
1. INTRODUCTION

During the early years of scientific visualization,
several toolkits appeared on the market place, each
one having his characteristics and of course his fans.
But not all of them have reached the same popularity
because of the difficulty to integrate the most recent
techniques as they are presented by researchers of this
fast-growing community. In addition to new methods,
the toolkits developers have had to face the major
issue of making their tools be able to read data,
process them and save results under a number of more
or less recognized data formats. Each time a new data
format can be accepted by the software, new potential
users can be reached. And the problem of maintaining
and upgrading those large softwares becomes rapidly
a drastic issue that can only be solved by using the
more sophisticated software modeling approaches
raised from the software engineering research
community. The object-oriented model has been a
major step in this direction and object-oriented
software design tools are now widely used by

software developers. Modularity, extensibility,
maintainability and reusability are some of the
important proper t ies o f the object-or iented
technology.

VTK (The Visualization Toolkit) is one of the most
recent visualization softwares that appeared on the
market place. It has been developed using an object-
oriented design methodology, each component or
group of components being designed using three
different models: an object model, a dynamic model
and a functional model [1]. From the user point of
view though, the programming model used to design
visualization applications is the usual dataflow
paradigm. This approach makes VTK a rapidly
evolving software, its developers team being able to
produce a new release daily! VTK includes several
interface languages, both interpreted ones, such as Tcl
and Python, and compiled ones, such as C++ and
Java. In addition to a scripting interface, the most
popular visualization toolkits, such as AVS or Iris
Explorer, provide the user with a graphic user
interface, where the user can select modules with the

AUTOMATIC GRAPHIC USER INTERFACE GENERATION FOR VTK

Wilfrid Lefer

LIUPPA - Université de Pau
B.P. 1155, 64013 Pau, France

e-mail: wilfrid.lefer@univ-pau.fr

 ABSTRACT

VTK (The Visualization Toolkit) has become one of the most popular modular visualization
environments. It is an open source software, which has evolved rapidly, new tools being
constinuously integrated and a new (minor) release being produced daily. This rapid evolution
makes it difficult to develop a graphic user interface (GUI) while maintaining software integrity,
that is coherence between interface and code. In this case traditionnal GUI production tools, such as
application builders, are not appropriate. This paper proposes a re-engineering approach for
automatically generating GUIs for VTK and gives solutions for most of the issues that have to be
addressed. We take advantage of the object-oriented feature of VTK to propose a source code
analysis method that generates a software components database. Then the rich information
contained in this database is used to build a GUI for VTK using a specific GUI technology. This
involves a fine analysis of the components of the VTK source and the relationships between them in
order to select the components that should be included in the GUI. Then the GUI is generated,
which includes a run-time environment to generate and execute the code corresponding to the
applications designed by the users. Although VTK has been used to implement our software, the
concepts and solutions proposed in this paper are general and could be applied to any object-
oriented visualization toolkit.

Keywords: Visualization Modular Environments, Graphic User Interfaces, Re-engineering
Approaches, Object-Oriented Code Analysis, VTK.

mouse, drag them into a canvas and draw links
between modules to build the dataflow diagram [2].
Thus the user has a graphic representation of the
diagram and can interact with that representation, for
instance to change a module properties or to combine
multiple diagrams as easily as are some mouse
clicks. A simple click on a button of the interface
updates the whole pipeline and produces the
resulting image or animation. Such a friendly
interface is an important feature of a visualization
software because it provides an easier access to this
technology for end users. VTK lacks such a graphic
interface and this has motivated the work presented
in this paper but we will show that the concepts and
methods presented here have not been specifically
designed for VTK but rather can be extended to every
object-oriented visualization toolkit. The aim of this
project was to develop a tool for automatically
generating graphic user interfaces (GUI) for object-
oriented visualization toolkits. The main features of
our software are:

• the automatic or semi-automatic generation of
GUIs.

• the ability to work on sources written with vari-
ous popular object-oriented languages, particu-
larly C++ and Java.

• the possibility to generate GUIs for various GUI
toolkits, such as X/Motif, Tcl/Tk, Java, ...

• the possibility for the interface designer to cus-
tomize the interface by selecting the modules and
properties of the modules that should appear in
the interface.

• an easy maintenance of the graphic interface: it
is possible to generate a new GUI for each new
release of the software in a minimal effort.

The remaining of this paper is organized as follow.
Section 2 describes the general architecture of our
software. Section 3 presents the concepts used for
analyzing the source code and generating the
language database that is used by our GUI generation
tool, which is described in section 4. Section 5
concludes and give directions for future research.

