
Real-time Animation of Underbrush

Luis Carlos Yano Endo, Carlos Hitoshi Morimoto, Antonio Elias Fabris
Computer Graphics and Applied Computational Geometry Project - CGCAP

Instituto de Matemática e Estatı́stica, Universidade de São Paulo
Cidade Universitária - Rua do Matão, 1010, Caixa Postal 66281, 05315-970, São Paulo - SP, Brazil

{lye,hitoshi,aef}@ime.usp.br

ABSTRACT
Modeling natural phenomena is a problem that has been studied for a long time in Computer Graphics. A problem
that currently arises is how to render and animate realistically natural phenomena in real-time. This paper presents
a technique to model underbrush with fast and realistic animation. Pre-computations and a simplified physically
based model were developed to achieve the work’s proposal.

Keywords
Modeling and Rendering of Natural Phenomena, Physically Based Graphics, Animation with Constraints, Real-
time Rendering.

1 Introduction

Real-time generation and animation of complex
tri-dimensional scenes is still considered a difficult
task, but it has become a requirement for simulators,
games and virtual reality applications. In particular,
modeling realistic natural phenomena requires a great
number of polygons, thus requiring a great number of
calculations for rendering.

In this paper we present a computer graphics
framework to create animations of realistic natural
scenes with underbrush in real-time. The framework
allows to model physical and ecological features for
different kinds of underbrush, such as grass and flow-
ers. Although these plants have relatively simple ge-
ometry, the number of polygons become very large due
to the number of instances of these plants in the scene.

Many control properties must be considered in or-
der to create a flexible system to model a great variety
of underbrush. Some physical properties like mass,
width and thickness of the stalk of leaves will be as
important to the appearance of the plants as their color
and texture. The model also considers external prop-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

WSCG SHORT PAPERS proceedings, Vol.11, No.1., ISSN
1213-6972
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency - Science Press

erties of plants. For example, the concentration of nu-
trients on the ground is used to define the underbrush
distribution over the terrain.

We use a simplified physically based
model [Wit97a] in order to achieve real-time and
realistic results. The leaves and branches of the
underbrush are bent due to the force of gravity. An
opposing elastic force is created to compensate the
force of gravity until an equilibrium state is reached.
Pre-computations of these states, that define the rest
shape of the plants, are used to render the scene in
real-time.

The framework allows to model wind that ani-
mates the underbrush. It can also be easily extended
to generate animation by the action of any external el-
ement that can apply forces on the plants, such as rain
and a soccer ball for example. Realistic scene anima-
tion is obtained from the computation of the resultant
of these forces, using a Dynamic Constraint Model.
The direction and strength of the forces define the ve-
locity of the plants movements, producing very realis-
tic animations. The computations are simplified using
some natural properties of the plants.

The next section describes some advantages and
problems of other techniques used for real-time re-
alistic animation of underbrush. The first step of
the framework is to create a simple physically based
model of underbrush, which is described in Section
3. These models can be animated using Dynamic
Constraints and force fields as explained in Section 4.
Section 5 describes the algorithms used to distribute
the vegetation and compute the level of details of the
scene. Section 6 presents some experimental results,
and Section 7 discusses advantages and limitations of
this framework, and future work.

2 Fast and Realistic Underbrush Anima-
tion

Real-time animation of realistic scenes is still a
hard problem due to the balance between performance
required for real-time animation and the level of detail
required for realistic rendering.

Several modeling techniques were proposed
to achieve realistic rendering. Models based on
Bézier curves and surfaces are presented in [Deu98a,
Fow92a]. These methods are appropriate to render
scenes for any viewing situation, even when the plants
are very close to the viewer. Reeves [Ree85a] pro-
poses a different technique for plant modeling that is
also appropriate to render realistic scenes. His method
is based on particle systems, where a blade of grass
and other underbrush are represented by the trajectory
of a particle. Unfortunately, both these methods are
very computationally expensive, thus inappropriate for
real-time animation.

