
Visualisation system based on image warping and
Delaunay triangulation of the space1

Przemysław Kozankiewicz
Institute of Computer Science,

Warsaw University of Technology,
ul. Nowowiejska 15/19,
00-665 Warsaw, Poland

pkozanki@ii.pw.edu.pl

ABSTRACT

In this article we present a visualisation algorithm based on image warping. A source data for the algorithm is
a set of images with colour and depth information rendered for the observer located in a number of reference
positions. For each position there are 6 images rendered for the directions of axes forming the “image cube”. The
algorithm computes a 3D Delaunay triangulation on these positions and divides the space inside the convex hull
into tetrahedra. During the visualisation process the observer situated in one tetrahedron sees warped images from
the vertices of this tetrahedron. We also describe the automatic algorithm for selection of new reference positions
to improve the quality and remove “holes”. For both algorithms we utilize 3D hardware acceleration.

Keywords
image-based rendering, warping, visualisation, Delaunay triangulation

1. INTRODUCTION

Visualisation subsystem in virtual reality systems is
one of the most important elements. Its efficiency and
quality affect the amount and the quality of the im-
pressions of the user. Typical visualisation subsystem
creates images by drawing textured triangles.

In our project we investigate the possibility of using
image-based rendering in the visualisation process in-
stead of triangle meshes. Image-based rendering re-
lies on describing objects and scene with point sets.
These points are stored in a rectangular table (screen

1This paper was funded by The State Committee for Scientific
Research in years 2003-2004 under the grant no. 4 T11C 036 25

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG SHORT Communication papers proceedings
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

memory). Each cell contains the information about
the point colour and the distance from the observer.
Warping is a method of transforming such images and
it allows, for example, to compute the image for new
observer position or orientation. In many cases the
warping operation does not need to compute 3D posi-
tions of points, thus it is fast.

In many applications, eg. flight simulators, real-time
visualisation is needed. In the case of complex scenes,
such systems require very efficient graphical systems.
Pre-rendering of scenes for a number of different ob-
server positions and then using warping to interpolate
these rendered images during visualisation is a way to
make the system independent of the scene complex-
ity.

In our paper we investigate the possibility of us-
ing warping of pre-rendered images for the observer
placed in the nodes of the 3D mesh created by a De-
launay triangulation.

In the next section we mention the previous works in
the field of image warping and searching for reference
positions. In section 3 we describe the source data
for our visualisation algorithm. In the next two sec-
tions we present the algorithm for visualisation and



the algorithm for automatic choosing of reference po-
sitions. In section 6 we discuss our implementation.

2. PREVIOUS WORK

2.1. Warping

There are few methods developed so far for scene and
objects representation based on images or point sets.

Two similar methods, Light field [Levoy96a] and Lu-
migraph [Gortl96a] are used to describe single ob-
jects and are based on a discretisation of the plenop-
tic function (see [Adels91a]). Plenoptic function
c = f (x,y,z,θ ,φ), describes colour c visible from
the point (x,y,z) in the direction (θ ,φ). Light field
and Lumigraph are 4-dimensional subsets of this 5-
dimensional function and describe the light leaving
some bounded region.

Another two interesting representations of objects are
LDI structures and relief textures. LDI structure (see
[Shade98a]) is a set of images with depth that repre-
sent the subsequent “surface layers”. Visualisation in
such system consists of independent rendering of all
layers from back to front. Relief textures (described
in [Olive00a]) are the textures supplemented with the
depth of texels. Their advantage is the possibility to
exploit hardware graphics acceleration during visual-
isation.

Mark in paper [Mark99a] presented an algorithm for
accelerating the rendering of an interactive anima-
tion. With this algorithm system generates only some
frames with conventional rendering (for example one
reference frame every second) and in-between frames
are computed by warping reference frames. His algo-
rithm requires to foresee the future observer position
for reference frames.

Point set-based object representation was first de-
scribed in paper [Levoy85a]. The advantage of such
approach is the possibility of visualising objects with
complex geometry, hard to represent with other meth-
ods. During the last few years a lot of work has been
done in the field of interactive rendering large point
sets with maintaining good visualisation quality (see
[Rusin00a, Gross98a, Pfist00a]).

2.2. Search for the reference positions

There are only few papers concerning warping that
describe the selection of new reference positions,
most of papers leave this problem to the user. In
Mark’s paper [Mark99a] algorithm needs reference

frames that are close to the future positions of the ob-
server. The algorithm computes them by an extrapo-
lation of the observer movement.

