
ATwo-Level Differential Volume Rendering Method for
Time-Varying-Volume-Data

Shih-Kuan Liao, Yeh-Ching Chung1, Jim Z.C. Lai

Department of Information Engineering
Feng Chia University, Taichung, Taiwan 407, ROC

Tel: 886-4-24517250 x3765
Fax: 886-4-24516101

Email: {skliao, ychung, lai}@fcu.edu.tw

ABSTRACT

The differential volume rendering method is a ray casting based method for
time-varying-volume-data. In the differential volume rendering method, the changed fractions of
volume data between consecutive time steps are extracted to form differential files. Based on the
differential files, only the changed pixels, instead of all the pixels in the image, are updated by casting
new rays at the positions in each time step. The main overhead of the differential volume rendering
method is to determine the changed pixel positions before casting new rays for the changed pixels. In
this paper, we propose a two-level differential volume rendering method, which is a modified differential
volume rendering method with faster determination of the changed pixel positions. In the proposed
method, the determination of the changed pixel positions is accelerated by the aid of
second-order-difference. Since voxels in two consecutive differential files may partially overlap in the
space, the computation spent on determining the changed pixel positions due to the overlapped area is
redundant. We use this property to extract the difference of changed voxel positions between
consecutive differential files to form the second-order-difference. Based on the second-order-difference,
the changed pixel positions can be determined efficiently. The experimental results show that the
proposed method outperforms the differential volume rendering method for all test datasets.

Keywords: Ray casting, differential volume rendering, time-varying-volume-data, flow animation, CFD.

1 The corresponding author.

1. INTRODUCTION

Volume rendering, which projects a 3D volume
data into a 2D image, revealing the internal structure
of the object, is a computation-demanding task
[M.Lev90] [W.M.H93] [P.Lac96] [P.F.F98]. A
time-varying-volume-data (TVVD) is a sequence of
subsequent volume datasets during a period of time

steps. In comparison with a single 3D volume
dataset that contains the static internal structure,
TVVD provides dynamics of the phenomenon under
study. For example, CFD simulations can be
rendered into a flow animation. However, the
computation demand in rendering TVVD is much
more than that in rendering a single 3D volume data.
In order to reduce the computation amount, many

techniques have been proposed to exploit the spatial
coherency and the temporal coherency in TVVD.
The basic idea of these techniques is to reuse the
steady portion to avoid redundant storage or
computation.

Shen et al. [H.W.S94] proposed the differential
volume rendering method to render TVVD. In this
method, the changed fractions of volume data
between consecutive time steps are extracted to form
differential files. These files are used to determine
the changed pixel positions on the image plane.
Only the changed pixels, instead of all the pixels in
the image, are updated by casting new rays at the
positions in each time step. Ma et al. [K.L.M00]
encoded each single volume data into an octree for
the sake of the spatial coherency. For the sake of
temporal coherency, consecutive octrees are merged.
Pointers are used to represent identical subtrees in the
consecutive octrees. In [H.W.S99], a time-space
partitioning (TSP) tree was proposed. A TSP tree is
a time-supplemented octree that utilizes both the
spatial and the temporal coherency effectively and
allows flexible tradeoff between the image quality
and rendering speed. Based on the shear warp
factorization, Anagnostou et al. [Anagn00] proposed
a 4D volume rendering technique that detects and
renders the changed areas in every volume to exploit
the temporal coherency. Besides the above
coherency-based techniques, some other techniques
are developed based on parallel processing technique
[T.C.C97] or transformation technique [R.Wes95]
[Y.Dob98].

The differential volume rendering method
generates images of the same quality with those
generated by a regular ray casting method.
However, the overhead of the changed pixel positions
determination may limit the method for TVVD. If
the number of changed voxels is large, the time to
determine the changed pixel positions may make the
rendering time greater than that of a regular ray
casting method in which all pixels of an image are
rendered. To alleviate the overhead, in this paper,
we propose a two-level differential volume rendering
method. When TVVD evolves gradually, it is
possible that some of the changed voxels appear in
consecutive differential files. They are projected to
the same pixel positions in consecutive time steps.
Therefore, the pixel position determination for these
voxels can be performed in the first time step of the
consecutive time steps and can be omitted in the
following steps. Based on this property, the
proposed method filters out the overlapped voxel
positions and extracts the difference of changed voxel
positions between consecutive differential files.
The extracted difference information is referred as the
second-order-difference (SOD). The differential
files store difference information between volume
data. We refer the difference information stored in
differential files as the first-order-difference (FOD).
The proposed method uses the FOD to update volume