Multi-level representations play an important role
on the generation of real-time animations of complex
scenes. The idea is simple: detailed images, with thou-
sands of polygons, are generated for of objects close
to the viewer, while rendering is performed using less
polygons for objects beyond a certain distance, due to
limitations of the human eye and the output device.
For example, Perbet and Cani[Per01a] use three levels
of detail to achieve real-time animation of grass fields
under windy conditions. Similar techniques are also
used by Di Giacomoet al.[Gia01a] for animating and
rendering a forest and Markosianet al.[Mar00a] for
the creation of grassy landscapes, trees or furry crea-
tures using hand-drawn representations.

Image based and Point based techniques[Deu02a]
have been used for efficiently rendering distant in-
stances of plants. However, it would be very unreal-
istic to use these for rendering mid distances plants,
besides realistic animation techniques for these mod-
eling could not be found yet.

Our framework implements a single represen-
tation appropriated for realistic generation of under-
brush from mid distances, but that can be easily ex-
tended to multiple levels. The modeling technique
is based on vectors under the action of force fields.
Vectors are used to represent the shape of underbrush
and animations are obtained from the interaction of
the force fields with these representation vectors. This
technique is described in detail in Section 3.

To achieve real-time performance during scene
animation our system pre-computates the interactions
so that the shape states can be retrieved instead of be-
ing computed for different states of the force fields.
Using these pre-computed information for the calcu-
lation of the initial and final position of plants, we
achieve realistic animation by using the Dynamic Con-

straints Model [Bar88a] to generate the movement of
underbrush from the initial to the final position de-
fined. This technique already proves to create realistic
animation in [Met92a], for the animation of physics
models.

Wejchert and Haumann [Wej91a] propose an
aerodynamics based method to simulate and control
the motion of objects in fluid flows. This method was
used in [Per01a] to animate prairies. In Section 4 we
describe a simpler technique, derivated from this one,
that allows not only animation by the action of fluids,
but real-time animation caused by any other external
agent that can apply a force on the plant.

3 Modeling Underbrush
This section describes the model used in our

framework. Real-time requires simple models that
can be computed efficiently, while realism requires
complex models that are hard to compute. We
achieve good realism and performance by simplify-
ing physically based models of plants and using pre-
computations.

3.1 Pre-computations and Data Struc-
ture

Calculations must be avoided during the anima-
tion in real-time systems. In scenes, such as under-
brush, with thousands of instances of different plants,
each calculation spared will improve the animation
performance. Since underbrush have simple geometry
and many instances are similar to each other, calcula-
tions made for one of the plants may be used for the
others. In this section, we describe a data structure that
allows the efficient storage of this physical information
and that can be used to model different plants.

Underbrush is composed by a combination of
branches, leaves and flowers. Every leaf or flower is
fixed to an object, that can be the ground or a branch.
All objects are modeled using polygons represented by
vectors instead of points. Vectors are structures that
enables easy and fast changes in the shape of plants.
To create a new shape component we only need to add
the vectors that defines its shape to a initial point, that
is the point where the component is fixed.

Underbrush components are defined by three sets
of vectors. The first set defines the main axis of the
component. The other two sets define the right and
left borders of the component. These border vectors
are perpendicular to the main axis, and the shape of
the component is defined by connecting the ends of
the border vectors. Figure 1 show how a leaf and a
branch are represented.

Using these set of vectors, we can pre-computate
some components shape including the calculation of

Figure 1: (a) A simple leaf in vector representation,
(a.1) the center vector set of this leaf, (a.2) shows
the right vector set. (b) A branch in vector repre-
sentation. Flowers are represented using the same
technique applied on their petals.

physical properties which is shown in next subsection.
The shapes are pre-computed and stored for different
angles of the component with the terrain normal. The
numbers of angles for the pre calculation may be de-
fined by the system’s user. Animation is performed
applying a force on a component, who has an initial
angleρ with the normal, that will bent to an angle
ρ’, since the vectors sets for this angle have been pre-
computated, the animation is performed very fast.

