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ABSTRACT

This paper presents new approximated visibility algorithms. The aim is to develop output sensitive algorithms for
virtual environment walk-through applications. We aim to achieve efficient rendering of complex computer
models containing partially occluded areas. Emphasis is paid to the rendering of natural environment models.
The algorithms presented in this paper perform visibility calculations in a plane, these algorithms have a more
general 3D analogy which has many practical applications within the field of virtual environments. The
algorithms presented here have been used with minor extensions to be applied to 2.5D ground based virtual
environment walk-throughs.
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1. INTRODUCTION
Visibility determination has been an area of interest
since the start of the computer graphics field, initially
to solve the hidden surface removal (HSR) problem
[App68] [Sut74]. Visibility determination is now an
area of research focused on the efficient rendering of
3D datasets, efficient network communication and
lighting calculations. Visibility culling of densely
occluded scenes has been the focus of much research,
initially presented in [Air91] and then advanced in
[Tel92]. In this paper we are concerned with visibility
culling for the efficient rendering of large densely
occluded scenes populated with many small rendering
primitives such as forest scenes. We focus on an
approach which efficiently rejects invisible geometry
before submission to the graphics pipeline, where
HSR is performed by the z-buffer.

During the rendering of a densely occluded scene
populated with small rendering primitives, from many
observer viewpoints much of the scene will be
partially visible (or not visible at all) due to being
viewed through a cluster of primitives causing
restricted or partial visibility. Partially visible objects
are often less important than completely visible

objects as the details of the object are likely to be less
noticeable to an observer. Therefore, such objects can
be displayed in reduced detail [And00] [Pea03].

In scenes with many small rendering primitives,
typically no geometry exists which can be used as
effective occluders. We can attempt to create virtual
occluders [Kol00], which can be used in visibility
culling algorithms. However, this is an exact
approach and there is no way of ensuring that
sufficient virtual occluders can be created to allow
efficient rendering. Additionally, this approach does
not naturally allow for level of detail switching based
on visibility. We can also attempt to use occluder
fusion techniques [Won00], which combine several
disjoint occluders into a single occluder. While this
has similar problems to the virtual occluder approach
it is also computationally expensive. Particularly in a
natural environment, where there are likely to be
many small rendering primitives to combine.

We present algorithms for computing "from-region"
visibility information at a pre-processing stage, the
visibility information is stored and recalled during
run-time. The advantages of this approach are that it
has negligible run-time CPU costs and certain
predictive capabilities which allow loading of the
dataset into memory from disk or alternative source
(such as a network) as and when it is needed. The
main problem for the pre-computed approach is
memory requirements to store the visibility
information, since the memory consumptions are
likely to be high in large scenes, but can be reduced
using existing techniques to compress the visibility
data or intelligent selection of cell sizes [Nad99]
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[Got99] [Pan99]. Additionally, visibility information
can be stored in a central location and streamed from
a network [Coh98a] [Coh98b] if it is too costly to
store entirely on a standard PC.

We present run-time approximations of visibility
information similar to that of [And00] [Sao99]
[Coh98a]. The main differences of our approach are
the data structures used to achieve efficient
approximation of visibility information, and we focus
on using spatial cells which more compactly store
visibility information. We present two variations of
visibility computation, the first computes visibility
information for the entire dataset at run-time and has
no memory overheads other than those required for
the data-structures used by the algorithm (which is
minimal). The second approach is performed on
stored visibility information computed by a pre-
computed approach, where visibility information is
pre-computed and stored for each spatial cell. A
smaller subset of the stored visibility information is
produced at run-time by using a more accurate culling
when specific viewing variables are available.

The main drawback of approximated visibility
techniques is their tendency to allow for errors. This
is due to objects appearing to flicker where they are
incorrectly approximated as invisible when they are
not. In [Pea03] we discussed why this is less
noticeable during the rendering of natural
environments using the Partial Visibility technique.
When objects typically switch to lower levels of
detail or culled objects when they are partially
visible, this masks the popping effects. Additionally,
image based techniques can be used to eliminate this
problem, where a simple backdrop is used to replace
areas where much culling is performed.

An area of recent research has been to identify more
effective occluders to improve the performance of
visibility culling algorithms [Ber00] [Law99] [Bru01]
[Kol00] [Zha98]. We describe an approach to
automatically synthesise partial occluders to improve
the performance of the Partial Visibility algorithms.