data. Based on the SOD, the proposed method can
determines the changed pixel positions more
efficiently. Since we used the FOD and the SOD in
the proposed method, the name two-level differential
is used. Three CFD datasets are used to evaluate the
proposed method. The experimental results show
that the proposed method outperforms the differential
volume rendering method for all test datasets.

This paper is organized as follows. In Section 2,
the differential volume rendering method will be
described briefly. In Section 3, the proposed
method will be described in detail. In Section 4, the
experimental results of a regular ray casting method,
the differential volume rendering method, and the
proposed method will be given.

2. THE DIFFERENTIALVOLUME
RENDERINGMETHOD

The differential volume rendering method
proposed in [H.W.S94] consists of two phases. In
the static phase, the changed fractions of volume data
between consecutive time steps are extracted. The
positions and the values of the changed voxels are
stored as differential files. In the dynamic phase,
the first image is rendered in a regular method. For
each followed time step, the differential file is used to
update the previous image. Based on the changed
voxel positions in differential files, the pixel positions
to be updated are determined according to the given
parameters such as the view direction, and the
sampling method. For example, when discrete rays
and zero-order interpolation are used, a changed
voxels position is projected onto the image plane.
The four surrounding pixels of the projected point
must be updated. When continuous rays and
trilinear interpolation are used, the interpolation
space that encompasses a changed voxel position is
projected onto the image plane. The pixels located
inside the projected region must be updated. The
changed pixels are then updated by firing new rays in
the pixel positions. If the number of changed pixels
is relative few to the total pixel number, the ray
casting time can be greatly reduced. For each
TVVD, the static phase is performed once.
However, in order to explore the data, the dynamic
phase may be repeated many times, with different
parameters in each time. Therefore, the total saved
time become remarkable if the dynamic phase is
repeated many times.

Up to 90% of saving of the rendering time is
reported by using the differential volume rendering
on some datasets [H.W.S94]. However, the dataset
does not change dramatically. The changed voxel
ratio ranges from 0.005% to 4.77%. When the
number of changed voxels is over a threshold, the
rendering time become greater than that of a regular
ray casting method.

3. THE TWO-LEVELDIFFERENTIAL
VOLUME RENDERINGMETHOD

We now describe the proposed method in detail.
The following are the notations used in this paper.

• Vt: Volume data in time step t
• (x, y, z): A voxel position
• (x, y, z, dt): A changed voxel in time step t,
with value dt in voxel position (x, y, z)

• DFt: The differential file consisting of
changed voxels in time step t

• P(DFt): The set of the positions of the
changed voxels in DFt

• (r, s): A pixel position

Similar to the differential volume rendering
method, the two-level differential volume rendering
method also consists of two phases, static and
dynamic phases. In the static phase, the proposed
method extracts the FOD and the SOD. In the
dynamic phase, the proposed method updates volume
data according to the FOD, determines the changed
pixel positions by using either the FOD or the SOD,
and updates those changed pixels by casting new rays
for them. We now define the SOD and explain how
to determine the changed pixel positions.

3.1 THE SECOND-ORDER-DIFFERENCE

Given DFt-1 and DFt, voxels in DFt-1 and DFt can
be classified into three categories:

Category 1. Voxels are in DFt-1 but are not in
DFt.

Category 2. Voxels are not in DFt-1 but are in
DFt.

Category 3. Voxels are in DFt-1and DFt.
Voxels belong to Categories 1 and 2 are the
difference information between DFt-1 and DFt.
Voxels belong to Category 3 are overlapped voxels of
DFt-1 and DFt. We have the following definitions.

Definition 1: Given DFt-1 and DFt, let OVPt =
P(DFt-1) ∩ P(DFt) denote the overlapped voxel
positions that appear in both P(DFt-1) and P(DFt).

