A FRAMEWORK TO INVESTIGATE
BEHAVIOURAL MODELS

Leandro Motta Barros
Tatiana Figueiredo Evers
Soraia Raupp Musse

Centro de Ciéncias Exatas e Tecnoldgicas
UNISINOS - Universidade do Vale do Rio dos Sinos
Av. Unisinos, 950, Sao Leopoldo, RS
Brazil
{lmb, tatiana, soraiarm }Qexatas.unisinos.br

ABSTRACT

This paper presents a framework to investigate behavioural models of multiple agents.
The framework is designed to deal with problems commonly found in behavioural an-
imation systems, most of which are caused by excessive coupling between the system
modules. Hence, the framework is designed to be modular, flexible and extensible. Be-
havioural animation models based on this framework are clearly divided in modules that
can be independently designed and developed. Furthermore, these modules can be easily
substituted, modified and reused. We present modules related to crowd behaviour, intel-
ligent camera, and virtual environment and how these are integrated using the Python
programming language. We also discuss visualization aspects, which are addressed by yet

another module.

Keywords: behavioural animation, autonomous agents, inteligent camera

1 INTRODUCTION

Current animation systems encompasses as-
pects from computer graphics and artificial
intelligence [AyletO1]. It is often desired to
develop systems that are visually and be-
haviourally accurate. Furthermore, the be-
havioural part of these systems is commonly
composed of several cooperating modules.

Implemented behavioural animation systems
habitually suffer from excessive coupling be-
tween their modules. This leads to some un-
desirable consequences:

1. Difficulty in developing the modules

separately.

. Limited flexibility, because it is hard to

modify one module without having to
change other modules.

. Restricted extensibility, as the addition

of new modules is not taken into ac-
count in the system design.

. The resulting systems tend to have a

noticeable emphasis either in the arti-
ficial intelligence or computer graphics
aspects, neglecting the importance of
the other half of the system.

In this paper we describe an open framework
to investigate behavioural models of multiple
agents that deals with these problems.

In the next section we review previous work.
Then we describe the organization of our
framework. Section 4 presents topics related
to visualization. And finally, conclusions are
given in Section 5.

2 RELATED WORK

Previous research on behavioural modeling
has mainly focused on various methods for
providing virtual agents endowed with levels
of autonomy. Reynolds [Reyno87]|[Reyno99]
described a distributed behaviour model
for simulating flocks formed by actors en-
dowed with perception skills. The Hel-
bing’s team [Treib99] describes methods
to simulate the movement of pedestrians.
Mataric [Matar94] and Noser [Noser96] de-
veloped local rules for controlling collective
behaviours. Tu and Terzopoulos [Tu94] have
worked on behavioural animation for creat-
ing artificial life, where virtual agents are en-
dowed with synthetic vision and perception of
the environment. Blumberg [Blumb95] pre-
sented the problem of building autonomous
animated creatures for interactive virtual en-
vironments, which are also capable of be-
ing directed at multiple levels, and Per-
lin [Perli96] describes Improv, a system
for scripting interactive actors. Recently,
some behavioural systems using classifier sys-
tems [Sanza0l] and petri nets [BichoO1] are
presented in order to provide autonomous
behaviours to virtual agents. Kallmann et.
al. [Kallm00] described ACE, a common envi-
ronment for simulating virtual human agents.

Our framework describes an open architec-
ture which enables the user to plug in differ-
ent interdependent behavioural clients man-
aged by the server. We use Python to inte-
grate the scripts handled by the modules and
in this paper we present the integration with
three modules: crowd behaviour, intelligent
camera and virtual environment.

3 FRAMEWORK

The ideal system should be flexible, extensi-
ble and efficient. Taking into account these
goals, our model is divided into independent
modules written in an object-oriented lan-
guage. This separation helps to focus each
module in its function. Furthermore, it is
then easier to test, maintain and extend code.
The next section describes all modules and
the overall system architecture.

3.1 Behavioural Modules
The modules are:
1. Intelligent Camera (IC)

The IC module is responsible for the auto-
matic location of camera during the simula-
tion. In fact, the user can define the events
he/she is interested to observe. IC is a very
useful tool for example, when there are multi-
ple agents in a dynamic environment, lots of
events can trigger simultaneously or not, in-
creasing the difficulty to visualize them. The
IC is able to search for events specified ac-
cording to a specific syntax, as shown in Ta-
ble 1.

