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ABSTRACT

We present in this article a lipreading system implementing spiking neurons (STANs). A new
preprocessing is proposed in order to reduce as much as possible the learning phase of the system.
This training is done in one pass: the user pronounces once all of the words of the dictionary;
the system is then able to recognize these words throughout different sessions during which the
position and the chrominance of the images of the speaker’s mouth strongly change.
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1 INTRODUCTION

Visual speech recognition is a problem on which
many teams have been working since a score of
years. The potential applications are important:
audio-video processing for a robust speech recog-
nition, lip-synchronization in audio-video flows,
synthesis of talking heads. Nevertheless, there
does not exist yet of really robust and noninvasive
system making it possible to analyze the mouth
shape in a flexible way. The realization of avatar
model of a face for example is still done after a
phase of heavy initialization from the user point
of view [Leung01].

Our team works on HCI (Human Computer Inter-
action) and particularly on treatments in which
the computer adapts better and better to the per-
son in a natural way. We thus treat the lipreading
under the single-speaker perspective: the objec-
tive 1s to produce a robust and powerful recogni-
tion system, adapted to a particular speaker and
not requiring a very constraining training.

We present in this article a preprocessing suffi-
ciently robust to allow a one pass learning: the
speaker reads only once during a first session
the whole dictionary to parameterize the recog-
nition system. The robustness of the recognition

is tested on different sessions during which the
position of the mouth and its chrominance vary
strongly.

After a short state of the art (section 2), we will
present our lipreading system (section 3) and in
particular the suggested preprocessing. The sec-
tion 4 devoted to the results will end in a discus-
sion on the future improvements.

2 State of the art
2.1 Preprocessing

Two types of preprocessing are distinguished ac-
cording to whether they are based on low or high
level information.

Low level parameters

An extraction of the low level parameters makes it
possible to take into account many characteristics
such as the appearance of the teeth, the tongue
or the particular mouth shapes. Within the same
session during which neither the mouth position
nor the image chrominance change, these parame-
ters make 1t possible to carry out a powerful clas-
sifier. A PCA (Principal Component Analysis)



1s sometimes directly applied to the image gray
levels [Cueto00]. The projection of the mouth
on the first 100 extracted components produces
projection coefficients injected into the classifier.
[Ség01] applies a VQ (Vector Quantization) to the
gray levels in order to extract twenty code vectors
which will be used for the identification of the el-
ementary mouth shapes. These extractions based
directly on the gray levels are not robust within
the test framework carried out on different ses-
sions during which the mouth is slightly shifted
or the light comes from a different source.

High level parameters

Within the multi-session framework, it is then
necessary to use high level parameters which will
be invariants in translation, zoom and change
of chrominance. Simple parameters are some-
times evaluated. One computes for example the
height and the width of the mouth by carrying
out a summation on the gray levels according
to the lines and columns of the region surrond-
ing the mouth [Baig99a]. One can also apply a
deformable model to the outlines of the mouth
[Yuill90], [Tian01]. Then the model parameters
are sent to the classifier. Dynamic contours are
also used: [Delma99] applies snakes to contours
while [Sanch00] models the mouth by a B-Spline.
Finally certain teams [Luett97] make mixed one
between the low level (signatures in term of gray
levels) and high level (dynamic contours) parame-
ters. The disadvantage nevertheless of these high
level parameters is that they integrate few de-
tails of the mouth (the tongue and the teeth for
example are seldom taken into account): all the
relevant information which would make it possi-
ble to separate particular shapes is not taken into
account leading thus to a less powerful classifier.

2.2 Classification

In this state of the art we are interested pri-
marily in the preprocessing, since it is the es-
sential object of our contribution. With regard
to the classification systems, two types of tools
are mainly exploited: neural network (Multi-
Layer Perceptron [Moris01], Time Delay Neural
Network [Stief97], Spiking Neurons [Baig99b])
and the Hidden Markov Models ( [Dupon00],
[Wark00]).

3 LIPREADING SYSTEM
3.1 System

Our global lipreading system is organized accord-
ing to two modules (Fig. 1). The preprocess-
ing module makes it possible at every moment to
identify the elementary shape of mouth by com-
paring the input images with referenced code vec-
tors. These code vectors are specified by a Vec-
tor Quantization (VQ). The classification module
consists of a network of STANs (Spatio-Temporal
Artificial Neurons): each neuron is associated
with a word of the dictionary and must recognize
a particular impulses sequence.

3.2 Preprocessing module

We propose in this article a particular preprocess-
ing which jointly uses high and low level parame-
ters. The classifier is both robust during different
sessions and powerful within the same session.