Hundreds of plants, at a mid distance from the
viewer, can be modeled using this technique. Plants
closer to the viewer may be modeled using a more re-
alistic technique, that can use more vectors to define
the plant shape and do not use pre-computations to
avoid similar movements, or even use the points de-
fined by the vectors sets as control points for Bézier
surfaces. The animation time would be similar since
plants closer to the viewer cover many other plants far
from the viewer.

3.2 Physical Model of Underbrush
This section describes how to model underbrush

in its rest position, ie without the action of other exter-
nal forces but gravity. The next section shows how to
animate the plant considering the action of other exter-
nal forces.

Our model considers only two forces, the force of
gravity (~Fg), that pulls down the component (cu) of the
underbrush towards the ground, and an elastic force
(~Fel), that opposes the action of the force of gravity.
The force of gravity depends only on the mass of the
component. The elastic force is proportional to the
component’s displacement from its original position,
ie without action of gravity. The rest position ofcu is
obtained by the equilibrium of these two forces.

The algorithm for component bending will divide
it in sections. Each section, will be bent by the action
of different resulting forces, considering the action of
~Fg and~Fel. Whilecu is being bent the sections already

bent are fixed for simplification. The first section bent
is the closest to the its branch or root, since it is already
fixed.

~Fg bends the component at the section fixed, and,
as the it bends,~Fel increases. This elastic force has a
linear dependence on the distance from the point~X to
~X0, the center of mass of the sections above the one
that is being bent after and before the bending. This
force also depends on an elastic constantk, defined for
each section as a function of some component proper-
ties like the thickness of it’s stalk andcu ’s width and
section position.

These two forces can be decomposed in an com-
ponent normal tocu, and a component along the direc-
tion of sections that are not bent yet, as we can see in
Figure 2.

Figure 2: The section fixed and all components of
~Fg and ~Fel when the normal components of the
forces are equals. In this figure the elastic force
is equal to the difference ~X0 − ~X just to facilitate
the visualization, the elastic force is described by
~Fel = k.(~X0 − ~X).

The reaction for component along the direction of
sections that were not bent yet, is on the terrain, since
we fixed all sections bent, so we do not need to han-
dle it. When the normal component of~Fg and ~Fel are
equal, an equilibrium is reached andcu stops to bend.
The position of equilibrium is stored by the currently
bending section, the next section is fixed. The same
calculation must be done to all the remaining sections.
At the end of this process,cu is bent by the action of
~Fg. A simulation of this process can be seen in Figure
3.

Figure 2 shows the component bending when the
component normal of~Fg and ~Fel are equal. Givenα
the angle of bending andβ the angle between the com-
ponent in the equilibrium position and~Fg, we can eas-
ily write an equation to discover the angleα that we
need to bendcu.

~F ′
el = ~F ′

g

k.(X0 −X). sin
180− α

2
= m.g. sinβ

Figure 3: The bending of a leaf or branch scheme
due ~Fg: (1) The leaf before the bending calcula-
tions. (2) The leaf already bent on the first point
by the influence of ~Fg and ~Fel opposing to the com-
ponent bending. (3,4) The same calculation for the
further points is shown.

The angle we must bendcu at each section is
given by equation 1. Whereγ is the angle between
~XP and~g.

α = arcsin

√
(sin γ)2

(k.(X0−X)
m.g − cos γ)2 + (sin γ)2

(1)

Plants with different appearances can be created
by changing the values of the mass, thickness and
width of eachcu’s section. Figure 4 shows images of
different tufts of grass created using different values of
the parameters described above.

If ~Fg reaches a value greater than a defined max-
imum value for~Fel, the component will ”break”. Fig-
ure 4.c illustrate the “broken leaf”.

