency computation

As in other visual attention models, our model used
various features for computing local measures of
saliency as the basis for the deployment of atten-
tion. These features should correspond to relevant
aspects of the scene, require little knowledge of
the environment, and be as diverse as possible to
achieve robust performance while at the same time
reusing computations in order to increase time effi-
ciency. For special implementations of the system
with a known environment or a given task, special
adapted feature computations should be added like
face detectors or motion templates.

Symmetry Motivated by experiments on spon-
taneous human fixations [Kaufm69|, as well as the
symmetric structure of many artificial objects, we
have developed a symmetry computation based on
the results of gabor-filtering the image. For each
image location and different radii, the symmetry is
computed as the maximum across different radii of
the sum of gabor filter responses perpendicular to a
circle around the location with the specified radius.



Eccentricity Complementary to the edge-based
symmetry-feature, eccentricity is an area-based fea-
ture based on a gray-level segmentation of the im-
age. The segmentation is based on sobel-filtering
the image followed by a region-growing process, af-
ter which dilation and merging is applied. The ec-
centricity and orientation is then determined for
each segment. The local saliency corresponds to
the eccentricity of the segment.

Color contrast Due to the meaningfulness of
color in human-made environments as well as in na-
ture, we implemented a color segmentation in the
psychophysical MTM color space as the base of our
color contrast feature. The contrast of each segment
to its neighbors is computed and weighted by the
borderlength. The result is taken as the measure of
saliency.

Depth from stereo The spatial arrangement of
objects is important for attention as well. We com-
pute the depth of objects using stereo information
gathered from two cameras. Gabor-filtering applied
to both images, from which only the vertical or
near-vertical orientations are used. After search-
ing for multiple correspondences, a self-organization
process is applied to improve the quality of the ini-
tial disparity data. Additionally, we compute con-
fidence values for the computed disparities. For de-
tails of the process used, the reader is referred to
[Liede98]. The saliency for the depth values is pro-
portional to the disparity thus closer objects achieve
higher saliency values because the interaction with
the viewer is more immediate.

Saliency representation The saliency compu-
tations for the different features now have to be
integrated. We have to take into account that we
intend to use spatial information from all three di-
mensions, so we choose a three-dimensional map as
the representation with a coarse resolution along
the third dimension. After superimposing the val-
ues of the feature maps, we distribute them along
the third dimension according to the data derived
during the computation of the depth feature. Using
the confidence of the depth data, we distribute the
saliency values using a normal distribution along
the third dimension, with the disparity value as the
mean and the standard deviation inversely propor-
tional to the confidence.

Figure 1 depicts the model of local saliency com-
putation together with the first selection stage.
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Figure 1: First selection stage and local saliency
computation.

3.2 First selection stage

The task of the first selection stage is to integrate
the saliency measure spatially and temporally and
to extract a small number of objects with high
saliency. As was mentioned earlier, to bridge the
gap between the selection of locations and objects
in a time-varying environment, we have to track the
selected areas of high saliency. It is this first selec-
tion stage that is responsible for transferring the
representation from the subsymbolic to the sym-
bolic level to allow easier representation and ma-
nipulation at the subsequent levels.

Neural fields for tracking and selection In
order to make the model as simple as possible, we
decided to integrate the selection and tracking as-
pects of the first selection stage into a system of
dynamic neural fields (DNF) [Amari77]. The prop-
erties of neural fields, especially conditioned max-
imum selection, hysteresis, integration of informa-
tion over time and tracking, have been used for dif-
ferent purposes, one of which was modelling atten-
tion [Kopec96].

Dynamic neural fields are recurrent networks of
neurons, whose connections are of a local excitatory
and global inhibitory kind. Different parametriza-
tions of the fields lead to different behaviours. Most
notably, one has to distinguish between a global in-
hibition type (stable states show at most one clus-
ter of activity) and local inhibition type (at suf-
ficient distance, more than one cluster of activity
is allowed). In contrast to [Kopec96] we are inter-
ested in selecting and tracking multiple objects, so
we chose a local inhibition type. The dynamics of
neural fields can be described by:
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, where u denotes the activity of the neuron at
location z and time ¢, 7 is a time constant, S a
sigmoid function, h the (negative) resting value, w
gives the weights and ¢ the input into the neural
field. Using the saliency representation as the input
for the neural fields, after a few cycles of updating
the fields, we get a small number of activity clusters
at the most salient locations. These are the items
selected by the first selection stage.