Stürzlinger [Stürz99a] shown the algorithm for find-
ing a minimal set of reference positions that allow to
capture all object surfaces. This algorithm is iterative
and is based on the simulated annealing method. Un-
fortunately, this algorithm does not optimise the qual-
ity of captured surfaces and considers only the surface
visibility.

The problem stated in our paper is similar to the next
best view (NBV) problem. The NBV algorithms are
used for automatic 3D scanning of objects. Their goal
is to find the next optimal scanner position that allows
to retrieve as much as possible of information about
surfaces which were invisible before.

Most of the papers concern automatic recognition
with laser scanner of objects put in a bounded volume
and use volumetric methods [Massi98a, Wong98a].
After each scan, these methods update information in
voxels describing that they are empty, not empty or
not yet seen. In some cases (see [Massi98a]) when
texture reconstruction quality is also needed, infor-
mation about it is additionally stored in voxels. In
these papers the selection of a new reference position
is performed by checking all potential positions from
some semi-regular grid. This is possible because of
the bounded volume.

Other approach to optimisation is presented in the pa-
per [Werne00a]. The authors utilise a linear program-
ming to choose an optimal small set of reference im-
ages among large set of source images.

The paper [Klein00] describes a system of a robot
control that examines and automatically reconstructs
real scene. For each reference position the system
creates a structure called view-cube made from 6 im-
ages with depth information, created by projecting the
scene surfaces on the faces of a cube. Optimisation
in this system consists in maximisation of an objec-
tive function expressing an amount of unknown sur-
faces visible from a chosen position. Positions for
which the function is computed are taken from a semi-
regular grid. During optimisation the 3D hardware
acceleration is exploited for visibility tests.

The paper [Seque96a] also describes the robot con-
trol system but surfaces are represented as triangle
meshes. After each scanning the mesh is updated.
New positions are computed with the following al-
gorithm. For each hole in the mesh the system points
out the area in which the hole is visible. The algo-
rithm tries to find a non-empty union of the largest



Figure 1. Example images for a single position and a space partition.

number of these areas. New reference position is put
in this union set.

The paper [Fleis99a] presents a method of selecting
the reference positions for the purposes of image-
based rendering algorithms. The goal of this algo-
rithm is to find such reference positions inside the de-
fined volume where the surfaces are visible with suit-
able quality. The algorithm works in two phases. In
the first phase, it chooses a base set of cameras on
the boundary of that volume. In the second phase, it
chooses a small subset of cameras fulfilling the qual-
ity requirements.

3. SOURCE IMAGES
In this section we present the source data for our al-
gorithm.

The algorithm takes, as a source data, images created
for given observer positions. For a single position the
input is six square images with the depth for direc-
tions -x, +x, -y, +y, -z, +z. The field of view for each
image is 90 degrees. Thus the images describe all sur-
faces visible from this position. These images may be
put on faces of a cube centred around the position.

Images for a certain position are used for rendering
when an observer is inside a tetrahedron containing
that position as a vertex.

At the beginning we checked the possibility of using
a uniform grid of nx × ny × nz cuboidal cells. During
visualisation, the observer that was inside a particu-
lar cell, saw warped images from 8 vertices of this
cell. It turned out that the source data for such grid
was, first, redundant (if observer stayed far from ob-
jects, then the images from neighbouring positions
contained similar information) and, second, it was
hard to reveal this redundancy during the compres-
sion.

One possibility was an adaptive control of grid den-
sity by first creating a scarce grid and then making it
more dense depending on the distance to objects sur-
faces.

However, we decided that it is better to use grid de-
fined by the Delaunay triangulation for unrestricted
reference positions. Such operation divides the space
into tetrahedra. The visualisation system, for a set
observer position, has to visualise images from only 4
reference positions. It speeds up the frame rate twice
comparing to the grid of cuboids.

4. VISUALISATION

For a given set of positions, before the rendering, the
visualisation algorithm computes three-dimensional
Delaunay triangulation of these positions. We as-
sume, that the observer moves only inside the convex
hull of the positions. So the observer is inside (or on
the boundary of) some tetrahedron. The visualisation
algorithm displays warped images from four vertices
of this tetrahedron (6∗4 = 24 images).

Each source image is divided in square tiles (eg. 16
tiles), which are displayed independently. The pur-
pose is to speed-up the algorithm by not displaying
non-visible tiles.

