A Calligraphic Interface for Managing Agents

Alfredo Ferreira Marco Vala J. A. Madeiras Pereira
alfredo.ferreira@inesc-id.pt marco.vala@tagus.ist.utl.pt jap@inesc-id.pt

Joaquim A. Jorge Ana Paiva
jorgej@acm.org ana.paiva@inesc-id.pt

Department of Information Systems and Computer Engineering
INESC-ID / IST / Technical University of Lisbon
R.Alves Redol, 9, 1000-029 Lisboa, Portugal

ABSTRACT

Despite the considerable work on agent frameworks, user interfaces to manage these are mostly script based. Even though
some solutions provide graphical interfaces to build agent worlds these are quite limited and overly dependent on textual input.
Recently, calligraphic systems using sketch-based and pen-input have emerged as a viable alternative to conventional direct-
manipulation interfaces in a wide range of areas, such as user interface design or mechanical systems simulation. In this paper,
we present a preliminary approach to a calligraphic interface for managing agents. It recognizes gestures drawn by users
allowing them to create and manage agent worlds flexibly and efficiently using a concise language.

Keywords: Calligraphic Interfaces, Sketch Based Modeling, Agent Modeling Tools, Agent Frameworks

1 INTRODUCTION and dependent on script-based languages and/or textual
_ ._input. Moreover, they are not really user friendly since
Many definitions have_ been proposed to descrlbcz,ley focus more on the agents of the world being cre-
softyvare agents” or simply a,‘-?le”ts ; Russell an ted than on the user’s task of creating the world.
Norwg [RNO3] d.ef.me .agent as anything that can be Thus, we try to take advantage of the way developers
viewed as perceiving its environment through SENSOIG atch agent-based worlds in sheets of paper before cre-
ﬁ/lnd aCt"Clg lgpson tggt er;]wro‘r'lment through efeciors ating them, and we propose a novel approach based on
aes | ae] adds that agtonomous agents arffcalligraphic interface. The tool we present in this pa-
computational systems that inhabit some comple er, callededitiON , allows users to sketch the agent-

Qy?ﬁmm gnwronmtent, dsinsg f”md act algtonomotus ased world directly on the computer, reducing script-
in this environment, and by doing so realize a set of, o textual input,

goals or tasks for which they are designed”. And we After a short discussion of related work, we will
coulld add sever_al other agent definitions that focus Oﬁ'resent an overview of our approach to sketch-based
particular domains.)) management of agents, describing the proposed archi-
Agents are used in a large set of areas with a 1arg@ .yre. Then we focus on the creation of agent-based
set of purposes. They are often seen as a programmi@4s ysing sketches, presenting our symbol recogni-
methodology and, in that sense, contribute to thg,n methodology and describing the user interaction
appearance of several agent frameworks. But, as thegg, our tool. Finally we present some conclusions and

frameworks are becoming increasingly Widespreacguggest directions for future work.
they lack tools to efficiently create and manage agents.

Recently, some agent frameworks have been inclu@ RELATED WORK

ing graphical tools to aid in the creation of agent-basegga|ly agent frameworks do not offer native tools to
applications. These tools are, however, quite limited,gate agent-based applications. Among positive ex-

Permission to make digital or hard copies of all or part of thisCEptions are ZEUS Agent Building Toolkit [NNLC99]
work for personal or classroom use is granted without fee providecand AgentFactory [Col01] which have tools to gener-
that copies are not made or distributed for profit or commefcial : . . .
advantage and that copies bear this notice and the full citation onthgte starting scripts for creating agents (see F'gur‘? 1).
first page. To copy otherwise, or republish, to post on servers pr téAgent Academy [MKSAO3] has a tool to parameterize

redistribute to lists, requires prior specific permission and/or a fee. and launch agent-based applications using previously

SHORT COMMUNICATION proceedings defined agent types. Agent Society Configuration Man-
{f}lég 6892-53694]3-05-4 20— Feb 3. 2006 ager and Launcher (ASCML) [BP®5] is a tool for the

Plren, Czech’R‘Zg';‘;’gc_ —reriary 2, Java Agent Development Framework (JADE) which fa-
Copyright UNION Agency — Science Press cilitates the configuration and deployment of agent so-

WSCG2006 Short Papers Proceedings 25 ISBN 80-86943-05-4

a set of heuristics to construct a recognition graph con-
taining the likely interpretation of the sketch and selects

Create hewr ——— = - Clone
e '@@’@Tﬁ' @ él s the best one based on both contextual information and

user feedback.