Definition 2: Given DFt-1 and DFt, let MSODt =
P(DFt-1) − P(DFt), PSODt = P(DFt) − P(DFt-1), and
TSODt = MSODt ∪ PSODt denote the minus SOD,
the plus SOD, and the total SOD in time step t,
respectively.

In Definition 2, MSODt is the set of changed
voxel positions that appear in P(DFt-1) but not in
P(DFt). PSODt is the set of changed voxel positions
that appear in P(DFt) but not in P(DFt-1). TSODt is
the extracted SOD in time step t. An example is
given in Fig. 1 to explain the meanings of Definitions
1 and 2.

According to Definitions 1 and 2, we have the
following intuitive lemmas.

M SO D t O V P t P SO D t

P (D F t - 1) P (D F t)

T SO D t

Fig. 1: An example of Definitions 1 and 2.

Lemma 1: MSODt ∩ OVPt = ∅ and P(DFt-1) =
MSODt ∪ OVPt.

Lemma 2: PSODt ∩ OVPt = ∅ and P(DFt) =
PSODt ∪ OVPt.

In Fig. 2, we show how to extract the SOD from
differential files. For convenience, in Fig. 2,
three-dimensional volume data, differential files, and
the SOD are represented by two-dimensional
matrices. For volume data and differential files,
values stored in the matrices represent voxel values.
For the SOD, values “−“ and “+” stored in matrices
indicate that the voxel positions are in the minus SOD
and in the plus SOD, respectively. The voxels that
change their values in time steps 1 and 2 are extracted
to form DF1 and DF2, respectively. In time step 2,
TSOD2 is extracted by comparing DF1 and DF2. In
TSOD2, the voxel position with “−“ value is obtained
because the corresponding changed voxel appears in
DF1 but not in DF2. On the other hand, the voxels
position with “+“ value is obtained because the
corresponding changed voxel appears in DF2 but not
in DF1. Note that the four inner voxels change their
values in both time steps 1 and 2. Their positions
are overlapped changed voxel positions of DF1 and
DF2, i.e., they form OVP2.

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
2 2 2 1
1 2 2 1
1 1 1 1

1 1 1 1
2 3 3 1
1 3 3 3
1 1 1 1

2 2 2
2 2

3 3
3 3 3

–
+

Volume
data

Timestep0 Time step1 Timestep2

Differential files

SOD

DF1 DF2

TSOD2

V0 V1 V2

Fig. 2: An example of extracting the SOD from
differential files. Grey parts represent changed voxels
or changed voxel positions.

3.2 DETERMINE THE CHANGED PIXEL
POSITIONS

We now describe how to determine the changed
pixel positions from the FOD and the SOD.

Definition 3: A voxel position (x, y, z) is said to
influence a pixel position (r, s) if the pixel value in (r,
s) needs to be updated due to the changed voxel value
in (x, y, z). We use J(x, y, z) to denote the set of
pixel positions influenced by voxel position (x, y, z).

As mentioned in Section 2, J(x, y, z) depends on
the rendering parameters such as view direction and
the sampling method. For example, when discrete
rays and zero-order interpolation are used, J(x, y, z)
consists of the four surrounding pixel positions that
surround the projected point of (x, y, z) onto the
image plane. When continuous rays and trilinear
interpolation are used, the interpolation space that
encompasses (x, y, z) is projected onto the image
plane and J(x, y, z) consists of the pixel positions that
locate inside the projected region.

Definition 4: The number of voxels that
influence (r, s) in time step t is define as It(r, s) =|W|,
where W= {(x, y, z) (r, s) ∈ J(x, y, z) and (x, y, z) ∈
P(DFt)}. We called It(r, s) the influenced number of
(r, s) in time step t.

It(r, s) indicates how many changed voxels
influence (r, s) in time step t. For example, assume
that there are ten elements, v1, v2, … and v10 in
P(DFt). Among them, only v1 and v6 influence (r, s).
Then It((r, s)) is equal to 2. From Definition 4, the
following corollary is intuitive.

Corollary 1: Pixel position (r, s) is a changed
pixel position in time step t if and only if It(r, s) > 0.