All pixels of the images are stored in the format
RGBZ, where RGB is the colour and Z is the z-depth.
After reading a source image, the algorithm computes
the space coordinates of all pixels (from the image
camera parameters and z-depth of pixels).

Suppose that the scene is a convex solid and the cam-
era is placed inside a tetrahedron. The algorithm is
warping the images from vertices of this tetrahedron.
Then we are certain, that any surface fragment is visi-
ble on at least one source image (see [Mark99a]). Un-



fortunately, in our case, we cannot have such assump-
tion about the scene and we may expect that some
“holes” appear in the visualised surfaces.

In a general case, the holes cannot be eliminated com-
pletely, but by thickening the mesh (by inserting new
positions) the hole sizes may be reduced. In the next
section we present the automatic algorithm for selec-
tion of new reference positions.

During the visualisation, the observer may pass from
one tetrahedron to another. At this moment the algo-
rithm switches instantly the displayed images. To pre-
vent such unpleasant jumps in displayed images, the
program needs to visualise additional images from 4
mesh vertices of tetrahedra adjacent by faces. Smooth
transitions are obtained by using alpha-blending and
transparent display of images from additional ver-
tices. When the observer approaches the face com-
mon with the other tetrahedron, the α coefficient of
the images for the other tetrahedron vertex increases
(it reaches value 1 on the face). When the observer
moves away from that face, the α coefficient de-
creases (it reaches value 0 on the other faces). The
value of α coefficient is computed in the following
way:

α = min
i=1,2,3

d0+di>0

{

di

d0 +di

}

,

where d0 is the distance to the face common with the
considered adjacent tetrahedron, d1,d2,d3 are the dis-
tances to the other faces.

5. AUTOMATIC ALGORITHM FOR
INSERTING REFERENCE POSI-
TIONS

In the case of simple scenes, if a small number of ref-
erence positions is required, they may be interactively
given by a user. For example, the user moves the cam-
era in the virtual scene and sees a hole in the surface
or an insufficient texture quality, then he can decide
to add a new reference point for this position and start
the rendering process of source images for this posi-
tion. In the case of complex scenes or in the case of
greater number of reference positions, an automatic
algorithm for inserting reference positions is useful.
We describe such algorithm in this section.

Notice that by inserting positions we may change
not only the tetrahedron containing that position, but
also tetrahedra in some neighbourhood. That opera-
tion may worsen the visualisation quality inside these

tetrahedra. However, by inserting sufficiently large
number of positions, the sizes of tetrahedra decrease
and thus the possible hole sizes also decrease. Thus
the visualisation quality improves when the number
of insertions is sufficiently large.

The algorithm for selecting reference positions con-
sists of two phases executed alternately:

A. In this phase, for each tetrahedron, the al-
gorithm searches for an “optimal” point, for
which the observer sees the most of the holes
and the space invisible on source images. The
optimality of such point is defined by an objec-
tive function presented later in this section.

B. In this phase, the algorithm inserts a single po-
sition to the tetrahedron with the greater value
of an objective function. After this opera-
tion the Delaunay triangulation is updated and
source images for inserted position are com-
puted.

In phase B, the Delaunay triangulation is modified in
the neighbourhood of the inserted position. Owing
to this, the objective function must be computed only
for new tetrahedra in this neighbourhood. Values for
other tetrahedra may be cached and do not need to be
computed again in phase A.

Objective function is defined in the following way.
For each point X inside the considered tetrahedron,
the algorithm computes kun – the number of pix-
els visible during visualisation that are unknown
(“holes”) or space visible through them is undefined
on all reference images (thus it can be not empty).
The value of the objective function is given by the
following equation:

DX = (kun − kdist)∗V,

where V is the volume of the tetrahedron, kdist is the
number of pixels closer than given depth threshold
distmin. The component kdist does not allow to ap-
proach surfaces too close. Without this component, an
observer moving towards the surface would see this
surface as separate pixels with holes around them. In
this case the objective function would grow constantly
while getting closer to the surface. Factor V is re-
quired to prioritize tetrahedra based on their volume
when two tetrahedra have similar number of “hole”
pixels (kun − kdist).