This paper presents the problems and concepts
involved in the new partial visibility algorithms, our
ideas are presented in a 2D model domain. This
model has a 3D analogy which can be applied to
general 3D computer models. We discuss the
potential applications of these algorithms in the field
of virtual environments.

2. DATA STRUCTURES AND
CONCEPTS
A partial occluder occupies a volume of space which
restricts visibility through the volume by some

amount, known as the solidity value (SV). The
solidity value is the percentage of the partial
occluders' volume that obstructs light from passing
the volume. This information is used during the
visibility approximation algorithms to approximate a
visibility value (VV) of each object or subspace in
the scene. Additional visibility information (such as
hole information) may be stored with the partial
occluder if necessary, to allow more reliable visibility
approximations.

A shadow volume (or area in 2D) is computed for
each partial occluder given an observer position. The
portion of the scene which lies inside a partial
occluders' shadow volume is said to be partially
occluded by the partial occluder. For a partially
occluded object (or subspace of the scene) a visibility
value (VV) is approximated. The visibility value of
an object is the percentage of the object that is visible
from a given observer position. A visibility value is
approximated using the set of the shadow volumes
that partially occludes the object.

The ideas presented in this paper are based around a
number of separate problems. The problems that we
are posed with are as follows: given a set of rendering
primitives (or computer model) such as that in Figure
1. We attempt to find the areas of the scene which act
as good partial occluders, then identify the areas that
are useful free cells. Free cells are non-partially
occluding areas from which visibility calculations are
performed. Figure 2 illustrates partial occluders as
shaded rectangles and free spaces as clear rectangles
synthesised for the park scene in Figure 1.

Figure 1: Natural scene simplified to a planar model



Figure 2: Spatial subdivision

Data Structure Construction Phase
Given a computer model, the data structures are
constructed at a pre-processing phase, before any
visibility computations are performed. The following
sections discuss the underlying data structure
construction phase.

2.1.1 Occluder Synthesis
This phase analyses the scene and synthesises
suitable partial occluders. The input of this algorithm
is a computer model, points in a plane are used as
rendering primitives in this model problem. However,
the extended version of these algorithms uses typical
3D computer models. The scene is spatially
subdivided into cells, the set of cells that have
desirable visibility properties, such as solidity value
and hole information are identified and used as partial
occluders. Figure 2 illustrates a typical set of partial
occluders (the shaded rectangles) synthesised for the
scene in Figure 1. One implementation of this phase
uses a quad-tree data structure to recursively divide
the scene into progressively smaller cells until a
desired cell size or number of objects per cell is
achieved. The contents of the cell are then projected
onto its boundary, and a solidity value is calculated
for the cell as the percentage of the boundary that is
occupied by these projections.

2.1.2 Adjacency Graph
The scene is organised into a spatially subdividing
data structure which is similar to the work by Teller
[Tel92] where spatial cells are connected to
neighbouring cells by portals to create a structure

known as an adjacency graph. In our structure we
distinguish between two different spatial cells, a cell
is either a free cell (containing no useful partially
occluding geometry), or a partially occluding cell
(containing sufficient useful partially occluding
geometry). An adjacency graph connects all
neighbouring cells (Figure 3 shows the data structure,
including cell connectivity information). This graph
is computed once as a pre-process and allows
efficient traversal of the subspaces of the scene
during run-time. Using this traversal of the scene
allows more efficient visibility approximations than
the brute force approach presented in [Pea03], which
required the partial occluders to be sorted in front to
back order before visibility approximations we
performed.

Figure 3: Spatial subdivision with adjacency graph

3. VISIBILITY COMPUTATION
The purpose of the previously described data
structures is to drive visibility queries and eliminate
the distance sort presented in [Pea03]. We have
developed two methods of performing visibility
approximations, a pre-computed and a run-time
approach. The pre-computed approach minimises the
amount of computational effort required during run-
time at the expense of additional memory resources.
The run-time approach has negligible memory
requirements and performs visibility calculations
during run-time. In this section we describe both
approaches to approximating visibility information.



Run-Time Visibility Approximation
This approach approximates the visibility information
for a given observer position. The visibility
information is updated each time the observers'
position is changed beyond a given threshold. We use
a breadth first search of the adjacency graph data
structure to encounter spatial cells in a front to back
order. As a partially occluding cell is encountered, it
is tested with the view frustum and a new shadow
volume is calculated and added to the back of a
queue of shadow volumes (EPO) if the partial
occluder lies inside the view frustum. As a new target
cell is encountered the set of shadow volumes is used
to approximate the degree of visibility of the target as
follows: the visibility of a target cell is calculated
considering all shadowing volumes (considering the
solidity of the shadow casting partial occluder). The
percentage of the target cell that lies inside a shadow
volume is multiplied by the solidity value of the
partial occluder that casts the shadow, and the
visibility of a target is calculated in this way
considering all shadow volumes encountered on the
traversal before reaching the target object.

