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ABSTRACT

We have studied the problem of extracting shape parameters from freeform features in full 3D. The
freeform features are typically encountered in laser-scanned data from physical parts or in point clouds
from any source. Matching involves 1) the search for optimal position and orientation of the template
shape and 2) the adjustment of a number (d) of intrinsic shape parameters. The type and total number of
parameters (6+d), and hence the family of template shapes is determined by the type of feature. We have
analyzed the robustness, accuracy and the efficiency of Hausdorff-like shape distance measures. A number
of search strategies have been tested and were evaluated against convergence and computational
performance. The practical relevance of the technique is addressed as well.

Keywords: freeform shape, freeform features, point cloud, shape matching, Hausdorff distance,
optimization,

1. INTRODUCTION

Object recognition and shape matching are relatively
new techniques. Most of literature on shape (or
shape feature) recognition is in the domain of
images, or based on 2D geometric projections or
silhouettes from higher-dimensional objects. In some
applications, however, the representation and
processing of the geometric objects themselves, in
full 3D, is demanded. These applications include
object surface analysis, geometric inspection, surface
reconstruction and reverse engineering of shape.
Typically, a match is sought between a measured
(digitized) object and an already available model,
either in some library or generated synthetically.

In this paper we propose a method for the direct,
partial matching of 3D surfaces. Direct, here, refers
to the calculation of the matching criterion explicitly
from the surface points, using the Hausdorff
distance, defined later. Partial means that it is
sufficient that one of the shapes matches to only
some portion of the other shape. The motivation for
this approach stems from the application that we
support, namely the reuse of (portions of) existing

shapes as shape features in a new Computer-Aided
Design (CAD) model. This made it necessary that
the matching depends not only on an affine
transformation, but on intrinsic shape parameters as
well. Before going into detail of the matching
technique and of the driving application, we will
briefly mention some of the existing 3D shape
matching methods. For a more elaborate overview
we refer to [Barequet 1997] and [Veltkamp 2001].

Shape matching depends on two functions, the
calculation of shape dissimilarity and the search in
some space to maximize shape similarity.

For some applications the main task is to search
among a large set of predefined, discrete shapes Bi

for the one(s) that resemble a given shape A. An
example of such an application is the search for a
fingerprint in a database. To perform this function
some kind of indexing scheme can be introduced,
based on global moments, Fourier descriptors, local
geometric properties or even strain energy [Prokop
1992], [S. Loncaric 1998], [Sclaroff 1995]. If it is
known beforehand that the set {Bi} consists of
shapes exhibiting particular features or singularities,
then an indexing scheme can be based on the type



and/or number of such features in each of the
members Bi.

For the purpose of quality control a manufactured
part B can be compared against the CAD model A it
originated from. First the surface of the
manufactured part is digitized and the point set is
tested for matching the (surface or solid) model A.
This involves a search among a continuous set of
shapes P(B), where P denotes translations and
rotations and possibly scaling as well, leading to a 6-
or 7-dimensional search space. When the best
alignment of P(B) with A is achieved, the positional
deviation between the two shapes can be analysed
and visualized. For this purpose, commercial
software systems are readily available [Mieritz
1999].

Reverse engineering of a 3D part B comprises the
reconstruction of a CAD model from measured
points on B. If the CAD model is hypothesized to
consist of known types of surfaces Ai (e.g. cylinders
and planar sections) the surfaces Ai must be matched
to (portions of) B [Tangelder 1999], [Thompson
1999]. If the CAD model is of a more generic type
A, for example represented as a set of NURBS
surfaces, then the task of reverse engineering is
reduced to the reconstruction of A from data B,
without explicit shape matching [Váradi 1997].

Although the applications listed above are in three
dimensions, most of the published work on shape
recognition and matching deals with applications and
with algorithms tested in 2D, as e.g. in [Kwon 2001].
Many search strategies for 3D applications are based
on 2D derivations from the models to be matched, as
for example in [Johnson 1998], [Li 2000].

As mentioned, search strategies should be
distinguished from the actual similarity measure. The
complexity of the similarity computation depends on
the requirements from the application. If it is needed
to select from a set {Bi} the shape which is most
similar (but perhaps far from congruent) to A then it
may be sufficient to use a low-cost similarity
measure. On the other extreme, if a best fit between
shape A and a shape B from a continuously varying
set of shapes, then the similarity computation will
normally be complex. This is especially true for
freeform shapes, properties of which can sometimes
be numerically approximated only.