2. SOFTWARE ARCHITECTURE OVERVIEW

The graphic user interface aims at providing the user
w i th e rgonomic fac i l i t ies for des ign ing a
visualization application. In a modular environment
with a dataflow programming paradigm, these
facilities generally include:

• a list of draggable boxes representing the mod-
ules. There are generally two types of modules:
sources, which produce data, and filters, which
take data as input and produce data as output. In
addition, special boxes representing complete
and autonomous pipelines in which several mod-
ules are linked together to achieve a given task,
can be found. For instance a pipeline including a
data reader, an isosurface extractor, a polygonal
data mapper and a rendering window, may be
available, as a commonly used visualization
application.

• a canvas in which the modules are dragged and
linked together to design the application pipeline.
Within this area all the modifiable resources of a
module can be displayed and changed as neces-
sary. Thus the modules generally have two
graphic representations in the canvas: expanded,
to show their attributes, and shrunk, to have a
compact representation.

• a runtime environment that controls the validity
of the modules connections, generates the script
corresponding to the designed pipeline and exe-
cutes the script to produce the results. Indeed not
every module can be connected to every other
one because the data produced by the first mod-
ule have to be of the same type as those taken as
input by the second module.

In order to design such a graphic user interface, we
need to know the following information about the
visualization software:

• the name of all the modules the user may need in
order to design its application.

• for every module the name of all the properties
of the module that can be changed by the user,
together with the name of the methods that serve
as interface to these properties.

• the type of input data for filters and the type of
output data for sources and filters.

• the syntax of a scripting language, which will be
used to generate the code and to execute it.

Figure 1: Architecture of our software.

Our software architecture consists of two phases: a
first phase where a source code analyzer builds a
structural information database related to the
visualization software, and a second phase where the
interface is built according to the content of the
database. Figure 1 shows the different modules of our
software. The source code of the object-oriented
visualization software is parsed and analyzed by our
object-oriented code analyzer described in section 3.
The result is a set of files in the XML format, which

XML files

Software
Components
Repository

Object-Oriented
Code Analyzer

Component
Extractor

G U I G enera to r

Visualization Software Code Graphic User Interface

are archived in an object-or iented database
management system, which acts as a software
components repository. Once the database has been
built, the information is extracted and filtered by a
component extractor. This program selects the
components that have to be included in the interface
and retrieves the methods to be called for setting the
different properties of the modules. The GUI
generator builds the graphic interface and produces
the script code generation procedures.

3. OBJECT-ORIENTED CODE ANALYSIS

C++ is a language that features high level, abstract
concepts, such as function polymorphism, multiple
inheritance, or genericity, which makes it necessary
to perform a deep analysis of the source code [3].
This accurate code analysis will allow us to solve
problems occuring at the GUI generation phase, such
as those described in section 4.4.1. But the C++
grammar is known to be one of the more difficult to
solve by a code analyzer. Details about the numerous
ambiguities that a developper has to cope with when
writing an analyzer are not in the scope of this paper
and are skipped here. Of course we have been
looking for a public domain analyzer but it turned out
that we did not find anyone that works well enough
for parsing the hundreds of VTK files successfully,
i.e. that satisfy our needs. Several commercial C++
compilers include a reliable parser of course but the
parser can not be extracted from the distribution.
So we have written a complete C++ analyzer [4],
which is based on the FOG grammar (proposal of E.
Willink in 1999). It includes the usual lexical,
syntactic and semantic phases. This code analysis
phase is clearly separated from the GUI production
one. This allows us to connect the analyzer to another
programme. For instance we have developped a
software to automatically generate software
components for online applications, which uses the
results produced by our C++ code analyzer. In order
to facilitate the portability of the results, our analyzer
generates XML documents, which contain all
information about a C++ appl icat ion. Such
information can be very useful l for various
applications. All the XML documents are stored in a
database, called the components database.

4. GENERATION OF THE GUI

Several independent software components are
associated to generate the GUI. We present the
general architecture of this part of our software and
each component is detailed in the following sections.

4.1 SOFTWARE ARCHITECTURE

Figure 2 shows the software modules that interact
together to generate the graphic user interface. The
component extractor gets the software components
produced by our object-oriented code analysis

described in section 3. Remember the main tasks that
have to be performed before the generation of the
interface can take place:

• select the classes to appear as modules in the
interface.

• for each class select the properties that can be
changed by the user.