Since our purpose is to determine changed pixel
positions, we can calculate It(r, s) for each (r, s) and
use Corollary 1 to judge whether (r, s) is a changed
pixel position. It(r, s) can be calculated from the
FOD or the SOD.

To calculate It(r, s) from the FOD, we can check
all the changed voxels in DFt and count how many
voxel positions influence (r, s) to get It(r, s). The
algorithm is given as follows.

Algorithm calculate_It(r,s)_from_FOD
/* Given DFt */
1. For each (r, s), It(r, s) = 0;
2. For each (x, y, z, dt) in DFt {
3. Calculate J(x, y, z);
4. For each (r, s) ∈ J(x, y, z), It(r, s)++; }

End_of_calculate_It(r,s)_from_FOD

Another way to calculate It(r, s) is based on the
SOD. According to Definitions 1-2, voxels
positions in MSODt are in P(DFt-1) but not in P(DFt)
while those in PSODt are in P(DFt) but not in
P(DFt-1). Voxel positions in OVPt are in both
P(DFt-1) and P(DFt). Given It-1(r, s), by Lemmas
1-2 and Definition 4, if (r, s) is influenced by a voxel
position (x, y, z) in MSODt, It(r, s) = It-1(r, s) – 1 since

(r, s) is no longer influenced by (x, y, z) in time step t.
If (r, s) is influenced by a voxel position (x, y, z) in
PSODt, It(r, s) = It-1(r, s) + 1 since (r, s) becomes
influenced by (x, y, z) in time step t. If (r, s) is
influenced by a voxel position in OVPt, It(r, s) = It-1(r,
s). Therefore, OVPt can be omitted in calculating
It(r, s). We have the following algorithm.

Algorithm calculate_It(r,s)_from_SOD
/* Given It-1(r, s) and TSODt */
1. For each (r, s), It(r, s) = It-1(r, s);
2. For each (x, y, z) inMSODt {
3. Calculate J(x, y, z);
4. For each (r, s) ∈ J(x, y, z), It(r, s)−−;}
5. For each (x, y, z) in PSODt {
6. Calculate J(x, y, z)
7. For each (r, s) ∈ J(x, y, z), It(r, s)++;}

End_of_calculate_It(r,s)_from_SOD

Fig. 3 illustrates the calculation of the
influenced numbers using the example shown in Fig.
2. In Fig. 3, the two-dimensional pixel positions are
represented by one-dimensional arrays. The values
stored in the arrays represent the influenced numbers
of the pixel positions. A dotted line indicates that a
pixel position is influenced by a voxel position.
Each voxel position influences two pixel positions
and the voxel positions in the same column influence
the same set of pixel positions in this example. In
time step 1, the influenced numbers of the pixels are
calculated based on the FOD. The influence
numbers are obtained via the five voxel positions of
DF1 directly. In time step 2, the influenced numbers
are calculated based on the SOD. In this case, pixel
positions p0 and p1 are influenced by the voxel
positions in MSOD2, the influenced numbers of p0
and p1 are subtracted by 1. Pixel positions p3 and p4
are influenced by the voxel positions in PSOD2, the
influenced numbers of p3 and p4 are added by 1. We
can obtain the same influenced numbers from DF2
directly, but the computation on TSOD2 is less than
that on DF2 by three voxel positions.

+

+
++

+

+

+ ++

+ +––
+

2 2 2
2 2

3 3
3 3 3

–
+

TSOD2

Timestep1 Timestep2

1 3 4 2 0 0 2 4 3 1
Influencednumbers
ofpixel positions

From the
FOD

From the
SOD

DF2

p0 p1 p2 p3 p4 p0 p1 p2 p3 p4

DF1

Fig. 3: Calculating influenced numbers of pixel
positions. Grey pixel positions are changed pixel
positions.

Since the pixel positions can be determined from
the FOD or the SOD, in the following, we discuss
under what circumstance the use of the SOD has
better performance than that of the FOD and vice
versa. In time step t, the time complexity of
algorithm calculate_It(r,s)_from_FOD is O(|P(DFt)|)
and the time complexity of algorithm
calculate_It(r,s)_from_SOD is O(|TSODt|). We
have the following remarks.
Remark 1. If |P(DFt)| < |TSODt|, the use of the

FOD has better performance than that of the SOD.
Remark 2. If |P(DFt)| > |TSODt|, the use of the

SOD has better performance than that of the FOD.