ComputeVisRT(Queue EPO, view)

{

 while(!EPO.IsEmpty())

 {

  Cell C = EPO.front

  ApproximateVV(C)

  if(C.IsVisible())

  {

   for(all adjacent cells, adc)

   {

    if(adc.IsInside(view))

    {

     EPO.AddToBack(adc)

    }

   }

  }

  EPO.remove(C)

 }

}

Figure 4: Run-time visibility information computation

Pre-Computed Visibility Approximation
This approach capitalises from a pre-processing
phase to compute and store ‘from region’ visibility
information. This phase stores visibility information
with each cell of the spatial subdivision, which can be
efficiently recalled during run-time. The visibility
information for each cell is valid for any observer
position inside the space it occupies. During the pre-
processing phase, visibility queries are preformed
from each of the free cells using the partial occluders
to cast shadow volumes in the scene. The visibility
value of the remaining cells in the scene is
approximated using the set of shadow volumes which
fully or partially contain each cell. The adjacency
graph data structure is exploited for efficiency much
in the same way as the run-time approach.

PreComputeVis(Queue EPO)

{

 while(!EPO.IsEmpty()) {

  Cell C = EPO.front

  ApproximateVV(C)

  if(C.IsVisible()) {

   for(all adjacent cells, adc) {

     EPO.AddToBack(adc)

   }

  }

  EPO.remove(C)

 }

}



Figure 5: Pre-computed visibility information
computation

4. RENDERING PHASE
Two approaches for calculating a visibility value for
objects in a scene have been described. In [Pea03] we
described how a visibility value can be used to speed
up the rendering of a natural environment. This
involves reducing the amount of rendering primitives
sent to the graphics pipeline based on the visibility of
each object. The objects that are completely visible
are sent to the graphics hardware in full detail, while
those that are less visible use a coarser representation
(typically consisting of fewer rendering primitives).
Additionally, objects which have a VV that is
sufficiently low (and thus make an insignificant
contribution to the final rendered image) are culled
from the rendering process completely. Heuristic
threshold values are used to determine when level of
detail switches are performed and objects are culled
from the rendering phase, adjusting these heuristics
allows a trade off between image quality and
rendering performance.

More specifically, before rendering the scene
database, each object in the database is placed into a
set that determines how it will be rendered based on
the VV of the object from the observer’s current
location. The rendering of each object is determined
by a number of heuristics: a number of LOD
thresholds, and a cull threshold. The objects in a
scene are classified into visibility sets as follows:

Visible Set, V
Contains the objects in the scene with a VV of 1.
Which are completely visible, these are displayed at
full resolution.

Partially Visible Set, PVi
There can be several partially visible sets. Each
partially visible set is associated with a LOD which is
used to display the objects in the set. The LOD
thresholds are used to classify objects into the
appropriate partially visible set.

Cull Set, C
Objects in the cull set are not displayed during the
display phase. Objects are assigned to the cull set
when they have a VV that is lower than the cull
threshold.

The objects in set V are displayed in full detail, the
objects in the PVi set are displayed at LOD i, and the
objects in set C are not displayed at all. This reduces
the number of polygons sent to the graphics
hardware, improving the display rate of the
application.

We currently have no scientific method of assigning
the thresholds, they are used as adjustable heuristics
to match users requirements. Assignment of these
thresholds is a tradeoff between effective cull
performance allowing increased rendering speeds
(greater thresholds) and minimal visual artifacts
(lower thresholds).

5. PRACTICAL APPLICATIONS
The partial visibility algorithms can be exploited in a
number of different areas within virtual reality. These
include:

Real-Time Complex Environment
Rendering
The algorithms could be used to achieve output
sensitive rendering in complex virtual environment
models. Such as models representing forests, park
lands, crop fields, and underwater, foggy, or crowded
scenes.

Exploiting Partial Visibility to Assist in
Scene Budgeting
The scene structure could be exploited to intelligently
budget the system resources to achieve maximum
quality or efficiently renderable scenes. When
visibility information is pre-computed this allows the
identification of exactly which rendering primitives
are available from any single viewing position. This
can be exploited to distribute the rendering budget
amongst the visible portion of the scene.