4 Fast Physically Based Animation for
Underbrush
The animation will also be created using phys-

ically based models to achieve realistic results. The
underbrush will move only by the action of an exter-
nal force over it. We will use force fields to simulate
the action of forces applied to the objects in the field.

For the animation, other forces must be consid-
ered in the calculation of the equilibrium position of
a component of the underbrush, these external forces
will be defined by the force field. If the component is
under effect of more than one field in the force field, a
resultant external force is calculate following the Eu-
ler’s principle of superposition, that allows us to com-
bine the forces applied to a body into an equivalent
force applied at the center of mass.

~F =
∑

forces i

~Fi

To generate realistic animation, the Dynamic
Constraints model will be used. Barzel[Bar88a] de-
scribes it using the following definition. ”Constraints

Figure 4: (a) A tuft of grass without physics prop-
erties. (b) A tuft of grass with physics properties,
under action of ~Fg and ~Fel. (c) A tuft of grass with
broken leaves. (d) A tuft of grass with physics prop-
erties but with different features (parameters) from
a, b and c.

forces are analog to the internal forces which hold the
parts of compound objects together. Constraint forces
also assemble the models, pulling their components
into their proper configuration”.

As we assume that a component always has its
base fixed on a branch or on the ground, the plants
can not spin over its own base, so we do not need to
concern about angular velocities or accelerations, and
consequently about Torque, Angular Momentum and
Inertia Tensor. This simplification avoid many unnec-
essary calculations.

Using constraints we can have an animation more
realistic than just make an interpolation between the
initial and final position. The leaves and branches will
move with different velocities because the constraint
force defines different accelerations during the anima-
tion.

4.1 Force fields over the Scene
The aerodynamics based method for animation of

objects in fluid flows, presented in [Wej91a], defines
flow primitives that represents velocity fields. These
fields determine the direction and intensity of the fluid.
Objects or obstacles placed in the velocity field receive
the action of a force, that depends on the area, position,
and orientation of the object.

In order to simplify the calculations, we define a
force field over the terrain. A fluid flow defined may
change the force applied to objects in each the posi-
tion of the force field, without the modeling of veloc-
ity fields. Besides the gain in performance, this model

allows the animation to be performed by any other
agents that can apply a force, including fluids flows.

The force field is a volumetric mesh of forces de-
fined above the terrain, each part of the mesh defines
a volume. Objects inside this volume receive the ac-
tion of a resultant force defined for this element of the
force field.

The plants are animated by the action of the re-
sultant force defined by the volumes of the force field
where the plant is. The algorithm for the animation
will be described in next subsection. Figure 5 shows
an example of the force vectors on the force field.

Wind flows can be modeled changing the force
field intensity and direction. All the primitives shown
in [Wej91a] can be created by changing directions and
intensities of the force field vectors. The force prop-
agate for the adjacent volume in each animation step,
calculating the force propagated considering the inter-
action with some object in the field, that can possibly
change the vector.

Figure 5: (a) The force field over the terrain. (b) An
example of force vectors simulating a wind flow.

4.2 Fast Animation using Pre-Computed
Physical Models

At each step of animation the components (cu)
must check the force defined by the force field to up-
date their positions. The resultant force applied on a
component is computed from force field,~Fg and ~Fel

that act oncu. Each pre computed position ofcu will
have a interval of forces norms associated, this can be
used to find quickly the position the component the
force is defined.cu can be simply placed at the right
position once the force vectors are available.

A new elastic force (~Fela) is defined in the ani-
mation. While the elastic force defined in the model-
ing, ~Fel, was used to create a resistance forcu bend-
ing due the action of the force of gravity,~Fela op-
poses to the change ofcu’s resting position, calculated
on the modeling phase. Other important difference is
that the animation is done for the entire component
at once, though each component section might have
many modeling elastic forces.

The animation elastic force exists only when
some force changes the component resting position,
and becomes stronger as the distance between the po-
sition of rest and the position caused by the external
force increases. Figure 6 illustrates the behavior of
~Fela .