Let £ be the image set of the first sequence of
the first session. This dataset constitutes our
learning base. One applies a VQ (KMeans) to £
in order to extract some code vectors. Each code
vector represents an elementary mouth shape
(Fig 1). An influence region for each one of these
code vectors is evaluated by means of a radius
specific to each code vector. This radius r; is
equal to the distance between the code vector
and the most distant example which is attached
to him. The preprocessing module has as many
outputs than there are evaluated code vectors.
In exploitation phase, the output y;(¢) of the

code vector nearest to the input X (¢) is equal to:
D2(X(4),P})
- 2r2
7

yt) =e

Only the output of the code vector nearest to the
input is activated.

All the words of the dictionary are present in the
learning base &, we thus generate for each one of
these words a characteristic impulses sequence.

The supervised learning during which one speci-
fies the weights of the STANs having to recognize
each word 1s made only once and on the basis of
impulses generated by the preprocessing module.
Thus, the output of this module must be identical
for a same word, under any session.

For example if the output associated with the first
code vector characterizes a closed mouth follow-
ing the VQ carried out during a first session, it
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Figure 1: Lipreading System.

1s necessary that this same output always char-
acterizes a closed mouth during others sessions.
However we do not know a priori which mouth
shapes the code vectors characterize because of
algorithm used (KMeans has a random initiali-
sation). To overcome this problem, we propose
to analyze each code vector generated by the VQ
at the beginning of each session, and to recognize
the form which it characterizes in order to reorga-
nize the outputs of the preprocessing module and
thus to make them coherent under any session.

Let us consider as an example the code vectors
generated during three different sessions (Fig. 2)

SESSION 2

=

Figure 2: Three sets of code vectors char-
acteristic of three sessions

They are only two high level parameters (the
height and the width of the mouth) which will
enable us to associate these code vectors two by
two between different sessions. The method used
to extract these two parameters is presented in
appendix.

Implementation

Let us consider three different sessions during
which a particular speaker pronounces all the
words of the dictionary (digits from 0 to 9) sev-
eral times running (Fig. 3). In the learning phase
(during the first sequence of the first session) the
parameters of the preprocessing and classification
modules are defined. In the testing phase, certain
preprocessing module parameters are specified in
an unsupervised way during a so-called calibra-
tion phase (during the first sequence of each ses-
sion), the tests being carried out strictly on all
the other sequences of the session.

We will show in the section 4 that six code vec-
tors are necessary. The high level parameters
which we use permit to establish the links be-
tween four code vectors: a closed mouth (the
code vector characterized by the mouth with the
smallest height), a wide-open mouth (maximum
height), a smile (maximum width) and a mouth
forming a little "o" (minimal width). We can
thus guarantee that the first four outputs are co-
herent under any session. Unfortunately these
parameters are not sufficient to make it possible
to link all the 6 code vectors. For this reason it
is necessary to differently configure the output of
the code vectors layer in order to allow an inter-
session classification. We propose to make the
fusion of the fifth and sixth output in order to
produce finally a preprocessing module with only
five outputs. As we said previously one and only
one output emits an impulse, this fusion thus con-
sists in simply generating an impulse on the fifth
final output of the module when the code vector
five or six emits an impulse (see Fig. 1).
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Figure 3: Learning, calibration and testing base.

3.3 Classification module

The STANs are spiking neurons which work in
the complex domain. A sequence of impulses is
converted into a vector X with complex values in
the following way (Fig. 4).

The impulse of amplitude 7; emitted at time ¢; is
coded at current time ¢ by the complex number:
1‘7(t) — nle—usrle—i arctan pr 71

with
i=~—1,m=t—ty et ps = ppr = 1/TW

TW depends on the application and represents
the size of the temporal window inside which one
wishes to identify impulses sequences. When a
new impulse 7, is emitted at time ¢» on the same
component, it is accumulated in the component

7 of the vector X:
l‘j(tz) — nle—us(tz—tl)e—iaFCtaHNT(tz—tl) + 19
= pei?
and later:
l‘](t) — pe—us(t—tg)e—iarctantan¢+uT(t—t2)

Each component of the vector X is thus reactu-
alized as soon as an impulse is presented to the
input. The comparison between X and the weight
W of the neuron itself characterized by a complex
vector can be done by the means of an Hermitien
distance D:

DX, W) = /S0 (5 — ) (o — wj)

knowing that ¥ 1s the complex conjugate of x.

Figure 4: STAN : Spatio-Temporal Artifi-

cial Neuron.

The temporal duration TW of the sequence which
is taken into account by the neuron i1s a parame-

ter which remains to be defined by the user. We
propose here to regulate TW in an automatic way
to adapt to the duration of each word which will
have to be recognized. Before and after each pro-
nounced word, the person who expresses herself
has a closed mouth. We detect the beginning and
the end of each word by comparing each image
with the code vector which corresponds to the
closed mouth. It is thus possible during the learn-
ing phase to evaluate the duration of each word
which must be recognized.