Entity Task Entity
agent < id > | near group
agent far agent < id >
group < ¢d > | near < place >
group far group
agent near agent
group < id > far group
agent near < place >

Table 1: Events syntax

For instance, if a specific agent (<id> = BOB)
is near to the RESTAURANT (<place>), then
the camera will be positioned near to BOB.
If the triggered event concerns a movement
(e.g. if BOB is walking) then the camera will
follow him. The IC behaviour of following
or just stay fixed in a specific place is emer-
gent as a function of the camera perception
of triggered events.

2. Crowd (CROWD)

This section is related to ViCrowd [Musse01],

a model for simulating crowds of humans in
real-time. In this model, we deal with a hi-
erarchy composed of virtual crowds, groups
and individuals. The groups are the most
complex structure that can be controlled with
different degrees of autonomy. This auton-
omy refers to the extent to which the vir-
tual agents are independent of the user in-
tervention and also the amount of informa-
tion needed to simulate crowds. Thus, de-
pending on the complexity of the simulation,
simple behaviours can be sufficient to sim-
ulate crowds. Otherwise, more complicated
behavioural rules can be necessary, and in
this case, they can be included in the sim-
ulation data in order to improve the realism
of the animation. We present three differ-
ent ways for controlling crowd behaviours: 1)
by using innate and scripted behaviours; i)
by defining behavioural rules, using events
and reactions, and, i7i) by providing an ex-
ternal control to guide crowd behaviours in
real time. The two main contributions of
the ViCrowd model are: the possibility of
increasing the complexity of group/agent be-
haviours according to the problem to be sim-
ulated, and the hierarchical structure based
on groups to compose a crowd.

At a lower level, the individuals have a reper-
toire of basic behaviours that we call innate
behaviours. An innate behaviour is defined
as an “inborn” way to behave. Examples of
individual innate behaviours are goal seeking
behaviour, the ability to follow scripted or
guided events/reactions, the way trajectories
are processed and collisions avoided.

While the innate behaviours are included in
the model, the specification of scripted be-
haviours is done by means of a script lan-
guage. The groups of virtual agents whom
we call <programmed groups> apply the
scripted behaviours and do not need user
intervention during simulation. Using the
script language, the user can directly specify
the crowd or group behaviours. In the first
case, the system automatically distributes
the crowd behaviours among the existing
groups. Moreover, externally controlled
groups, <guided groups>, no longer obey
their scripted behaviour, but act according

to the external specification [Musse98].

Events and reactions have been used to rep-
resent behavioural rules. This reactive char-
acter of the simulation can be programmed
in the script language (scripted control) or
directly given by an external controller. We
call the groups of virtual agents who apply
the behavioural rules <autonomous groups>.
Considering the levels of autonomy presented
in this work, Figure 1 shows the priority cri-
teria and Figure 2 shows an event treated by
ViCrowd.

High External Control Reaction
Group Behavior
Scripted Control Reaction
Group Behavior
Low Innate Behavior

Figure 1: The behaviour priority

Figure 2: Scenes of simulation of evacu-
ation due to a panic situation. Up-left
and up right: before the panic situa-
tion, the crowd walks. Down-left and
down right: crowd reacts because an
event was generated when the statue
becomes alive [Musse01].

3. Environment (ENV)

The ENV module is responsible for the man-
agement of information about the virtual en-
vironment (VE). This information can be the
shortest path from a location to another,
the location of obstacles and places, walka-
ble regions, structured information inside the
places (e.g. rooms), etc. The other modules
that access ENV are CROWD, which needs

positions of places and paths to reach them,
and IC which needs information of places and
objects to trigger events. The VE handled
by ENV is a geometric file where visibility
graphs are built, and then ENV is able to
compute shortest paths and inform them to
the other clients. Figure 3 shows the ENV
tool where the VE is edited.

]
Eie s fa P g e lim I

Figure 3: ENV tool

3.2 Main Module

The integration between the modules IC,
CROWD and ENV is made using the Python
language [Pytho00]. We have a main mod-
ule in Python responsible for this integration.
This module also sends geometrical informa-
tion (position of agents and mobile objects)
to the viewer module, as described in Sec-
tion 4.

When one module needs some information
from other modules, the Main Module is re-
sponsible for searching for this information,
working like a server as shown in Figure 4.

Information
Request about Ask Crowd
question

Environment

-—> Main Module —DF
t 't

Answer Crowd question Answer Crowd question

Figure 4: Main Module integration

We use a client-server architecture, where
Main is the server, and other modules are
clients. The Main module is a different

server, because it decides which methods
will be called to respond to a specific query.
For the moment, we have only LOCATIONAL
queries, which requires location data, for ex-
ample: The CROWD module asks to Main
what is the restaurant’s position in the en-
vironment. Main sends the query to the
ENV module. In this case, Main translates
the query and decides which method of ENV
is more appropriate to respond this query.
Then, it calls this method and send the result
of this query to CROWD.