Figure 6: (1) The component in its resting position.
(2) cu receives the action of a external force~FE , ~Fela

tries to restore the component’s initial position. (3)
~FE increases andcu bends more until the equilib-
rium between ~FE and ~Fela is established. (4)~FE

decreases so~Fela take the component closer to its
original position.

~Fela is computed from the difference between the
center of mass before and after the position change.
When ~Fela becomes bigger than the external force
(~FE) applied,cu tends to return to its resting position.

The animation is generated using morphing, an
interpolation technique, for components closer to the
viewer in order to achieve a smoother animation. To
create variations in the velocity of the interpolation,
we will use the Dynamic Constraint Model that is de-
scribed on next subsection.

4.3 Realistic Animation using Dynamic
Constraints

To create a more realistic animation for the un-
derbrush, with non uniform velocities, we will use an
approach of the Dynamic Constraint Model developed
by Barzel and Barr [Bar88a], considering some sim-
plifications the plant system may offers us.

In the Dynamic Constraint Model, the equation 2
is given to define a single constraint force calculation.∑

constraints j

(
∑

bodies i

(ΓiGi
j + ΛiHi

j)~Fej
)+

∑
bodies i

(Γi ~F i
E + Λi ~T i

E) + ~β+

2
τ

~D(1) +
1
τ2

~D = 0 (2)

It is a very complex equation, butT , H andΛ
are related to the torque of the body, in this system

these variables are null. Our model is very similar to
the Point - to - Nail constraint example 2 of Barzel
and Barr’s paper, this example illustrate a body under
effect of gravity and without rotational terms.τ is a
time constant that is used to control the time for the
constraint to be satisfied.

Barzel and Barr’s defines~D as the distance from
the current position of the body to the constraint point
it may reach,~D(1) as the rate of change of~D and ~D(2)

as the acceleration of~D. ~D(2) is defined by equation
3.

~D(2) =
∑

bodies i

(Γi(y)~F i + Λi(y)~T i) + ~β(y)(3)

Let ~X be the position of the center of mass be-
fore the constraint is reached and~X0 the position of
the constraint point, the deviation~D, velocity ~D(1)

and acceleration~D(2) are given by the following equa-
tions:

~D = ~X − ~X0

~D(1) = ~v

~D(2) = ~F/m (4)

From 3 and 4 we haveβ = 0 andΓ = 1/m. We
only have the force of gravity acting over the body, so
~FE = ~Fg.

This can give us the constraint force need to take
the body from~X to ~X0.

~Fc = −~FE − 2
τ

m~v − 1
τ2

m(~X − ~X0)

The Dynamic Constraint Model calculates the
constraint force needed to take the body to the con-
straint point defined. In this case we can see that the
constraint force may be decomposed in three compo-
nents, one opposing the force of gravity, one opposing
the body’s velocity and other that pulls the body to the
constraint point.

In our approach we will use the same model but
instead of calculate the constraint force we will define
a constraint force to get the object position when the
forces reach the equilibrium. Since we are modeling
plants, that can not move, the velocity component is
null. Our problem is simplified to find~X0 given ~X, the
force of gravity acting over the plant and a constraint
force that will be defined considering some properties
of the plant.

~Fc = −~FE − 1
τ2

m(~X − ~X0) (5)

For a time intervalτ , we can create an animation
using equation 5. The constraint force will be calcu-
lated when the center of mass of the leaf changes from
~X to ~X0, by single vectors operations.

We calculate the effects of the constraint force for
subintervals ofτ , and the position the leaf will be in
each time interval. This creates a more realistic anima-
tion since the leaf will move under different velocities
and accelerations.

5 Level of Detail and Distribution
After the computation of the physical properties

that define the leaves, the creation of the points that
will be part of the leaves is quite simple.

We can save some computer resource also using a
simple level of detail technique to diminish the number
of polygons required to generate the scene. A simple
distribution algorithm was also developed, to simulate
plants propagation and competition for space over the
terrain.