There are as many output STANs than of words
to be recognized. The characteristic duration
(TW) of each neuron is thus evaluated in an auto-
matic way when the word having to be recognized
is presented. The weight of the neuron is then the
simple conversion of the impulses sequence into a
complex vector.

In exploitation phase, we act in the same way in
the sense that we evaluate for each sequence the
beginning and the end of the word pronounced
by comparing each image with the code vector
of closed mouth found during calibration. Thus
the impulses sequence which we send indeed in
the layer of STANs is cleaned as indicated by the
Figure 1. Each output neuron then compares its
weight vector with the transposition into complex
vector of the impulse sequence by measuring a
distance Dy, k going from 0 to 9. The class will be
identified by the neuron presenting the minimal
distance 1.

4 RESULTS AND CONCLUSION

4.1 Protocole

The images were acquired at a frequency of 50
Hz (after de-interlacing) in RGB and with a res-
olution of 288 X 192 pixels. Let us note that for
the computation of the code vectors by Kmeans,
these images converted into 256 gray levels were
reduced by a factor 4 (72 X 48) in order to accel-
erate the processing.



Our objective is to recognize the ten digits (from
zero to nine) in French expressed by only one
speaker. We carried out three sessions during
which the speaker pronounces all the ten digits
eight times running. A sequence in a session cor-
responds to the pronunciation of the ten digits
one after the others, the mouth being closed one
half-second at least between each digit. There are
thus 3 sessions, each one containing 8 sequences.

As one can see it on the Figure 3 the images of the
three sessions are different in brightness, chromi-
nance and position of the mouth. On the oppo-
site during a session, the mouth evolves neither
in position nor in chrominance.

The first sequence of the first session is used for
the training, the first sequences of the two other
sessions are used for calibration (evaluation of the
code vectors), the seven remaining sequences in
each one of these two sessions are used for the
test.

4.2 Parameter setting of the system

It is necessary to fix a priori in the algorithm of
KMeans the number of code vectors to be com-
puted. In theory an optimal number of code vec-
tors exists: not enough code vectors does not al-
low a good discrimination between rather close
words, on the contrary too many code vectors
prejudice generalization performance of the sys-
tem. To evaluate this optimal number in an au-
tomatic way, we vary the number of code vectors
during the learning phase and test the system
generalization performance on the same session
(sequences 2 to 8, session 1). The curve (Fig. 5)
characterizing the percentage of good classifica-
tion according to the code vector number thus
makes it possible to fix at 6 the optimal code vec-
tor number in the preprocessing module. The re-
sults are expressed on average on ten tests for
each different number of code vectors, the best
and worse results are related to the graph. Fig-
ure 6 allow us to jauge standard deviation of the
results during the increase in the number of code
vectors. The more code vectors we have, the more
the mouth shapes which characterising these code
vector look like each other, and the more the im-
pulses sequences at output of the preprocessing
module will be different for the same word. Let
us note that for this evaluation, all the prepro-
cessing module outputs were preserved since it is
about a classification in the same session.

The optimal number of code vectors being evalu-
ated, it remains to calibrate the system for each
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Figure 5: Percentage of correct classifica-
t1on versus number of code vectors.
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Figure 6: standard deviation of the results
versus number of code vectors.

session, 1.e. to define the code vectors for each
session. We use for that only the first sequence
of each session. As we said previously KMeans is
carried out, then a height and width evaluation
of the mouths represented by the code vectors is
made, which enables us to reorganize in an auto-
matic way 4 first code vectors (see Fig. 2).

The weights of the STANs in the classification
module are specified simply on the basis of the
first sequence of the first session as we had pro-
posed in section 3.3.

4.3 Tests

A learning was carried out on the first sequence
of the first session, and the tests on the seven
last sequences of the sessions two and three (see
Fig. 3). The system is then able to recognize in
an effective way the words which were pronounced
in 81% of the cases on average on ten tests (stan-
dard deviation of the results: 4%). Let us note
the stability of the results independently of the



session number tested: 80% of good classification
in the session two and 82% in the third session.

4.4 Discussion

Within a monosession framework, the algorithm
is more powerful (87%) than within a multises-
sions framework (81%) when the fusion of outputs
5 and 6 of the preprocessing module is realized.
The problem can come from the fusion of the two
last outputs of the preprocessing module. Indeed
the observation of the curves which enabled us
to evaluate the optimal number of code vectors
makes it possible for us to say that a monoses-
sion classification is more powerful with six dis-
tinct code vectors (94%) than with five (91%) as
Figure b shows it (no fusion of the outputs were
achieved). The fact of carrying out the fusion of
the last two code vectors thus makes fall the re-
sults. It would be necessary to be able to link
the code vectors five and six of all the sessions
but with high level parameters a little finer: the
deformable models or the snakes could be useful.
Nevertheless, it appears difficult if not impossible
to connect the code vectors P2 and P6 of session 1
with the code vectors P3 and P6 of the third ses-
sion (see Fig. 2). The mouths shapes are different:
KMeans thus did not produce the same types of
code vectors, certainly because the mouths shapes
variability in the calibrations bases were not iden-
tical.