The decisions taken by the server to select
which module can answer a given query are
based on a set of rules. These rules de-
fine how the interaction between the clients
will be managed by the server. We call this
server an “active server”, because it assumes
some autonomous behaviours according to
the rules. Figure 5 shows rules that specify
which modules should answer LOCATIONAL
queries. For instance, the first rule describes
that queries for a specific PLACE have to be
directed to the ENV module.

SEND LOCATIONAL(PLACE) QUERY TO ENV
SEND LOCATIONAL(AGENT) QUERY TO CROWD
SEND LOCATIONAL(GROUP) QUERY TO CROWD

Figure 5: Rules for the “active-server”

3.3 Architecture

All modules are defined independently
of each other using the object-oriented
paradigm. We have public methods for
communication between Main and the other
modules. These methods depend on mod-
ule functionality. For example, if a mod-
ule needs a place position, then it should
have one method to request this information.
Each module should contain, at least, the fol-
lowing methods:

e Init (It initializes the module. It also
sets a status flag signaling that the mod-
ule is being used)

e GetStatus (It returns the status flag
that signals whether the module is be-
ing used or not)

e Query (It returns a list of queries to be
solved by the server)

e Answer (It is used by the server to re-
spond to the module’s queries)

e Perform (It calls the main method of
the module)

The Init method is called by the user to ini-
tialize the module and to inform to the Main
Module that a specific client will be used.

For example:

IC.Init() (¢D)

The line (1) above initializes the IC module
and sets a flag to indicate that this module is
being used. GetStatus and Perform meth-
ods are used by the Main Module. The first
one is used to verify whether the module was
loaded by the user. The second method starts
the main method of the module.

Moreover, we have a script language in
Python for the users to define the simulation.
The user specifies all information about the
simulation and starts it. Consider, for exam-
ple the script:

Import Env (¢D)
Import IC (¢D)
Import Crowd 1)
Import Main (1)
IC.Init () (2)
Crowd.Init() (2)
IC.LoadFile("Camera.cfg") 3)

Env.LoadFile("Environment.dat") (4)
Crowd.CreateCrowd("Crowd.cfg") (5)
Main.Run() (6)

The user imports the modules ENV, IC,
CROWD and Main (1). Then IC and
CROWD are initialized (2). IC.LoadFile
method loads all definition of intelligent cam-
era: events and entities to search during the

simulation (3). Afterwards, Env.LoadFile
loads all information about the environ-
ment described in Environment.dat file (4).
Crowd.CreateCrowd method creates a crowd
for the simulation from a configuration
file (5). Finally, Main.Run starts the simu-
lation (6).

Another important fact is the dependency be-
tween modules. This dependency is shown in
Figure 6. The module IC depends on the
modules ENV and CROWD, because these
modules have the information that the intel-
ligent camera needs to trigger events and po-
sition itself. The CROWD module depends
on the ENV module, because it needs the
environmental data that is owned by ENV.

/ Depend
crow_| +— [

Figure 6: Dependencies between modules

When the user calls the Main.Run function,
the Main Module starts the simulation. For
every loop of simulation, the Main Module
treats the queries, calls the Perform meth-
ods and sends geometric information about
the agents and camera position to the viewer
module. Then, the viewers display the result
of the simulation (see Section 4). Figure 7
shows the overview of our framework.

Crowd Script
{Python)
&

| Mainpy |—» Viewer

Figure 7: System Architecture

3.4 Case-study

To see how this system works in practice, we
will study a sample simulation: the context
is a panic situation. We have people walking
on the street when a panic event is triggered.
We use the IC, ENV and CROWD modules
for this experiment. We define one event for
IC to search during the simulation: a panic
event. When this happens the camera shows
people who are running. The CROWD mod-
ule asks the Main Module where is the region
to escape and then people start to go there.
The Main Module sends CROWD queries to
the ENV module and then returns the an-
swer to CROWD. The CROWD simulator
generates all crowd steps and send this to the
viewer module. This simulation can be visu-
alized in real time. In Figure 8 we can see an
image of the simulation including 15 agents.

Figure 8: Panic simulation

We have two configuration files and one envi-
ronment database: Crowd.cfg, Camera.cfg
and Environment.dat. The Camera.cfg and
Crowd.cfg files are described in Figures 9
and 10.

In the sample code we define one group,
and their reactions when the panic event is
triggered. And finally, Environment.dat is
shown in Figure 11. It defines the obstacles
(OBJ) and the exit positions (space position
and rotation).