2. APPLICATION IN GEOMETRIC
MODELING

The requirements on both the similarity computation
and on the search strategy derive from the intended
application. We have developed an approximation of
the directed Hausdorff distance between 3D shapes,
defined in the next section. Here we explain this

choice. The shapes of interest are portions of the
boundaries of 3D solids, hence the shapes can be
considered as 2-manifolds. When a 3D solid or
surface CAD model is developed it is, in some
situations, effective that the designer reuses an
existing shape. In doing so, the designer may save
considerable time and effort. However, typically it is
not sufficient to perform merely a copy-and-paste
action, but the copied shape should be adapted to the
target model. This adaptation can be partly automatic
(e.g. to achieve geometric continuity between copied
shape and the target shape) and should be partly
controlled by the user (e.g. by modifying particular
shape parameters). More detailed information about
methodological issues of the shape reuse process can
be found in [Vergeest 2001a]. The application
comprises four basic steps:

1. A geometric representation S of the shape to be
reused must be obtained. This involves either
the digitization of a (portion of a) physical
object or the selection of (a portion of) a shape
which was already in digital form. In the latter
case the shape may originate from the user's
local files, or from a company's shape library, or
it may be found on the internet.

2. The representation S obtained in step 1 should
be modeled as a parameterizable shape T(p),
where those parameters p should be availed to
the user that he/she will need later to adjust the
shape before its insertion into the target model.
This involves the matching of shapes T(p) to
shape S. Matching is the minimization of
D(T(p),S), where D is a nonnegative scalar
function of a pair of shapes. It should be noted
that the multi-dimensional parameter p always
includes the 6 DOF for rigid body
transformation.

3. The user adjusts the parameter p to the value p =
p′ to obtain the shape T(p′) meeting the current
design requirements.

4. Shape T(p′) is copied and inserted into the target
CAD model.

In step 2 of the application process the actual shape
comparison takes place. D needs to be a directed, or
partial, shape distance, since in general it is
demanded that T(p) matches to a part of S, rather that
to S itself.

D needs to be sensitive to small changes of p, where
the variations include translation, rotation and
intrinsic shape variations of T(p).

For efficiency reasons D should be based on a pre-
computation of approximations of S and T(p), where
it should be taken into account that shapes T(p)
remain congruent under variation of any of the 6
rigid body transformation parameters. Also, portions



of T(p) may be unaffected within certain regions of
parameter space.

From these requirements we decided to implement
the directed Hausdorff distance from T(p) to S,
where the shapes are approximated using discrete
points on the shapes.

3. DEFINITIONS

In the following we assume that 33 is the ambient
space of our application. However, most of the
results can be generalized to 3n, for any n>0.

S ⊂ 33 is a portion of the boundary of a compact
subset of 33. Without losing generality we assume
that S is a 2-manifold in 33. Further, we assume that
S is topologically equivalent to a sphere in case S
covers the entire boundary of the compact subset; S
is topologically equivalent to a square, otherwise.
Likewise, T(p) is a 2-manifold in 33 and p ∈ P is
called a parameter value from the parameter domain
P, which can be any set. Informally, S and T(p) are
called 3D shapes. The mapping T : P → 23

3
, where

23
3
 denotes the power set (the set of subsets) of 33,

determines a family of shapes {T(p) ∈ 23
3
 | p ∈ P}.

T is sometimes called a shape feature type, or a
shape template or shape class.

The Hausdorff distance D(T(p), S) between the
shapes T(p) and S is

))(,(),),(((max)),(( pTSHSpTHSpTD = ,

where H(T(p),S) is the directed Hausdorff distance
from T(p) to S defined as
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where | t - s | denotes the Euclidean distance between
the points s and t. The directed Hausdorff distance
D(S,T(p)) is defined similarly.

The mean directed Hausdorff distance M(T(p), S) is
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where the integration is over the surface of T(p),
normalized by the surface area of T(p). The mean
directed Hausdorff distance is sometimes preferred
over the directed Hausdorff distance, as the latter is
sensitive to noise and inaccuracies in the shape data.
Indeed, H(T(p), S) is a worst case selection, of the
point on T(p) which is farthest from S, whereas
M(T(p), S) averages over the distances.

It should be noted that the distances defined in (1)
and (2) not only exist for 2-manifolds but for almost
any pair of subsets of 33.