• determine at least one method able to modify the
value of each selected property.

• build the code generation procedures that will be
called to generate the script corresponding to the
pipeline.

Figure 2: Graphic user interface generation.

Ideally we would like the software be able to analyze
the source code through the software components
database and to perform all the above mentioned
tasks. It is easy to figure out that this is a real
challenge. At the current state of development only
certain tasks have been automated. These tasks are
performed by the component extractor. The
remaining of the tasks are performed manually by the
user through the GUI component selector, which is a
graphic tool that allows the user to select the different
components to be included in the interface by simple
mouse clicks. The GUI component selector is just a
graphical user interface and selected components are
toggled by the component extractor in response to
events occurring in the GUI component selector
interface. The components selection works as
follows: the component extractor gets the source
code information from the components database,
performs all automated selection tasks and then the
whole list of components is presented to the user
through the GUI component selector. Components
are toggled or not, depending on whether they have
been pre-selected by the component extractor. Let us

GUI
Component
Selector

Component
Extractor

G U I G en era to r

GUI
Structure
Files

Graphic User Interface

Components
Database

note that a nice property of the separation of this process
between both modules is that since more tasks will be
automated in the future, no change will appear in the design
of this architecture, the only impact being that more
components will be pre-selected by the component
extractor, leading to less work to do for the user. Indeed the
pre-selection of components by the component extractor
does not prevent the user to change the selection afterwards
since the user task occurs next to the automated task.

4.2 COMPONENTS SELECTION

The user selects the components to appear in the GUI and
the methods to be called for each selected property. Due to
the object-oriented paradigm used to model the visualization
software, all classes are presented in the GUI component
selector, that is both abstract and concrete classes, each
property or method being attached to the class in which it
has been defined. This allows the user to select a property or
a method for a group of selected classes once, by toggling it
at the abstract class level instead of having to select it for all
inherited classes separately. It means that it is possible to

select a property or method for a class that has not been
included in the selection of classes that will appear in the
software GUI. When all components have been selected, the
user validates the selection and click on the «Generate
Interface» button to produce the VTK GUI. Because the
number of tasks that have to be performed by the user to
define a GUI for the whole VTK software can be important,
the component extractor can save the whole configuration in
a so-called GUI file, which contains the list of all software
components and their respective flags (selected or not). For
each new release of the software, even if there are minor
changes, a new GUI has to be generated. Thus the
component extractor can be asked to load the GUI file of the
previous version of the software together with the source
code description of the current version that is stored in the
components database. Components of the new version of the
software that match components of the previous version will
be automatically toggled according to their previous status
by the component extractor. Hence only new components
will have to be treated by the user. Since the number of
changes from a release to the next is generally small as
compared to the size of the software, there is a significant
gain in time in using this possibility.

Figure 3: A snapshot of a Motif GUI for VTK, generated automatically from a reengineering approach.

4.3 GUI GENERATION

The GUI generator gets the list of selected components and
all the necessary information from the component extractor
and generates the source code for the GUI using a specific
GUI toolkit. The code may need to be compiled if the
graphic API uses a compiled language, which is the case for
X/Motif or Java for instance, or it may be interpreted
without any change if the API uses an interpreted language,
which is the case with Tcl/Tk for instance. Each of the tasks
of figure 2 have been implemented as C++ classes, except
for the GUI generator, which has been implemented as a
generic class, which realizes all common tasks of the GUI
generation, and a specific class, inherited from the generic
class. The specific class allows us to implement all tasks
related to a specific GUI technology. Thus there is a specific
class for generating X/Motif interfaces and a specific class
for generating Java interfaces.

4.4 AUTOMATING COMPONENT SELECTION
TASKS

The following discussion concerns the automatization of
certain tasks performed during the components selection
process. It will concentrate on VTK because VTK is the
software on top of which our GUI has been built, but similar
issues would arise with any other object-or iented
visualization software and would probably lead to similar
solutions. The aim of this discussion is to show some of the

problem we have encountered and the solutions proposed to
solve them when they exist. This part of the work is still in
progress and we expect more and more automated tasks as
we will get insight in the structural information of the
software.