5.1 Level of Detail Algorithm
If the leaf is a certain distance far from the viewer

we can represent the grass leaf with less details. The
number of triangles required to generate a good image
for far leaves is smaller, so we represent the leaves us-
ing less triangles, what helps us to generate a scene in
real-time.

The larger the field of view of the camera, the
more instances of grass have to be rendered. Thus if
fewer polygons are not used to represent a plant in-
stance, it is very difficult to create a scene in real-time.
A simple algorithm can solve this problem, if the cam-
era is at a certain distance from the tufts, some vec-
tors can be eliminated, defining less points to the grass
leaves.

Using this simple algorithm we can reduce the
number of polygons that will be rendered, what will
help us to generate scenes in real-time. This technique
can be found in the Java3d API [Sun02a].

The hierarchical technique using different mod-
els for the grass at different levels of detail is used
in [Per01a], but this technique must handle the transi-
tion between models. To create more realistic results
we intend to create one technique for rendering plants
closer to the viewer, as was mentioned previous. An-
other level of detail, that can be a texture mapped over
the terrain or a image based technique, will also be
implemented, for distant underbrush rendering. This
technique will be used for mid distances plants.

5.2 Underbrush Distribution
Some important properties are defined in the ter-

rain, they determine the distribution of the underbrush
and they are very important to the scene appearance.

We can think of the terrain properties as nutri-
ents that the underbrush needs to grow. If we define a

terrain with few nutrients we will obtain dispersed un-
derbrush. Each kind of underbrush will use some nu-
trients of the terrain sections it occupy, so the number
of instances will also be determined by the concentra-
tions of nutrients over the terrain.

The distribution of nutrients is also important to
determine where each kind of underbrush will grow
(different kinds of vegetation requires different kinds
of nutrients), and which terrain portion it will occupy.

A simple algorithm to generate the distribution of
the underbrush over the terrain mesh has been devel-
oped. This algorithm receives a propagation point of
the distribution, and from this point it computes where
there will be new plants.

The algorithm verifies if the terrain has the re-
quired nutrients that are necessary for the underbrush
specified to grow, and returns the points on the ter-
rain that will be occupied by grass. Regions with
great nutrients concentrations will be more populated
by plants, that is, the algorithm directs propagation of
plants to regions with more nutrients.

The distribution of grass tufts may be done by
direct user specification or by procedural generation.
This algorithm allows the definition of other kinds
of underbrush that may compete for space and nutri-
ents. In future work we intend to have other kinds of
plants to compete for space, light and nutrients over
the terrain. This kind of simulation is also shown in
[Deu98a].

The distribution algorithm is part of the pre cal-
culations of the system, and takes less than 3 seconds
for a scene filled with plants instances.

6 Experimental Results

The system prototype was developed on a Pen-
tium III 900Mhz with 512MB running Linux. We also
use a 64MB graphics card to help us to generate real-
time animations.

All the rendering algorithms were implemented
using the Java3D API [Sun02a]. The Java platform
was chosen for its stability, high-quality, scalability
and platform independence. The Java3D API has im-
plementations based on OpenGl or DirectX and allows
easy creation of web applications.

After a few seconds of pre computation of the
constraints and force fields, the animation created to
simulate wind flow is generated in real-time using the
technique of force fields. Figure 8 and 9 illustrate this
animation. For both figures the underbrush start with-
out any external force acting over it, as we can see
in (a). A wind flow pass over the scene changing the
plants position (b), when the wind force effects are re-
duced the plants are forced to return to its original po-
sition (c).

The framerate for rendering, for a resolution

500x500, is between 10 to 20 frames per second, de-
pending on the number of instances shown and the
movement of the user over the scene.

For grass fields the system was able to render 200
tufts of grass, in real time. In the flower field, we
as able to render about 200 flowers with 1000 leaves,
both allowing user’s movement over the scene. This
results proves to be very satisfactory for a mid distance
representation.