4. APPROXIMATION AND COMPUTATION

For special cases, e.g. when the shapes T(p) and S
are represented in implicit form, equation (1) or (2)
or both can be evaluated analytically in closed form.
However, in practice this is seldom the case and we
need to base the computation on approximations of
the shape.

Typically, T(p) is an instance derived from a
geometric feature class or, more generally, T(p) is a
2-manifold in some geometric representation form.
In the domain of freeform shapes the most common
representation forms are surfaces (including B-spline
surfaces) or triangulations or surface meshes. As
mentioned, T(p) may or may not enclose a volume.

S may be obtained from a measurement and hence be
represented by a set of points. S  can also originate
from a CAD system and hence be available in a
geometric representation form.

We decided to base the dissimilarity computation on
the point sets {ti∈T(p), i=1,m} and {si∈S, j=1,n}, for
some m and n. The points ti are obtained in two
steps. For given p∈P the surface T(p) is computed.
Then m points ti in the surface T(p) are calculated
using some sampling strategy. In practice the points
si are directly available from the 3D object scanner,
or they are generated by synthetic sampling if S is a
geometric model.

The distances in equations (1) and (2) are then
approximated by
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respectively, where ti and sj are the points in T(p) and
S, respectively.

In step 2 described in section 2, a matching
procedure is required to obtain the best fitting
template T(p) under variation of the parameters p.
This involves the search for popt ∈P defined as
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or
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depending on whether we apply the directed
Hausdorff distance or the mean directed Hausdorff
distance.



5. COMPUTATION OF SHAPE
DISSIMILARITY

In this section we investigate the computation of the
directed Hausdorff distance for some concrete
shapes. We are particularly interested in the
quantitative behavior of H(T(p),S) and M(T(p),S) as
a function of p, since this behavior will determine the
feasibility of the matching procedure needed in step
2 of Section 2.

5.1 Digitization of object S

The investigated shapes were relevant in a practical
case to accomplish a copy-adjust-and-paste action,
where the type of feature to be copied was a ridge,
see test object A shown in Fig. 1.

Fig. 1. Test object A was digitized to generate the
data points si. The feature of interest in this object is

formed by the longitudinal ridges in the upper
surface. The white ellipse indicates the region
containing the data representing the shape S.

The length of A is approximately  130 mm and the
width of the ridge is approximately 2.5 mm. Two
different scanning techniques were used to sample
the object. Both scanners are small and fit on a
desktop. The first is a mechanical coordinate
measuring machine, the Roland PIX-3. The object is
placed on a table movable in the horizontal plane,
and a vertical needle is a touch trigger probe. Once
the object is fixed, the height of the object’s surface
is measured as a function of the position in the plane.
The workspace of the scanner is 150×100×40 mm.
The step size of the probe is 0.05 mm minimally.
The second device is a desktop laser scanner, the
L2000 from Conrad Electronics. A laser beam is
projected onto the object, at a series of angles in the
vertical plane. Two CCD cameras deliver the data
for the determination of the 3D coordinates of the
light spots. The object is scanned along multiple
vertical lines by way of stepping the platform about
the vertical axis.

The surface of the part has been scanned using both
of the two devices under a number of different
settings of the resolution parameters. Different part
orientations were experimented [Broere 2000]. For
the investigation in this paper we have used 0.5mm
steps of the mechanical scanner and obtained a
sample of 24,382 points. With the laser scanner we
obtained 360 scan lines containing 61 points each
(21,960 points). The difference in scanning time is
noticeable, 7.5 hours for the mechanical scanner and
only 19 minutes for the laser scanner.. One of the
point clouds obtained is shown in Fig. 2. From the
point clouds, subsets {si} can be selected to
represent S.

Fig. 2. Point cloud obtained with the mechanical
coordinate measuring machine.

5.2 The shape template T(p)

We have searched for a partial match of a simple
template T(p) of a ridge to the data S. Initially we
parameterized the pattern T(p) by 15 parameters as
follows (see Fig. 3).

• The coordinates of the points c2 and c3 in a
local coordinate system, with c1 at its origin
(6 parameters).

• The total width a of the template, the width w
and height h of the ridge (3 parameters).

• The orientation of the pattern in a global
coordinate system (3 parameters, not shown).

• The location of the template in the global
coordinate system is defined by c1, which
serves as reference point (3 parameters).