3.3 ALGORITHM OF THE TWO-LEVEL
DIFFERENTIAL VOLUME RENDERING
METHOD

The two-level differential volume rendering
method is given as follows. In algorithm TLDVRM,
for the dynamic phase, time steps 0 and 1 are
initialization time steps. In time step 0, the first
image is rendered. In time step 1, influenced
numbers have to be calculated from the FOD. In the
rest time steps, influenced numbers are calculated
from the FOD or the SOD according to Remarks 1
and 2 (lines 14-16). The changed pixels, whose
influenced numbers are greater than zero, are updated
(lines 9 and 17).

Algorithm TLDVRM
/* Static phase */

1. Obtain the FOD;
2. Obtain the SOD;

/* Dynamic phase */
3. For time step 0 {
4. Read volume data and perform ray

casting for each pixel position; }
5. For time step 1 {
6. Read DF1;
7. Update volume data;
8. calculate_ It(r,s)_from_FOD;
9. Perform ray casting for each pixel

position with I1(r,s) > 0; }
10. For time step t > 1 {
11. Read DFt;
12. Update volume data;
13. Read TSODt;
14. If |TSODt | < |P(DFt)|, then
15. calculate_It(r,s)_from_SOD;
16. else

calculate_It(r,s)_from_FOD;
17. Perform ray casting for each pixel

position with It(r,s) > 0; }
End_of_TLDVRM

4. EXPERIMENTALCOMPARISONS

To evaluate the proposed method, we compare
the proposed method (referred as TLDVRM) with the

regular ray casting method (referred as REGULAR)
and the differential volume rendering method
(referred as DVRM). Three CFD datasets are used
as test TVVD. The datasets are numerical
simulations of various arrangements of jets issuing
vertically into a horizontal crossflow [C.B.L01]. In
the first dataset, only a jet issues into a crossflow.
The dataset is in size of 81*49*65 voxels and has 100
time steps. In the second dataset, two jets located
along the crossflow direction issue normally into a
crossflow. The dataset is in size of 101*49*81
voxels and has 100 time steps. In the third dataset,
three jets located perpendicular to the crossflow
direction issue normally into a crossflow. The
dataset is in size of 81*65*65 voxels and has 100
time steps. Snapshots of the first, the second, and
the third dataset are illustrated in Fig. 4(a), 4(b) and
4(c), respectively. The experiments are performed
on a Linux system running on a Pentium III 800 MHz
platform with 512 MB RAM.

(a) (b)

(c)
Fig. 4: Snapshots of the three test datasets.

Let CPR (changed pixel ratio) be the ratio of the
changed pixels number to the total pixels number,
CVR (changed voxel ratio) be the ratio of the
changed voxels number (|P(DFt)|) to the total voxels
number, and SODCVR (SOD changed voxel ratio) be
the ratio of the number of the SOD (|TSODt|) to the
total voxels number in a time step. For each dataset,
we show CPR, CVR, SODCVR, and the rendering
time of the three methods in each time step. In a
time step, the rendering time of each method includes
the time to load all necessary files, to determine the
changed pixel positions if necessary, and to perform
ray casting for the necessary pixels. According to
the experimental results, the time to load files is very
small in comparison with the rendering time, ranging
from 0.7% to 3.9%. Therefore, we will mainly
discuss the time to determine the changed pixel
positions and to perform ray casting.

Fig. 5(a) shows CPR, CVR, and SODCVR in
each time step for the first dataset. Both CPR and
CVR rise fast in the early time steps, reach the peak
at 37.4% and 21.3%, respectively, and decay