To speed-up the computation of the objective function
value we use the OpenGL library and the 3D hardware



PSfrag replacements

source position
position X

mesh

points

Figure 2. Two-dimensional example of ob-
jects rendered on images Pd,s. Thin dot-
ted line denotes triangle mesh (drawn with
colour cb), thick short horizontal lines de-
note points (colour cp).

acceleration. The algorithm renders 24 images Pd,s,
where d = 1, . . . ,6 is one of 6 directions in which the
image is rendered, s = 1, . . . ,4 is a number of a tetra-
hedron vertex for source images. Each source image
is rendered twice, first as a triangle mesh (with the
background colour cb) and second as points drawn as
2x2 pixel squares (with the colour cp). These points
from the second pass are slightly moved towards the
observer. Then the points on surfaces perpendicular
to the observer viewing direction would not be cov-
ered by the triangle mesh. The figure 2 shows a two-
dimensional example.

After computing images Pd,s, the algorithm merges
them. For each of the 6 directions it computes im-
age Pd,all. This merging is performed independently
for each pixel, the rule is the following:

• If the pixel has colour cp on at least one of
the 4 images, then on the destination image the
colour is cp. Otherwise the colour is cb.

The rule indicates that if the surface is visible (the
colour is cp) on at least image Pd,s then there is no oc-
cluding object between the surface and the observer.

The goal of the optimisation algorithm is to find
the position inside each tetrahedron with maximum
objective function value. The domain is three-
dimensional. The computation of the exact or approx-
imate value of a gradient is hard, thus for such prob-
lem the best approach is to use a randomised method,

such as some evolutionary algorithm. We chose the
genetic algorithm. The other possibility is, for exam-
ple, simulated annealing. Genetic algorithm is cho-
sen because of the crossover operator. This operator
speed-ups the maxima search in the situation, when 2
positions to be crossed are on the opposite sides of the
same maximum.

6. IMPLEMENTATION
The algorithm presented in this article was imple-
mented in the C++ (GCC) on Linux. For visualisa-
tion we used the SDL library along with the OpenGL
library for 3D hardware acceleration.

Source images were rendered with a ray-tracer called
Rayshade [Kolb87a]. Each image was saved to the
separate file. We used adaptive anti-aliasing by sub-
sampling where the colour of adjacent pixels was
greater than some threshold, but the pixels depth was
not to big (in the opposite case, the pixels came from
different surfaces).

Pixels are drawn as points of a suitable size (such that
there would be no holes between adjacent points). In
the drawing procedure the coordinates are transmitted
to the OpenGL library as Vertex Arrays and the colour
is put by an automatic texture projection.

To improve the interactivity of our program, we im-
plemented the loading of new images in the back-
ground thread. Unfortunately, this may cause that the
surfaces not loaded so far are not displayed.

Figure 3 shows sample frame from visualisation.
Squares depict mesh vertices, white lines are the
edges of tetrahedra. The test scene is the model of
the church created by Nathan O’Brian [O’Brie93a].

The test configuration was a computer Duron
800MHz, 512 MB RAM, NVidia GeForce 2 MX
graphics card with 32 MB RAM. The resolution of
the reference images was 400x400 pixels. The visu-
alisation algorithm rendered images of the resolution
640x480 with the field of view 20◦. The achieved
frame-rate was 5-6 frames per second (about 1M
points were rendered per second2).

In the automatic algorithm of selecting reference posi-
tions, we used 3D hardware acceleration for rendering
scene views. We used an OpenGL extension called P-
buffer for an off-screen rendering. To speed-up the al-
gorithm, the resolution of source and destination im-
ages was diminished 4 times in both axes directions

2Remark: points were drawn as small squares, what slowed
down the visualisation comparing to drawing points as single pix-
els.



Figure 3. Sample scene with reference positions and tetrahedra edges shown.

(100x100). The time of computing of the objective
function was approximately 1s (it involved rendering
of 24 images Pd,s, and 6 merging of images Pd,all).

For each tetrahedra the genetic algorithm executed
50-150 iterations (depending on the test). There were
4 individuals (the position is an individual in this case)
in the population, in each iteration 2 individuals were
produced and 2 worst individuals were removed. In-
dividuals to cross and reproduce were randomly se-
lected, the probabilities of individuals with bigger ob-
jective function were bigger.

7. CONCLUSION AND FURTHER
WORK

In this article we presented the visualisation algorithm
based on warping and space partitioning by three-
dimensional Delaunay triangulation. The main ad-
vantage of the presented algorithm is the indepen-
dence from the object complexity. The quality of vi-
sualised surfaces is similar and does not depend on
the observer position.

In some cases, we may not be able to remove holes,
even if we increase the density of the mesh by insert-
ing new positions (the size of holes decreases, but the
holes do not disappear). Such situation may occur,
for example, when an observer sees distant surface
through a small hole in the closer surface. A very
small observer movement may cause completely new
part of the distant surface to be visible through that
hole.