At the present time, our system is unable to
recognize words absent from the training base.
Moreover it is adapted to only one speaker. If
another speaker presents himself with a strongly
different mouth, the system will fail. It would
be thus interesting to work firstly with a multi-
speaker large vocabulary training base. That
would make it possible to initialize our system of
recognition before the speaker adaptation phase
presented in this article. Thus the system would
be likely to recognize words not used by the
speaker during this learning phase even if this
recognition might be less powerful than for the
words belonging to the training base. One could
even imagine a natural training of the system dur-
ing the exploitation of the recognition tool: the
phase of specialization to a particular speaker on
a large vocabulary (200 000 words for example)
would be continuous and of this fact much less
heavy.

Nevertheless the visual speech recognition on a
large vocabulary 1s a difficult problem and we do
not think to be able to reach the same recognition
rate than on a restricted vocabulary. In the fu-

tur, we will take into account the sound to consti-
tute a really robust multimodal system of speech
recognition.
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APPENDIX A: Mouth parameters ex-

traction

We present in this appendix the details of the al-
gorithm allowing us to evaluate in a robust way
the height and the width of the mouth character-
ized by a code vector.

Each code vector is the average of the examples
in the calibration base which are associated to
him. For this reason the image which represented
by the code vector is fuzzy. Consequently it is
difficult to evaluate on the code vector itself the
height and the width of the mouth. We thus eval-
uate these parameters on the images set associ-
ated with the code vector and we make a simple
average of these parameters to characterize the
height and the width of the mouth contained in
the code vector.

The images are coded in RGB and transformed in
Y (brightness), Rn and Gn (knowing that Rn =
ﬁ and Gn = ﬁ). For each one among
it we will detect the vertical coordinate of the
mouth, then the corners and finally the position

of the upper and lower lips (see Fig. 7).
Mouth horizontal coordinate detection

On the image coded in Y, we evaluate the num-
ber of the line which crosses the center of the

mouth in accordance with the algorithm devel-
oped in [Baig99a]. An accumulation of the pixels
values 1s made along the lines. The signal which
results from it 1s a function of the line number.
Taking into account the fact that the mouth in-
terior, even when it 1s closed, 1s darker than the
lips or the skin, the minimal value of this signal
indicates the number of the line which crosses the
center of the mouth (!poutn, see Fig. 7).

Mouth width detection

On the basis of the idea suggested in [Delma00],
we define a region of interest of the image width
and 10 pixels high centered on [t previously
detected. In each column Cj of this window we
evaluate the pixel of minimal value. We propose
here to evaluate a threshold (equal to the aver-
age of the minima on all the columns) to which is
compared each minimum. We preserve then only
the minima which have a lower value than this
threshold. If a local minimum after this thresh-
olding is isolated (the minima of the connected
columns were higher than the threshold), it is re-
moved. It remains a certain number of minima:
the one which is on the left column of the window
gives us the position of the mouth left corner, the
one which is on the right column, the mouth right
corner.

Mouth height detection

The evaluation of the mouth height cannot be
done on the gray level images because the teeth
and the tongue have sometimes a higher bright-
ness value than the lips. We thus propose to filter
the 1mages in order to emphasize the lips. In-
spired from [Férau01] we produce a color filter
adapted to the lips colour which allows us to bi-
narize the image coded in Rn, G'n. The filter co-
efficients are based on the evaluation of the lips
colour in a window of 20 rows and ten columns.
This window is extracted in an automatic way on
the first image of the sequence; it 1s centered on
lmoutn and on the central column calculated start-
ing from the two corners of the mouth. Knowing
that the mouth is systematically closed at the be-
ginning of each sequence, we thus postulate that
this window is centered on closed lips. The upper
and lower lips are characterized now by very weak
indices of brightness (Fig. 7).

To detect the height of the mouth, we apply the
same type of algorithm as previously when it was
necessary to detect the mouth center, but on a
window centered on l,outp and whose left and
right edges are defined by the left and right cor-
ners of the mouth previously detected. An ac-
cumulation of the pixels values of this window is



carried out along the lines. The resulting signal is
thus a function of the line number. One compares
the signal values to a threshold equal to half of
the maximum value of the signal. That leads to
the binary signal shown in the figure 7. It is then
simple to locate the line numbers corresponding
to the lower and higher edge of the mouth.
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Figure 7: Extraction of the height (H) and
the width (L) of the mouth.