gradually to 20.6% and 2.4%, respectively. Note
that even when the CVR is at its peak value (21.3%),
the SODCVR is confined in 4.8%. The
accumulated SODCVR is about 42% of the
accumulated CVR for the 100 time steps. These
differences between CVR and SODCVR are very
helpful in reducing the rendering time. Fig. 5(b)
shows the rendering times of the three methods on
the first dataset. Note that the gap between DVRM
and TLDVRM is similar to the gap between CVR
and SODCVR. Since DVRM and TLDVRM use
the same method to update changed pixels, the gap is
mainly caused by the difference in determining the
changed pixel positions. As we have expected, the
benefit of the SOD is remarkable when CVR is high
and SODCVR is low. For example, in time step 20,
the rendering time of DVRM is 87.6% of that of
REGULAR. However, in the same time step, the
rendering time of TLDVRM is reduced to only
60.7% of that of REGULAR. In the later time steps,
the rendering time of DVRM approaches to that of
TLDVRM gradually. The reason is that CVR
reduces gradually and finally the time to perform ray
casting becomes dominating. For the 100 time steps,
the rendering time of DVRM and TLDVRM is 68.1%
and 56.6% of that of REGULAR, respectively. In
TLDVRM, except in the initialization time step, only
in one time step the influenced numbers are
determined from the FOD rather than from the SOD.

0%

20%

40%

60%

80%

100%

0 20 40 60 80
Time step

C
ha
ng
ed
ra
ti
os

CPR CVR SODCVR

(a)

0

100

200

300

400

0 20 40 60 80
Time step

R
en
de
ri
nd
ti
m
e
(m
s)

REGULAR DVRM TLDVRM

(b)
Fig. 5: Experimental results for the first dataset.
(a) CPR, CVR, and SODCVR. (b) The rendering
time of the three methods in each time step.

Fig. 6(a) shows CPR, CVR, and SODCVR in
each time step for the second dataset. Both CPR
and CVR rise gradually in the early time steps and
reach about 52% and 31% in the later time steps,
respectively. Again, SODCVR is confined in 7.8%
when CVR is as high as 31.2% and the accumulated
SODCVR is about 26.4% of the accumulated CVR
for the 100 time steps. Fig. 6(b) sketches the
rendering time of the three methods on the second
dataset. Again, the gap between DVRM and
TLDVRM is similar to the gap between CVR and
SODCVR. Before time step 56, DVRM is more
efficient than REGULAR, and TLDVRM reduces the
rendering time further. After time step 56, the
rendering time of DVRM exceeds that of REGULAR.
However, TLDVRM is still more efficient than
REGULAR. For the 100 time steps, the total
rendering time of DVRM and TLDVRM is 80.8%
and 61.6% of that of REGULAR, respectively. In
all time steps except the initialization time step, the
influenced numbers are determined from the SOD in
TLDVRM.

0%

20%

40%

60%

80%

100%

0 20 40 60 80
Time step

C
ha
ng
ed
ra
ti
os

CPR CVR SODCVR

(a)

0

100

200

300

400

500

600

700

800

0 20 40 60 80
Time step

R
en
de
ri
nd
ti
m
e
(m
s)

REGULAR
DVRM
TLDVRM

(b)
Fig. 6: Experimental results for the second dataset.
(a) CPR, CVR, and SODCVR. (b) The rendering
time of the three methods in each time step.

Experimental results on the third dataset are
very similar to those of the second dataset. Fig. 7(a)
shows CPR, CVR, and SODCVR in each time step
for the third dataset. Both CPR and CVR rise
gradually in the early time steps and reach about 52%
and 44% in the later time steps, respectively. Again,
SODCVR is confined in 11.5% when CVR is as high
as 44.1% and the accumulated SODCVR is about
25.2% of the accumulated CVR for the 100 time
steps. Fig. 7(b) sketches the rendering time of the
three methods on the third dataset. Similarly, the
gap between DVRM and TLDVRM is similar to the
gap between CVR and SODCVR. Before time step
46, DVRM is more efficient than REGULAR, and
TLDVRM reduces the rendering time further. After
time step 46, the rendering time of DVRM exceeds
that of REGULAR, but TLDVRM is still more
efficient than REGULAR. For the 100 time steps,
the total rendering time of DVRM and TLDVRM is
100.4% and 71.1% of that of REGULAR,
respectively. The total rendering time of DVRM
exceeds that of REGULAR while TLDVRM still
outperforms REGULAR. In all time steps except
the initialization time step, the influenced numbers
are determined from the SOD in TLDVRM.