Object files for collecting information For
each item selected by the neural fields, we create
a so-called object file where information about this
object is collected. It contains the timestamped lo-
cations of the object as well as information about
the presence of the different features at this loca-
tion. For each new input frame the information
is updated and the correspondence of the activity
clusters to the object files is reestablished. Every
time high-level computations are carried out for an
item their results are also stored in the object file.
This collection of object files describes the world
model of our system. We distinguish between active
object files, those who link to an existing activity
cluster, and passive object files without such a link.

3.3 Second selection stage

The second selection stage takes the result of the
first stage as input and selects one of the items
for the single focus of attention. This stage is in-
fluenced by top-down information on the current
system-state, i. e. the goal to achieve. We have

implemented different behaviours for this stage. In
this paper we will focus on the “Explore”-behaviour,
intended to collect information about an unknown
environment. We have described additional be-
haviours in [Backe01l]. Due to the simple repre-
sentation, it is easy to adapt the system to more
specialized behaviours as well. Fig. 2 shows an
overview of this second selection stage.

The “Explore”-behaviour selects the most salient
item from the active object files as the first FOA.
Attention is directed towards this object so that
high-level computations can be applied. The high-
level computations themselves are not part of at-
tentional control. Its selection time is stored in the
object file. The next selection occurs, when the
high-level computation for this object is finished.
From this point on, the next-to-be-focussed item
is selected according to the following priorities: as
long as unrecognized active object files exist, one of
these will be selected. If, however, all active object
files contain identity information, the one with the
least recently computed information is selected for
an update of the identity. In case the selection is
not unique, the amount of saliency is used to define
the priority among the items. Inhibition of return in
this model is implicit in the behaviour and bound
to the object file and therefore to the (dynamic)
object instead of a (static) location. The resulting
behaviour can be depicted as a scanpath.

Gaze control Thus far, the system only shows
covert attention - attention by internal selection and
assignment of computational resources. In the con-
text of active vision systems, our interest is in overt
attention as well - attention by sensor manipulation,
especially movement of cameras, in order to fixate
a selected target. While only covert attention was
described before, our model covers overt attention
as well. The selected behaviour is responsible for
triggering a gaze shift toward the focus of atten-
tion. The neural field activity and the positions
stored in the object files are adjusted to match the
modified view. The neural field activation is moved
in accordance to the gaze shift and areas entering
the view are initialized with the resting value of the
field. Object files relating to a position outside the
current view are deactivated. They will be checked
for a match whenever a new object file is created.



4 SIMULATION FRAMEWORK

4.1 Design of Orbital 3D

Evaluation of attentional control is not the primary
purpose of our simulation framework. It is intended
to generally simulate different kinds of sensors and
actuators, e.g. cameras, pan-tilt-units, or mobile
robots, in a given environment. Research and teach-
ing on active vision systems and mobile robots is
carried out using the simulator. This resulted in
the need for a component-oriented framework with
plugins for the sensors and actuators, allowing easy
configuration and modification of the simulated en-
vironment and the devices used inside these envi-
ronments.

To allow for maximal portability, the simulation
framework Orbital 3D was implemented in Java and
was tested on Linux, Windows and Solaris plat-
forms. In Orbital 3D the simulated world is de-
scribed by configuration files in XML; graphical ob-
jects can be imported from POVRay and Java 3D-
files. Sensor models can be added as plugins to
provide a wide range of lighting models. It is up to
the user to choose the appropriate tradeoff between
quality and computational complexity (times range
from 0.3 seconds on a OpenGL-supported platform
and Java-3D up to 10 seconds for a high quality
POVRay image on a standard PC for pictures of
512 by 512 pixels). Communication with the sim-
ulator is done via HTTP so that the simulator
and the program using it can run on different ma-
chines. A C++-library translates the requests and
commands from a calling application into HTTP-
requests. This way, we were able to build interfaces
most similar to those of our existing technical sys-
tems and easily switch between these systems and
the simulator with only slight modification of the
external application.

An overview of the architecture is depicted in fig.
3. For a more detailed description and a different
test scenario see [Bunge01].

4.2 Using Orbital 3D for evaluation of at-
tentional control

In order to evaluate our model of attentional con-
trol, we use Orbital 3D with environments of dif-
ferent complexities. To easily identify the effects of
environment properties, such as color, depth or ob-
ject size, we use a simple kind of block world with
a small number of different objects. The objects
can be described by a small number of parameters.
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Figure 3: Overview of the simulation framework.

By modifying these parameters we can identify the
relationship between properties of the environment
and the system performance. Our special interest
lies in examing the saliency of the objects and their
resulting position in the scanpaths.

The scalability of the simulator gives us the
additional benefit of being able to use more com-
plex, photorealistic environments to explore the be-
haviour of our attentional control system in real-
istic environments. Here, we use a simulation of
our laboratory. Later we intend to compare the re-
sults to those achieved by real-world systems like
our stereo camera-head or our Pioneer II mobile
robot equipped with a stereo camera-head.