4.4.1 IDENTIFYING MODULES NAMES
Depending on the software structure, finding the classes
implementing a given module could be difficult, due to
the various forms of inheritance implemented by various
object-oriented languages. In VTK the names of the
modules are also the names of the corresponding classes
and are familiar to the users of the toolkit. Many classes
are abstract classes though, which should not be part of
the GUI because they should not be instant iated
themselves but rather one of their subclasses. For
instance the vtkStructuredPointsToPolyDataFilter class
sho u ld be unse lec ted bu t i t s subc lasses
v tkS t ruc tu redPo in tsToGeomet ryFi l te r and
vtkMarchingCubes should be part of the GUI. Our object-
or iented code analyzer al lows us to retr ieve al l
inheritance relationships between classes. Hence we are
able to withdraw abstract classes from the selection. A
particular case concerns abstract classes that can be
instantiated though. Actually they are not instantiated
themselves but rather one of their subclasses. If the user
instantiates such a class directly, a procedure in the VTK
source determines which of its subclasses should be
instantiated instead, as a funct ion of the system

Figure 4: Object properties can be modified thanks to customized forms built on-the-fly.

configuration. An example of this is the class
vtkRenderWindow, which is the class for windows
into which rendering can take place. I f an
application program instantiates an object of type
vtkRenderWindow, a portion of code in the VTK
source determines which graphic library is used by
the system and instantiates the right subclass
accordingly, such as vtkOpenGLRenderWindow for
OpenGL render ing under X11. Today th is
particular case of inheritance is not treated
properly by our software. In order to avoid a
wrong selection that the user may not be aware of,
we maintain a l ist of such classes and the
component ext ractor does not process the
hierarchies whose root is in the l ist . Thus
vtkRenderWindow has been put into the list.

4.4.2 MATCHING PROPERTIES AND METHODS
Automatically selecting the properties to appear in
the interface is a difficult task because there is no
structural information that can give reasonable hints
to make the right choice. But this is not a drastic
limitation because of the possibility to save the
configuration for a given release of the software and
to reload it for the next version, so that properties
will be selected according to the history. Once a
property has been selected it is necessary to find at
least one method able to change the value of this
property. It is not rare that the name of the method
can not be directly inferred from the name of the
property itself. In this case the user is asked to make
the right choice through the GUI component selector.
Fortunately in VTK, in most of the cases, the
methods are named according to the name of the
property that they get or change value. Indeed many
methods to access class properties are automatically
built by C macro-functions, so that we have been able
to automatically determine the name of the methods
to invoke for a given property in most of the cases.
Another problem is that there is generally more than
one method that can be used to modify a given
property. For instance in VTK there are at least three
methods that allow to set the ColorMode property of
objects of class vtkMapper: SetColorMode(int),
Se tCo lo rModeTo MapS ca la rs() and
SetColorModeToLuminance(). In order to determine
the right method to use and how to use it, we need to
know the list of parameters of the methods, the type
of each parameter and the type of the value returned
by the method. These information is sufficient to
produce the script generation procedures for each
method invocation. But it may not be enough to
determine whether a method is able to modify a
property value or not. In this case we need to have
information on the code of the method. This is a part
of our object-oriented code analysis that is still under
development.

4.4.3 CONNECTING MODULES
The generation of the script corresponding to the
visualization pipeline designed by the user thanks to
the GUI requires to connect the classes together.
Each connection represents a path followed by some

data, according to the dataflow paradigm. In VTK all
source objects and filters have a method called
GetOutput(), which is used to connect an object to
the next object. In the same way all filter objects have
a method called SetInput(), so that connecting an
object filter with an object reader in C++ is achieved
by the following instruction:

filter->SetInput(reader->GetOutput());
Any attempt to connect two modules by the user
should be validated by the GUI software. This is
possible because we know for each class the type of
the data returned by the GetOutput() method and the
type of the parameter of the SetInput() method.

4.4.4 RUN-TIME ENVIRONMENT
By now we have generated a GUI for VTK using the
Motif toolkit, probably the most powerful and
popular GUI technology in the Unix world. The GUI
generation process is handled by several classes:
viscGUIGenerator, which provides common
funct ional i t ies for al l toolk i ts , and c lasses
implementing specific functionalities, such as the
viscMotifGUIGenerator class, which innherits from
viscGUIGenerator. Both classes have access to the
components database through an interface class,
named viscExtractVTKInfo, which provides routines
to browse classes, methods and arguments of the
VTK software structure.
The Motif GUI includes a list of all classes that can
be instanciated and a canvas in which the user
designs the application, as show on figure 3.
Instances are dragged from the button list and
dropped into the canvas. Once the user has built a
valid pipeline he just have to click on the «Render»
button to obtain the image. For simplicity reasons,
we use the Tcl interface for generating the code
implementing a given pipeline. Due to the technique
used in VTK to encapsulate the compiled code as Tcl
commands, the Tcl implementation is as efficient as
the compiled one. The code generated for the
pipeline that is shown on figure 4 follows:

object instanciations
vtkStructuredPointsReader obj0
vtkMarchingCubes obj1
vtkPolyDataMapper obj2
vtkActor obj3
vtkRenderer obj4
vtkRenderWindow obj5

object properties
obj0 SetFileName brain.vtk
obj1 SetValue 0 70
obj4 SetBackground 1 1 1
obj5 SetSize 250 250

pipeline links
obj1 SetInput [obj0 GetOutput]
obj2 SetInput [obj1 GetOutput]
obj3 SetMapper obj2
obj4 AddActor obj3
obj5 AddRenderer obj4

now run it
obj5 Render

The user has the possibility of saving this code in a
file for future reuse. Note that some object properties
have been changed in this example. Object properties
can be changed by clicking on the modules in the
canvas with the right mouse button. Then a form
window is generated on-the-fly, which allows the
user to set the selected properties, as shown on figure
4. Note that some object methods require several
arguments, such as the SetValue() method of the
vtkMarchingCube class. A single text field widget is
enough though because we keep the value in text
mode and write it to the Tcl file without any format
transformation, as a sequence:

<object> <method> <value>

Later one can imagine adding a property checking
procedure to validate the user entries. The forms are
generated on-the-fly for obvious reasons: there are
several hundreds classes in the VTK toolkit and
making all the forms at a time would require a huge
amount o f memory. Indeed, s ince we have
convenient interface routines provided by the
viscExtractVTKInfo class to browse classes and their
methods, including through inheritance relationships,
this procedure was easy to realize.

5. CONCLUSION AND FUTURE WORK

VTK has become one of the most popular and widely
used visualization toolkits on the market place.
Although the former reason of this success was
probably due to its open source status, the variety of
interface languages available and its ability to
continuously integrate new algorithms have largely
contributed to this situation. As compared to other
similar products, VTK still lacks a graphic user
interface. The size of the software and its rapid
evolution make it difficult to maintain a bug-free
GUI using traditional approaches, such as application
builders. Even with table driven interface generators,
the developer has the entire responsability of
checking by hand the integrity of the interface
according to the code. We have proposed an
automatic approach, which allows us to generate a
new GUI in a few minutes of computing. We have
presented a number of concepts together with a re-
engineering approach to analyze the source code and
build user interfaces for VTK. Thus there can not be
any inconsistency between the interface and the
code.
It should be noted that, although the current
implementation concerns VTK, the approach is
general and all the concepts developed in this paper
could be applied to any object-oriented visualization
toolkit. Because the different tasks have been
separated in independent software components, only
the specific GUI Generator component has to be
rewritten if a new GUI technology is chosen. Thus it
should be easy to generate GUIs for various
technologies with a minimal development time
overhead. It would allow VTK users to choose the
look-and-feel of their visualization toolkit and to
make it matching the look-and-feel of their familiar

environments. The software component repository
produced by our object-oriented code analysis is
stored in a database with the XML format. XML
being now recognized as a standard for data
exchange over the networks, one can imagine
partitioning our software in two parts: the code
analysis part, which will be located on a machine of
the VTK development team, and the GUI generation
part, which would be available for various operating
systems and could be downloaded by users from
various repositories. Thus the VTK team would just
have to run the code analyzer and make the
components database available online. Then the users
would have to run the GUI generation software and
ask for their favorite GUI technology. The GUI
generation software would act as a client of the
components database server and download the code
components and generate the GUI using the
requested technology. We feel that this work could
have other application areas. In the context of another
project under development by our team, we have
started to use it to generate automatically Corba
envelopes to build visualization components for the
Web. How this work could be used to integrate
visualization and other technologies, such as Internet
and databases, is also matter of investigation.

REFERENCES

[1] Schroeder, W., K. Martin and W. Lorenzen, The
Visualization Toolkit - An Object-Oriented
Approach to 3D Graphics - 2nd edition. Prentice
Hall, 1998.

[2] Cameron, G. Modular Visualization
Environments: Past, Present and Future.
Computer Graphics, 29(2), pages 3-4, 1995.

[3] Stroustrup, B. C++. Addison Wesley, 1997.
[4] Gahide, P. Création Automatique de

Composants Logiciels: du C++ vers CORBA.
DEA Report, University of Lille, France, 2001
(in french).