4 VISUALIZATION

In our framework, visualization is completely
isolated from the behavioural model in order
to work with any module. In fact, visual-
ization is accomplished by a separate process

CROWD_SCRIPT

GR_O GROUP_NATURE AUTONOMOUS
NB_AGENTS 13
PATH_DEFINITION FROM RESTAURANT
TO PARK
GROUP_BEHAVIOR 2 ADAPTABILITY
COLLISION_AVOIDANCE
END_GROUP

panic WHO GROUPS 1 GR_O
WHEN FRAMES 310 1000

reactionl panic
GOTO 2 ESCAPE_AREAS
CHANGE_EMOTION FEAR
end_reaction

Figure 9: Crowd configuration file

IC EVENT: WHEN GR_O NEAR ESCAPE_AREAS

Figure 10: Camera configuration file

that runs concurrently with the process re-
sponsible for the behaviour.

The separation of the behaviour and visu-
alization modules has two major benefits.
First, it keeps the system components loosely
coupled, which allows the development of
both modules independently. With this sep-
aration, each module can be developed by an
expert in its area. This helps to create a sys-
tem that is equally good in artificial intelli-
gence and computer graphics.

The second advantage is flexibility. The
framework is not limited to a single viewer or
a single behavioural model. In other words, it
is possible to use the framework with a num-
ber of different viewers and behavioural mod-
els, where the only constraint is to generate
rules to create the relationship between the
modules. It is also important to emphasize
that, since all the modules follow the same in-
terface, it is possible to combine every viewer
module with every behaviour module with
minimal work. This is desirable because dif-
ferent viewers may be adequate for different
situations or the same viewer may be ade-
quate for several behavioural models.

RESTAURANT
POS (-1609.88 0.00 0.66)
ROT (0.87 0.00 -0.48)

PARK
POS (-727.00 0.00 -284.87)
ROT (0.68 0.00 0.72)

0BJ_O
BOUDING_BOX <Dimension>
LIST_OF_VERTEX <List>
LIST_OF_FACES <List>
END_OBJECTS_INFO

Figure 11: Environment file

4.1 Integration Between Processes

In order to visualize the simulation, the
viewer process must receive information from
the simulator process. Hence, there must be a
communication channel between them. This
can be seen as a simple producer/consumer
problem, in which the simulator produces
data that is consumed by the viewer.

In our implementation, the communication
between the processes uses shared memory.
On each simulation step, the simulator writes
to the shared memory all the relevant data
about the simulated entities (this can in-
clude, for example, the position, orientation
and type of every entity).

Synchronization issues must also be consid-
ered. It must be ensured that the viewer dis-
plays every frame generated by the simulator,

e., the viewer must update its display for
every simulation step. Furthermore, we must
certify that the data on the shared memory
is in a consistent state.

We are using a mutex-based scheme for syn-
chronization. Whenever a process needs to
read from or write to the shared memory, it
must lock it. While the shared memory is
locked, the other processes are not allowed
to access it. After the data is read or writ-
ten, the shared memory must be unlocked, in
order to allow its access by other processes.

4.2 Viewers

At this time we have two viewers devel-
oped for the framework. The first one is a
simple OpenGL-based [Wo0096] viewer called
Caterva. The models (for agents and sce-
nario) are read from files in Wavefront’s OBJ
format [Wavef91].

Caterva is designed to be capable of display-
ing a large number of agents. The 3D models
it uses are very simple, using few polygons.
It is limited to receive and display agents’
position, orientation and colour. Caterva is
shown in Figure 12.

Figure 12: The Caterva viewer

Our second viewer is named RTKrowd. It
is based in the RTK Motion toolkit, a
commercial product developed by Softim-
age [Softi01].

RTKrowd is a more realistic viewer, capa-
ble of displaying more complex models, with
more polygons and textures. Also, it is not
limited to display only the agents’ position
and orientation: RTKrowd’s actors are capa-
ble to perform key-framed animations. The
3D models it uses are read from files in the
Softimage’s XSI format, which includes both
geometry and animation. RTKrowd can be
seen in Figure 13.

} }*;’3%}%:) %Thf "l‘ia'

Figure 13: The RTKrowd viewer

5 CONCLUSION

We have described in this paper a framework
which aims to integrate different behavioural
modules in a client-server architecture. A
novel idea of this paper is to present the pos-
sibility of integrating different modules us-
ing an “active server” based on a rule based
interface. In this way, the server behaves
in an autonomous way in order to treat the
dependencies between the plugged modules.
From the modules point-of-view the only con-
straint is that the modules have to provide a
pre-specified number of functions to establish
the minimum communication with the server.
To illustrate the framework concepts, we dis-
cussed an experiment involving IC, CROWD
and ENV modules to simulate a panic situa-
tion.