The ridge can also be regarded as a swept profile
along a smooth trajectory curve interpolating the
three points c1, c2 and c3. More complex
parameterizations of a ridge pattern are certainly
possible. For the numerical tests we kept the three
points c1, c2 and c3 collinear and fixed relative to
each other. Also the total width a of T(p) was fixed.
Hence, 8 parameters (the 2 profile parameters h and
w, and the 6 DoF for the pose) were left effective.
Consequently, p is an 8-component vector, p ∈ P =



33 × SO(3) × 32, the space of rigid body
transformations Cartesian-times a two-dimensional
space of intrinsic shape deformations.
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Fig. 3. Parameters for the pattern T(p).

As mentioned, the pattern T(p) needs to be converted
into points ti This is accomplished by an intermediate
NURBS representation of T(p). The intrinsic shape
parameters h and w define 11 B-spline control points
in the plane; the template T(p) is generated as the
NURBS surface defined by 20 such rows of control
points in equidistant planes perpendicular to the x-
axis. Finally, a user-defined number m of points in
the surface constitute the set {ti, 0 < i ≤ m}. The
effect of the parameters h and w on the shape of T(p)
is depicted in Fig. 4.

5.3 Sensitivity analysis

One goal of the analysis is a comparison of the
behaviors of the distances in (3) and (4). The effect
of the difference between the two scanning devices is
of interest as well, but is not further considered in
this article. It can be expected that near p = popt as
defined in (5) and (6), any deviation of any of p’s
components from popt will cause an increase of the
dissimilarity between T(p) and S.

We computed the dissimilarities between the sets
T(p) and S represented by the points {tj, ,j=1,n} and
{si, i=1,m}, respectively. A portion of the points
scanned on object A (only those within the region
indicated in Fig. 1) were actually used for the
numerical experiments, m=2308 from the points
obtained with the mechanical scanner and m=2261
from the points obtained with the laser scanner.
n=1300 points were generated on T(p). A typical
configuration of the point sets is depicted in Fig. 5.

   

h =1.0
w =1.0

h =2.0
w =1.0

h =1.0
w =0.1

Fig. 4. The ridge template is represented by points
on T(p). Variations of T(p)  are shown for different
values of the intrinsic shape parameters h and w.

Fig. 5. A portion of the scanned data from object A
was used to represent S. The points on the template

T(p) are also shown.

Near popt we expect to observe the ridge structure in
both H(T(p),S) and M(T(p),S) as a function of (x, y);
fig. 6 presents the results.

Fig. 6. Hausdorff dissimilarities near popt as a
function of (x, y). The darkness is proportional to

−M(T(p),S).

In Fig. 7 H(T(p),S) and M(T(p),S) are plotted as a
function of h and w. We note that by definition
M(S,T(p)) ≤ H(T(p),S) for all p∈ P. The plots are
obtained near p = popt with all variables fixed except
h and  w, respectively. In these cases we may denote
T(p) by T(h) and T(w), respectively. It can be seen



that the directed Hausdorff distance is, for the
particular data sets, not an appropriate measure to
search for the best matching width and height of the
template ridge. The quantity H(T(w),S) is flat as a
function of w near wopt , the w-component of popt.
However, the mean directed Hausdorff distance
M(T(p),S) exhibit a minimum both in h and in w. The
estimated values for the intrinsic parameters from fits
to the data (see section 6) were h=2.1 mm and w=
2.7 mm.
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Fig. 7. Top: The dissimilarities H(T(p),S) and
M(T(p),S) as a function of the h-component of p.

Bottom: The same two quantities as a function of the
w-component of p.

6. SEARCH STRATEGIES

One purpose of the distance measure was to
determine popt numerically. The search problem
stated in (6) was approached by applying four
different fitting strategies [Spanjaard 2001]. In all
runs the mean directed Hausdorff distance M(T(p),S)
was used on data from the mechanical coordinate
measuring machine. In all search strategies the
amount of data entering the computation was
progressively increased during subsequent stages of
the process.

6.1 Overview of different fitting strategies

The fitting strategies differ in the fraction of the
points that actually enter the fit, in the number of
stages in which the total procedure is divided, and
the grouping of different parameters that are fitted
concurrently. One semi-automatic and three fully
automated fitting strategies were designed, partly
based on some heuristics.