Instancing Similar Partial Occluders To
Save Memory
We could potentially use instanced simplifications of
similar cells to save memory. Where partially



occluded cells have similar visibility attributes, a
single copy of the cell could be instanced throughout
the scene to save memory requirements. Image error
is a major concern during render time, where the
instanced cell has differences from the original
model.

Approximated Lighting Calculations
Partial Visibility algorithms could be exploited to
achieve efficient approximate lighting and shadow
calculations. The amount of light that illuminates
areas of a model can be approximated in a similar
way as that in [Ree85]. The difference in using the
methods described in this paper is that we estimate
the percentage of light that passes through areas to
achieve a more accurate approximation.

Efficient Network Transmission
Partial Visibility algorithms could achieve an output
sensitive network protocol. During the transmission
of avatar (or object) positions in a multi-user virtual
environment, avatar positions can be transmitted less
frequently when they are located in less visible areas.
Prediction techniques can be applied minimise any
potential error.

6. RESULTS
The rendering process has been simulated to illustrate
the potential savings when using these algorithms. A
number of scenes were constructed with a varying
number of rendering primitives. Partial occluders
were synthesised in the scene containing a number of
rendering primitives. During rendering, partial
occluders which are fully visible are displayed using
all rendering primitives, and those that are less visible
are rendered with fewer primitives. Objects are culled
when they are visible by a very small amount. Figure
6 illustrates the average number of rendering
primitives displayed at a number of sample points
inside the scene (plotted along the y-axis), in
increasingly large scene sizes consisting of an
increasing number of rendering primitives (plotted
along the x-axis). Figure 7 illustrates the number of
objects that are culled from the rendering process.

Figure 6: displayed graph

Figure 7: culled graph

Figures 8 and 9 illustrate these visibility
approximations in a scene consisting of five hundred
partial occluders to highlight the potential savings
when using the partial visibility rendering technique.
The observer is positioned at X, partial occluders are
represented as boxes, with their shadow volumes
extended from the box. The partial occluders with
dark shading (close to X) are highly visible while the
boxes with lighter shading are less visible, and the
dark shaded objects that are distant from X are culled
completely.

Figure 8: sample scene after visibility approximations



Figure 9: sample scene after visibility approximations
A walkthrough has been implemented which uses
these techniques in 2.5 dimensions. Rendering speeds
have been tested with this visibility approximation
technique during a run-time walkthrough (with level
of detail switching and culling based on visibility as
previously described), this is compared to brute force
rendering  (where all objects are displayed in full
detail). The scene consisted of 2,000,000 texture
mapped quads. Average rendering times during a
walkthrough of the scene are compared in Figure 10,
and image quality can be compared in Figures 11
(full detail) and 12 (optimised).

Figure 10: rendering times

Figure 11: scene rendered using full detail

Figure 12: scene rendering using optimisations

7. CONCLUSIONS
In this paper we present the developing partial
visibility algorithms, illustrated using a 2D model of
the problem. We use a 2.5D implementation to
perform experiments to highlight the savings during
the rendering of some complex scenes.
The main contributions of this paper are advances to
the brute force algorithms presented in [Pea03],
where we take advantage of a data structure which
allows efficient traversal of the scenes sub-spaces to
perform visibility computations in an efficient
manner, eliminating the need for a distance sort.
Another addition to the previous version of this
algorithm is the introduction of the partial occluder
synthesis phase. The previous publication on this
work [Pea03] constructed a partial occluder for each
tree in a natural scene. The introduction of the
synthesis phase increases the potential for much
larger (and fewer) partial occluders to be constructed,
this improves the speed of the visibility computation
phases.

8. FURTHER WORK
A full 3D version of the algorithms will be
developed. Rendering times will be measured during
walk-throughs of practical models and visual fidelity
issues will be addressed.
Further optimisations to the algorithms are planned:
we aim to reduce memory overheads, computation
times, and improve the partial occluder synthesis
phase. To improve computation time we plan to more
intelligently synthesis partial occluders, much work
must be performed in this area to identify the most
effective way to subdivide the scene to identify
suitable partial occluders. The spatial subdivision
method also effects the memory requirements for
storing the visibility information in the pre-computed



approach, as each cell stores visibility information it
is desirable to use a minimal number of cells in the
scene, this cannot be done in a naive approach, as we
do not wish for the visibility set to be too
conservative. Thus we aim to achieve an optimal
number of cells where neighbouring cells store
minimal duplicate visibility information and each cell
groups similar visibility properties so that the
visibility set is not far different from all observer
positions in the cell.
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