A solution to this problem may be the following. In-
stead of visualising individual images bound to the
tetrahedra vertices, one should visualise unorganised
point sets bound to separate tetrahedra. However, still
it is an open problem, how to optimise a subset of
points that has to be exchanged after moving from one
tetrahedron to another.

REFERENCES

[Adels91a] Adelson, E.H. and Bergen,J.R.:
Computational Models of Visual Processing, MIT
Press, Cambridge, MA, 1991, ch. 1 (The Plenoptic
Function and the Elements of Early Vision).

[Olive00a] Oliveira, M.M. de, Bishop, G. and
McAllister, D.: Relief texture mapping,
SIGGRAPH 2000 Conference Proceedings, 2000.

[Fleis99a] Fleishman, S., Cohen-Or, D., and
Lischinski, D.: Automatic camera placement for
image-based modelling, Computer Graphics
Forum, 19 (2000), pp. 101–110, 2000

[Gortl96a] Gortler, S.J., Grzeszczuk, R., Szeliski, R.
and Cohen, M.F.: The Lumigraph, SIGGRAPH 96
Conference Proceedings, pp. 43–54, 1996

[Gross98a] Grossman, J. P. and Dally, W.: Point
sample rendering, in Rendering techniques ’98,
1998, pp. 181–192.

[Klein00] Klein, K. and Sequeira, V.: The
view-cube: An efficient method of view planning
for 3d modelling from range data, in 5th IEEE
Workshop on Applications of Computer Vision
(WACV’2000), Palm Springs (CA), USA,
December 2000.



[Kolb87a] Kolb, C. and Bogart, R.: Rayshade ray
tracer, 1987-1998,
http://www-graphics.stanford.edu/ cek/rayshade/.

[Levoy85a] Levoy, M. and Whitted, T.: The use of
points as a display primitive, Tech. Rep. TR
85-022, University of North Carolina at Chapel
Hill, 1985.

[Levoy96a] Levoy, M. and Hanrahan, P.: Light field
rendering, SIGGRAPH 96 Conference
Proceedings, pp. 31–42, 1996

[Mark99a] Mark, W.R.: Post-Rendering 3D
Warping: Visibility, Reconstruction and
Performance for Depth-Image Warping, Ph.D.
thesis, Department of Computer Science,
University of North Carolina at Chapel Hill,
Chapel Hill, North Carolina, 1999

[Massi98a] Massios, N. A. and Fisher, R. B.: A best
next view selection algorithm incorporating a
quality criterion, in 9th British Machine Vision
Conference, Southampton, England, 1998,
pp. 780–789.

[O’Brie93a] O’Brien, N.: Rayshade model of the
interior of Palladio’s Il Redentore in Venice, 1993.

[Pfist00a] Pfister, H., Zwicker, M., Baar, J. van and
Gross, M.: Surfels: Surface elements as rendering
primitives, SIGGRAPH 2000 Conference
Proceedings, 2000, pp. 335–342.

[Rusin00a] Rusinkiewicz, S. and Levoy, M.: QSplat:
A multiresolution point rendering system for large
meshes, SIGGRAPH 2000 Conference
Proceedings, 2000, pp. 343–352.

[Seque96a] Sequeira, V., Goncalves, J. and Ribeiro,
M. I.: Active view selection for efficient 3d scene
reconstruction, Proceedings of the 13th
International Conference on Pattern Recognition
(ICPR), Vienna, Austria, August 1996,
pp. 815–819.

[Shade98a] Shade, J. W., Gortler, S. J., He, L. wei
and Szeliski, R. : Layered Depth Images,
SIGGRAPH 1998 Conference Proceedings, 1998,
pp. 231–242.

[Stürz99a] Stürzlinger, W.: Imaging all visible
surfaces, Proceedings of Graphics Interface 99,
1999.

[Werne00a] Werner, T., Pajdla, T., Hlaváč, V.,
Leonardis, A. and Matoušek, M.: Selection of
reference images for image-based representation,
Tech. Rep., Center for Machine Perception, Czech
Technical University, Prague, Czech Republic,
December 2000.

[Wong98a] Wong, L. M., Dumont, C. and Abidi,
M. A.: Determining optimal sensor poses in 3-d
object inspection, Conference on Quality Control
By Artificial Vision, November 1998, pp. 371–377.