7 Conclusion and Future Work
We presented a new technique for modeling un-

derbrush using dynamic constraints. Real-time perfor-
mance is achieved by pre computing some physical
properties and states and by hierarchically modeling
the leaves. The shape of the plants is created consider-
ing the effects of its weights and a constraint force that
oppose to the leaf bending.

The framework pleases the modeling of a great
variety of underbrush, and can be further extended
to any kind of plant. We plan to extend the system
to include the generation of bushes and trees, and to
study some distribution algorithms for different kind
of plants.

Further we intend to render plants closer to the
viewer using splines or other interpolation and plants
textures technique for realistic results on plants close
up’s. An image based algorithm or a point based tech-
nique may also be developed for plants far from the
viewer, this may be required to achieve real-time re-
sults for an ecosystem simulator.

As we intend to continue to animate natural scene
in real time, the next step is the realistic animation of
bushes and trees. L-Systems [Pru96a] are known by
its ability to model natural objects, particularly botan-
ical and cellular models. Our task must be how to use
L-System to generate fast plant models.

Figure 7: Underbrush scene animated in real time.

8 REFERENCES
[Sun02a] Sun Microsystems. Java 3DTM API Tuto-

rial.

[Bar88a] Barzel, R. and Barr, A. H. A Modeling Sys-
tem Based On Dynamic Constraints. In Com-
puter Graphics 22, pp. 179-188, 1988.

[Deu02a] Deussen O., Colditz, C., Stamminger M.,
and Drettakis, G. Interactive visualization of
complex plant ecosystems. In Proceedings of the
IEEE Visualization Conference, 2002.

[Deu98a] Deussen, O., Hanrahan, P., Lintermann, B.,
Měch, R., Pharr M., and Prusinkiewicz, P. Re-
alistic Modeling and Rendering of Plant Ecosys-
tems. In Computer Graphics 32, pp. 275-286,
1998.

[Fow92a] Fowler, D. R., Prusinkiewicz, P., and Bat-
tjes, J. A collision-based model of spiral phyl-
lotaxis. In Computer Graphics 26, pp. 361-368,
1992.

[Gia01a] Giacomo, T. D., Capo, S., and Faure, F. An
Interactive Forest. In Eurographics Workshop on
Computer Animation and Simulation, pp. 65-74,
2001.

[Mar00a] Markosian, L., Meier, B., Kowalski,
M.,Holden, L., Northrup, J., and Hughes, J. Art-

based Rendering with Continuous Levels of De-
tail. In Proceedings of the First International
Symposium on Non Photorealistic Animation
and Rendering (NPAR) for Art and Entertain-
ment, 2000.

[Met92a] Metaxas, D., and Terzopoulos, D. Dy-
namic Deformation of Solid Primitives with
Constraints. In Computer Graphics 26, pp. 309-
312, 1992.

[Per01a] Perbet, F., and Cani, M. P. Animating
Prairies in Real-Time. In ACM Interactive 3D
Graphics, 2001.

[Pru96a] Prusinkiewicz, P., Hammel, M., Hanan, J.,
and Měch, R. L-Systems: From the Theory to
Visual Models of Plants, 1996.

[Ree85a] Reeves, W. T., and Blan, R. Approximate
and Probabilistic Algorithms for Shading and
Rendering Structured Particle Systems. In Com-
puter Graphics 19, pp. 313-322, 1985.

[Wej91a] Wejchert, J., and Haumann, D. Animation
Aerodynamics. In Computer Graphics, pp. 19-
22, 1991.

[Wit97a] Witkin, A., and Baraff, D. Physically Based
Modeling: Principles and Practice. In SIG-
GRAPH’97 Course Notes.

Figure 8: A grass field animation. The leaves bend when a wind flow pass over the scene.

Figure 9: A field of flowers animated in real time by the action of the wind.