In strategy A the fit process consists of two stages. In
both stages all 8 parameters are fitted concurrently.
To speed up the total fitting time, the percentage of
available points is reduced in stage 1

In strategy B, the fit process is divided in five stages.
The first two stages should position the template in
the neighborhood of the source point set. Stage 3
adjust the ridge’s width and height. The two final
stages fine tune the fit, where the assumption is made
that the minimizer already has aligned the template
correctly to the source.

The fit process in strategy C consists of three stages.
In the first two stages the translation and orientation
parameters are fitted. In the final stage all parameters
are fitted simultaneously. During the fit the number
of points m is increased from 1% to 100% of the
available points in T(p).

Strategy D is a user controlled fit process. The user
may suspend the fitting process at any time and
roughly force the template toward the correct
position and orientation by altering the parameter
values manually, either by interactive dragging the
template, or by typing parameter values. The fine
tune fitting is done by the minimizer.

To prevent extreme long fitting times each stage in a
fit has a timeout value. This timeout forces the
process to go to the next stage in case the minimizer
cannot terminate within a particular amount of time.

6.2 Numerical comparison

The computation was implemented in the Visual
C++ programming language from Microsoft on the
Windows NT operating system. The Open Inventor
package from TGS Inc. was used for visualization
and for some basic geometric operations, such as the
generation of points on the NURBS surface. The
IMSL package from Visual Numerics, Inc. contains
a general purpose routine for multivariable scalar
function minimization. This routine was used to
search for maximal similarity of T(p) to S. Details
about the implementation can be found in [Spanjaard
2000].

In  Fig. 8 the mean directed Hausdorff distance as
function of time is displayed for each of the four
fitting strategies.



Strategy C brings the template to the source fastest.
This is because in the first stage of strategy C only
1% of the points are used. Strategies A and D take
the longest time to complete. Strategy B is
completed after about 460 s. Strategy C, the fastest
after about 290 s.

6.3 Discussion

In all four strategies the fits have managed to find the
source object in the 3D space. That is they moved
the template into the neighborhood of the source.
Strategies B and C where also able to orientate the
template into the correct plane.

Strategies B and C were able to find the correct
plane orientation. However, for both strategies the
minimizer was not able to rotate the template in this
plane in order to align it with the ridge. The
minimizer responded to this problem by making the
height parameter almost zero, resulting in the
template shape to become a flat surface.

The main problem encountered with fully automated
fitting is that the minimizer got trapped at a local
minimum.

The best result was achieved with a minor user
involvement, in strategy D

7. PERFORMANCE ISSUES

Efficiency is an important issue, considering the
optional user involvement during the fitting process.

As mentioned, the reduction of the number of data
points during the initial stages of the fits already
accelerated the computation considerably, at the
cost, however, of accuracy. This inaccuracy can be
acceptable, as it speeds up the finding of a near-
optimum of M(T(p),S).

Without losing accuracy, the computation was
accelerated by applying space binning. A bounding
box of S is subdivided in cubes, and points sj are
indexed by the cube they are contained in.  In search
for
                         ||min

,1
st ji

nj
−

=
(see (4)), it is then sufficient to consider only the
points in cubes nearby ti. Space binning yielded a
reduction of the computation time of up to a factor
20 for large point clouds. A more general reduction
of the algorithmic complexity from O(mn) to O(m ln
n)  would be obtained by implementing an octree
representation of the points {si, i=1,m}. We did
however not test this option.

Typically, a minimization process consists of
relatively many evaluations of the cost function in
which the variation between subsequent points p is
small. When M(T(p),S) and M(T(p+∆p),S) need to be
determined in succession, then much of the
computation can be reused for small ∆p. This option
has not been tested yet
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Fig. 8. The first 100 seconds of the mean directed Hausdorff dissimilarity M(T(p),S) as function of
elapsed time for fitting strategies A, B, C and D.



8. CONCLUSIONS AND FURTHER
RESEARCH

We have presented the definition and an
implementation form of two shape dissimilarity
measures in full 3D, the directed Hausdorff distance
and the mean directed Hausdorff distance.  For noisy
and incomplete data samples, the mean directed
Hausdorff distance was the preferred measure.
Analysis of the shape distance as functions of the
parameter components revealed that robust shape
matching was feasible. From numerical tests we
conclude that such shape features as a ridge in
surface could be recognized in data samples.
Matching of a synthetic ridge template to the data
yielded pose parameters as well as the values for the
intrinsic parameters height and width of the ridge.