0%

20%

40%

60%

80%

100%

0 20 40 60 80
Time step

C
ha
ng
ed
ra
ti
os

CPR CVR SODCVR

(a)

0

100

200

300

400

500

600

700

800

0 20 40 60 80
Time step

R
en
de
ri
nd
ti
m
e
(m
s)

REGULAR
DVRM
TLDVRM

(b)
Fig. 7: Experimental results for the third dataset.
(a) CPR, CVR, and SODCVR. (b) The rendering
time of the three methods in each time step.

5. CONCLUSIONAND FUTUREWORK

In this paper, we have proposed a two-level
differential volume rendering method to render
TVVD. The core concept of the proposed method is
to determine the changed pixel positions by using the
SOD. By using the SOD, the time of changed pixel
position determination can be reduced. If a large
number of voxels change their values in consecutive
time steps, the saved time in changed pixel position
determination become remarkable. Experimental
results on three CFD datasets show that the proposed
method can greatly reduce the time to determine the
changed pixel positions.

A potential future work is to determine the
condition of switching between the proposed method
and a regular method. We have determined the
condition to switch between the FOD and the SOD
from which the influenced numbers are calculated.
However, we saw in the datasets that a few changed
voxels may lead to a lot of changed pixels in some
cases. The proposed method may be less efficient
than a regular ray casting method. Maybe we can
perform some statistics on the volume data in the
static phase. Based on the statistical data, we can
switch to a more efficient method in the dynamic
phase.

REFERENCES

[Anagn00] Anagnostou, T. J. Atherton and A. E.
Waterfall: 4D Volume Rendering with Shear Warp
Factorization, Volume Visualization and Graphics
Symposium 2000, 2000.

[C.B.L01] C. B. Liao, T. C. Lu, M. F. Wu and T. Y.
Feng: Numerical Simulation of Multiple Vertical
Jets Issuing into an Incompressible Horizontal
Crossflow, The 8th National Computational Fluid
Dynamics Conference, Taiwan, 2001.

[H.W.S94] H. W. Shen and C. R. Johnson:
Differential Volume Rendering: A Fast Volume
Visualization Technique for Flow Animation,
Proceeding of the Visualization ’94 Conference
Pages 180-187, 1994.

[H.W.S99] H. W. Shen, L. J. Chiang and K. L. Ma: A
Fast Volume Rendering Algorithm for
Time-Varying Fields Using a Time-Space
Partitioning (TSP) Tree, Proceedings of the
Visualization '99 Conference, Page 371–377,
1999.

[K.L.M00] K. L. Ma and H. W. Shen: Compression
and Accelerated Rendering of Time-Varying
Volume Datasets, Workshop on Computer
Graphics and Virtual Reality, 2000 International
Computer Symposium, Taiwan, 2000.

[M.Lev90] M. Levoy: Efficient Ray Tracing of
Volume Data, ACM Transactions on Graphics,
9(3): 245-261, 1990.

[P.F.F98] P. F. Fung and P. A. Heng: Efficient Volume
Rendering by IsoRegion Leaping Acceleration,

The Sixth International Conference in Central
Europe on Computer Graphics and
Visualization'98, 1998.

[P.Lac96] P. Lacroute: Analysis of a Parallel Volume
Rendering System Based on the Shear-Warp
Factorization, IEEE Transactions on Visualization
and Computer Graphics, vol. 2, no. 3, pp. 218-231,
1996.

[R.Wes95] R. Westermann: Compression Domain
Rendering of Time-Resolved Volume Data,
Proceeding of The Visualization ’95 Conference
Pages 168-175, 1995.

[T.C.C97] T. C. Chiueh and K. L. Ma: A Parallel
Pipelined Renderer for
Time-Varying-Volume-Data,
NASA/CR-97-206275, ICASE Report No. 97-70,
1997.

[W.M.H93] W.M. Hsu: Segmented Ray Casting for
Data Parallel Volume Rendering, Proceedings of
1993 Parallel Rendering Symposium (PRS’93),
pp. 7-14, San Jose, 1993.

[Y.Dob98] Y. Dobashi, V. Cingoski, K. Kaneda, And
H. Yamashita: A Fast Volume Rendering Mothod
for Time-Varying 3D Scalar Field Visualization
Using Orthonormal Wavelets, IEEE Transactions
On Magnetics, 34(5), 1998.