Agent Options

Anent [Tasks

Double-click ——{BUyar Hong and Landay [HLOO] developed a Java toolkit
Agender | |PO-Facton «——ltemsems 1o support the creation of pen-based applications.

Using this framework, Linet al. [LNHLOOQ] created
DENIM, a sketch-based system that helps web site
designers in the early stages of the design process.
SketchySPICE [HLOO] is another program developed
using SATIN. It consists in a calligraphic interface
cieties. NetLogo [Wil99] is a programmable modelingfor SPICE where users can draw simple circuits
environment, featuring hundreds of independent agenigates in two distinct modes. limmediate mode
where modelers can give instructions using text—basq@cognized sketches are immediately replaced by its
input (see figure 2). formal symbol, while indeferred mode recognized
But all these tools lack some interactivity. Most useypjects are left sketchy but the recognized symbols are
a script language and a command interpreter that parsggwn translucently behind the sketch, in order to give
and executes scripts. Even the solutions which providgyme feedback to users.
graphical interfaces are quite limited and dependent on pjgre recently, Kara and Stahovich [KS04] presented
textual input. Moreover, the mouse based interactioghe gm-U-SkeTCH, an experimental sketch-based in-
in these graphical interfaces mostly relies on drag-anqarface for Matlab’s Simulink software pack&g&Vith
drop and menu navigation techniques, taking no advaghjs tool users can sketch functional Simulink models
tage of the latedtuser interaction techniques, such and interact with them, modifying existing objects or
calligraphic interfaces. add new ones. I81-U-SKETCH was designed to allow
Although no calligraphic interfaces had been devisefsers to draw as they would do on paper, with no con-
for agent frameworks, several experimental sketchstraints imposed by the recognition engine. To that end,
based systems were developed in recent years forygg system employs eecognize on demansitrategy
number of different areas, such as interface desigih which the users have to explicitly indicate whenever
mechanical systems simulation or control systeMgey want the sketch to be interpreted.
analysis. SILK [LMO01] is an interactive tool to sketch Despite their apparent similarity, distinct approaches
interfaces using an electronic pad and stylus. Designeggd strategies are used in the systems referred above.
can use SILK to quickly sketch the user interfacaye studied the advantages and drawbacks of these
and, when they are satisfied with the early prototypgnethodologies and used them to devise a novel calli-

produce a complete and operational interface. Ayraphic interface to create agent-based worlds in the
similar tool, JavaSketchlt, was presented by Cae#no context of an agent framework.

al. [CGFJ02] and generates a Java interface based
on hand-drawn compositions of simple geometri@ OVERVIEW
shapes. The JavaSketchlt evaluation concluded thﬁ]

. . is paper introducesditiON , a tool to create agent-
users consider their sketch-based system more com-
o L ased worlds on top of tHON agent framework. Users
fortable, natural and intuitive to use than traditional

sketch world elements or commands in order to create
mouse-based tools.

Alvarado and Davies [AD01] developed ASSIST, aaanI control the agent-based world. SiretitlON

. : : works closely together with thi®N framework, it will
program that produces simple 2D mechanical devices S : .
e?e able to provide immediate visual feedback to users

from hand-drawn sketches. This system performs reals hat s happening in the world.

time interpretation, as the sketch is being created, usmg_l_he architecture of the proposed solution can be di-
vided in two distinct parts: thBEON framework, which
Command Center (] cear| handles the agent world, and thditiON tool, that
cbserver> ask patches [set peolor yellow] provides management capabilities to users. In figure 3
we depict a block diagram of such architecture.