The ultimate application of the fitting procedure is to
support the interactive copy-and-paste of physical
shape features into a new CAD model. The most
important task of the minimizer is to determine the
intrinsic shape parameters of the surface feature. We
have shown that this part of the computation was
feasible. Current research is directed towards further
reduction of the computational complexity of the
shape matching. The extension to different types of
shape templates, such as a freeform hole in a
freeform surface [Vergeest 2001b] is under
investigation..

REFERENCES

[Barequet 1997] G. Barequet and M. Sharir, "Partial
surface and volume matching in three
dimensions", IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 19,
No. 9, 1997, pp. 1-21.

[Broere  2000] Broere, "Feature recognition from 3-
D model scanning". Technical report, Faculty
of Design, Engineering and Production, Delft
University of Technology, Delft, 2000.

[Johnson 1998] A.E. Johnson and M. Hebert,
"Surface matching for object recognition in
complex three-dimensional scenes", Image
and Vision Computing, Vol. 16, 1998, pp.
635-651.

[Kwon  2001] O.-K. Kwon, D.-G. Sim and R.-H.
Park, "Robust Hausdorff distance matching
algorithms using pyramidal structures",
Pattern Recognition, Vol. 34, 2001, pp 2005-
2013.

[Loncaric 1998] S. Loncaric, "A survey of shape
analysis techniques", Pattern Recognition,
Vol. 3, No. 8, 1998, pp. 983-1001.

[Li  2000] C.L. Li and K.C. Hui, ”Feature
recognition by template matching",
Computers & Graphics, Vol. 24, 2000, pp.
569-582.

[Meiritz 1999] B. Meiritz (Ed.), Conference on
Reverse Engineering, 3D scanning and a

shortcut to modelling. Danish Technological
Institute, Aarhus, 1999.

[Prokop  1992] R.J. Prokop and A.P. Reeves, "A
survey of moment-based techniques for
unocluded object representation and
recognition", CVGIP: Graphics Models and
Image Processing, Vol. 54, No. 5, 1992, pp.
438-460.

[Sclaroff  1995] S. Sclaroff and A.P. Pentland,
"Modal matching for correspondence and
recognition", IEEE Trans. on Pattern Analysis
and Machine Intelligence, Vol. 17, No. 6,
1995, pp. 545-561.

[Spanjaard  2000] S. Spanjaard, "Documentation of
ridge fit application and its source code".
Technical report, Faculty of Design,
Engineering and Production, Delft University
of Technology, Delft, 2000.

[Spanjaard  2001] S. Spanjaard and J.S.M. Vergeest,
"Comparing different fitting strategies for
matching two 3D point sets using a
multivariable minimizer" Proc. of the 2001
Computers and Information in Engineering
Conference, DETC'01/CIE-21242, ASME,
New York, 2001.

[Tangelder  1999] J.W.H. Tangelder, P. Ermes, G.
Vosselman, F.A. van den Heuvel,
"Measurements of curved objects using
gradient based fitting and CSG models", in
International Archives of Photogrammetry
and Remote Sensing, Vol. 32, Part 5W11,
1999, pp. 23-30.

[Thompson  1999] W.B. Thompson, J.C. Owen, H.
James de St. Germain, S.R. Stark and T.C.
Henderson, "Feature-based reverse
engineering of mechanical parts", IEEE Tran.
Robotics and Automation, Vol. 15, No 1,
1999, pp. 57-66.

[Váradi  1997] T. Váradi, R.R. Martin and J. Cox,
"Reverse engineering of geometric models -
an introduction", Computer-Aided Dseign,
Vol. 29, No. 4, 1997, pp. 255-268.

[Veltkamp 2001] R.C. Veltkamp, "Shape matching:
similarity measures and algorithms", Proc.
Shape Modeling International Conference, a.
Pasko and M. Spagnuolo, Eds., Los Alamitos,
IEEE, 2001, pp. 188-197.

[Vergeest  2001a] J.S.M. Vergeest, I. Horváth, S.
Spanjaard, "A methodology for reusing
freeform shape content", Proc. of the 2001
Design Theory and Methodology Conference,
DETC'01/DTM-21708, ASME, New York,
2001, CD-ROM proceedings.

[Vergeest 2001b] J.S.M. Vergeest I. Horváth and S.
Spanjaard, "Parameterization of freeform
features", In: A. Pasko and M. Spagnuolo
(Eds.), Proc. Shape Modeling International,
IMA-CNR, IEEE, Piscataway, 2001, pp. 20-
29.