5 RESULTS

5.1 Feature computation

Fig. 4 shows a simple block world scene and the
results of the feature computation. The three ob-
jects are easily recognizable in the different feature
maps, the elongated object received the highest ac-
tivation for eccentricity, the ball in front the highest
activation for symmetry and depth and the colored
cube for color contrast.

For a closer examination of the feature compu-
tation we used the simulator to vary some parame-
ters of the scene while the parameters of the feature
computation process were held constant. We find
the expected relation between saliency and the fol-
lowing modifications of the properties of the block
world: the eccentricity of the elongated object, the
color contrast of the cube and the depth of the ball
(see fig. 5).
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Figure 6: Neural field activity (left row) and scan-
paths for a) a simple block world and b) a labo-
ratory scene using the Orbital 3D simulator. The
depth slices of the neural fields are arranged accord-
ing to rising depth in reading order. Lighter values
denote higher activity.
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5.2 Scanpaths for static input

To examine the behaviour of the complete system,
we used a photorealistic scene representing our lab-
oratory. The neural field activity after convergence
for the different static inputs is depicted in figure
6. Note the selection of the most salient objects
and their localization in three spatial dimensions.
Using this neural field activity, a scanpath is gener-
ated without sensor movement. The length of the
scanpath is determined by the parameters of the
dynamic neural fields and the characteristics of the
input scene. For the first input, five distinct ac-
tivity clusters evolved, while for the second input
there were three activity clusters. Each of them is
visited one time before the scan cycle is repeated.
The sequence is determined using the accumulated
activity in the neural field.

In figure 7 we used the same input modifica-
tion as for the block world and examined the conse-
quences for the scanpath. We expected to find that
objects with a reduced saliency would be scanned
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Figure 7: Scanpaths for modifications of a simple
block world.

later. Although this is the case most times, there
are some notable exceptions. In the first row, the
eccentricity of the right object is increased, result-
ing in its earlier selection in the second picture.
In the following picture, the size of the object in-
creases, so that multiple object files are created for
this single object. These object files each have a re-
duced saliency and, accordingly, are scanned later.
They would be scanned earlier, if an integration of
saliency for the complete object were taken into ac-
count. The results from these experiments pointed
us towards the need of integrating object files be-
longing to the same object, which we will implement
in the future. Raising the color contrast of the left
object in the second row shows the expected results.

5.3 Overall system behaviour for dynamic

input

Using a more complex dynamic input scene with
moving objects, the behaviour of our attentional
control , including sensor movement, is shown in fig-
ure 8. The activity clusters closely follow the mov-
ing objects selected by the dynamic neural fields. In
this simulation, we assume that the high-level com-
putation takes four frames, after which a saccade is
performed to the next object file position chosen by
the “Explore’-behaviour for a closer examination of
the object. After the initial gaze direction in frame
1, frame 5 shows a fixation of the picture at the

Figure 8: System behaviour for a number of se-
lected frames. From left to right, the left and right
input frames (activities are related to the left input
frames) and neural field activities are shown. Ev-
ery four frames, a gaze shift is executed. The depth
slices of the neural field containing the selected ac-
tivity cluster are highlighted.

wall and the last frame a fixation of the ball rolling
through the room.

6 CONCLUSIONS AND OUTLOOK

In this paper, we presented a novel model of vi-
sual attention, which employs a dual-stage selection
mechanism. The model appropriately reflects the
more advanced properties of its environment like
multiple moving objects, depth and occlusion. The
decision for a two-stage selection architecture al-
lowed us to apply computations of different com-
plexities either to multiple salient objects or to the
single focus of attention. The dynamics of the
neural field model efficiently integrated selection
and tracking of multiple items, which is not im-
plemented in standard models of visual attention.
For the selected items, we used a symbolic repre-
sentation which would allow different behaviours to
be applied. These behaviours describe the selection
of a classical focus of attention for high-level com-
putations like object recognition and the control of
gaze.

The simulator Orbital 3D allowed us to carry
out different experiments in order to evaluate this
model. While most of the experiments proved the
strengths of the model, some pointed us towards
necessary additions and modifications.

To sum up, the system presented represents an
efficient module for narrowing the stream of visual
data down to the relevant subset to be used in an



active vision system. The simulator demonstrated
the usefulness and apropriateness of our approach.
In the future the system will be extended to make
use of additional more complex behaviours as well
as other features like motion. These extensions will
be evaluated in additional experiments and scenar-
ios using Orbital 3D. We hope to be able to test
concurrent approaches to attentional control using
this simulation framework.
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