Another contribution is the possibility to in-
tegrate any viewer with different levels of
details, as shown with the integration with
Caterva and RTKrowd. We have chosen
to develop two viewers with opposed goals:
speed x visual quality. We are currently de-
veloping a third viewer module, that will be
used to generate photo-realistic videos from
our simulations. It will not be able to display
the simulation in real-time as the other view-
ers, but the framework is flexible enough to
support it.

As future work, we expect to improve the
system’s scalability by optimizing the com-
munication between the modules. A possi-
ble approach is to add some memory to the
Main module. This enables some enhance-
ments, for example: when the Main module
needs information from the Crowd module,
it could ask only for the data that changed
since the last query. An alternative approach
is to save frequently needed data in a memory
area accessible to all modules.

REFERENCES

[Aylet01] Aylett,R., Cavazza,M: Intelligent Virtual
Environments—A State-of-the-art Report, State of
art reports, Eurographics, 2001.

[BichoO01] Bicho,A., Raposo,A., Magalhées,L: Control of Ar-
ticulated Figures Animations Using Petri Nets,
IEEE Proceedings of Sibgrapi, pp. 200-207, 2001.

[Blumb95]

[Kallm00]

[Matar94]

[Musse98]

[Musse01]

[Noser96]

[Perlio6]

[Pytho00]

[Reyno87]

[Reyno99]

[Sanza01]

[Softi01]

[Treib99]

[Tu94]

[Wavef91]

[Wo096]

Blumberg,B., Galyean,T: Multi-Level Direction of
Autonomous Creatures for Real-Time Virtual En-
vironments, Proc. SIGGRAPH, Computer Graph-
ics, pp. 47-54, 1995.

Kallmann,M., Monzani,J.-S., Caicedo,A., Thal-
mann,D: A Common Environment for Simulating
Virtual Human Agents in Real Time, The Fourth
International Conference on Autonomous Agents,
Workshop 7: Achieving Human-Like Behavior in
Interactive Animated Agents, pp. 55—59, 2000.

Mataric,M.J: Learning to Behave Socially, in
D.Cliff, P.Husbands, J.-A.Meyer and S. Wilson, eds,
From Animals to Animats: International Confer-
ence on Simulation of Adaptive Behavior, pp. 453
462, 1994.

Musse,S.R., Babski,C., Capin,T., Thalmann,D:
Crowd Modelling in Collaborative Virtual Envi-
ronments, ACM VRST/98, 1998.

Musse,S.R., Thalmann,D: Hierarchical Model for
Real Time Simulation of Virtual Human Crowds,
IEEE Transactions on Visualization and Computer
Graphics, Vol. 7, No. 2, pp. 152-164, 2001.

Noser,H., Thalmann,D: The Animation of Au-
tonomous Actors Based on Production Rules,
Proc. Computer Animation, 1996.

Perlin,K., Goldberg,A: Improv: A System for
Scripting Interactive Actors in Virtual Worlds,
Proc. SIGGRAPH, Computer Graphics, pp. 205—
216, 1996.
Python Language ‘Website.
http://www.python.org, 2001.

Reynolds,C: Flocks, Herds and Schools: A Dis-
tributed Behavioral Model, Proc. SIGGRAPH,
Computer Graphics, Vol. 21, No. 4, 1987.

Reynolds,C: Steering Behaviors for Autonomous
Characters, Game Developers Conference, 1999.

Sanza,C., Heguy,O., Duthen,Y: Evolution and Co-
operation of Virtual Entities with Classifier Sys-
tems, Workshop on Computer Animation and Sim-
ulation, Eurographics, pp. 171-194, 2001.

Softimage Co. http://www.softimage.com, 2001.

Treiber,M., Hennecke,A., Helbing,D: Microscopic
Simulation of Congested Traffic, in Traffic and
Granular Flow’99: Social Traffic, and Granular Dy-
namics, 1999.

Tu,X., Terzopoulos,D: Artificial Fishes: Physics,
Locomotion, Perception, Behavior, Proc. SIG-
GRAPH, Computer Graphics, 1994.

‘Wavefront Technologies: The Advanced Visualizer—

User’s Guide, Appendix B, 1991.

Woo,M: OpenGL Programming Guide: the official
guide to learning OpenGL, version 1.1., o2nd Fdi

tion, Addison Wesley, 1996.