Figure 1. Zeus agent building toolkit

observer> ask turtles [| set color brown]| -
Figure 2: Netlogo command center.
1 Some of these techniques are not quite novel, but only recently a&PICE is a circuit CAD tool developed at University of California at
been adopted by the mainstream manufacturers. An example of ttBerkeley

is the pen-based interaction, proposed by Ilvan Sutherland [Sut64f &imulink is an add-on package for analyzing feedback control system
most forty years before being available to the general public. and other similar dynamic systems.

WSCG2006 Short Papers Proceedings 26 ISBN 80-86943-05-4

Seribbles 3.2 ThelON framework
Sketch — -
Recozr?izer [— ThelON framework [AV05] is yet another agent frame-
Gestures

work. However, unlike most agent frameworks, which

ElemN monts & mainly look at agents that will enrich pre-existent vir-
Commands Status Information tual or real environments, thH®ON framework is also
Scheme concerned with the creation and the simulation of the
Manager environment itseff. For the purpose of this paper we
- 1 U" . editiON will only briefly describe the World Generator and the
refetons NS T ON Framework representation model within tHON core.
The World Generator is a bridging layer. It receives
instructions fromedittON and tries to execute these

World Generator
1 T instructions in thdON core. Depending on the out-
come, it also sends feedback which might be useful for
further semantic validation.
‘ The ION core manages the world model which is
populated by several entities. Entities have properties
Figure 3: Architecture that store relevant information about the entity, actions
to access and modify the environment, and relations
with other entities. These relations also have proper-
3.1 TheeditlON tool ties that keep information about the role played by the
entity in the relation.
.] . o The previous representation model allows us to create
The editlON tool includes a calligraphic interface 44 simulate different worlds. Imagine, as an example,
where users sketch the agent world and visual feedbagksma| world with a blue object, a red object and a dog
is given. Unlike SketchySPICE, where users can sgpat |ikes red objects and grabs them all the time. Us-
lectinwhich mode they draw, only themediatemode g thelON core, the objects are represented by entities
makes sense iadittON . Therefore, the sketch is in- it a single property, its color. The dog is an agent,
terpreted and validated as it is being drawn, allowinge,resented by an entity, which has two actions: look
on-the-fl_y crez_itlon ms_tead of having to draw the entirg,, objects, and grab objects. These actions would be
world prior to its creation. the agent’s sensors and actuators. The dog will sense
Scribbles drawn by users are processed by the Skettte environment for red objects (using the "look for ob-
Recognizer module, which usessO [FPJO02] library jects” action) and will act in the environment grabbing
to recognize them as shapes or commands. Sketie red object (using the "grab objects" action). The dog
Recognizer then identifies if they are an element of theould even remember the objects that were grabbed be-
world or a command, sending the corresponding inforffore, if we create a relation between the dog and those
mation to the Scheme Manager module. objects.

The Scheme Manager module can be considered 3s SKETCHING AGENT-BASED
the core ofeditltON . It handles the diagram repre- WORLDS

senting the agent world, performing syntactic and basic

semantic validation. To that end, it applies a set of préPevelopers often start by drawing agent-based worlds
defined grammatical rules to each change to guaranteg paper. Then, they generally use script-based tools
the correctness of the scheme. The scheme is stordspecify the world in the framework. Even when
as a directed graph, in which the nodes represent thigese tools have graphical interfaces with mouse
elements and the edges represent the connectors. THiteraction, they are greatly dependent on textual
way, common graph manipulation techniques could beommands. Following the recent developments in pen
used to manage the scheme and navigate through it. and sketch-based interfaces, we propose an alternative
to standard mouse-based tools to create agent-based

The Viewer encapsulates the output details of our aRorlds

proach. It is responsible for providing visual feedback

‘ ION Core

current state. Based onilnformanon rgcelved .from th X the user, these must be recognized, interpreted and
scheme manager, the viewer determines which shap
must be drawn, its position and color. Moreover, it

manages the way messages are shown to users ancsh@Weyample application of thdON framework can be found
long they remain in the screen. in [Pra05).

WSCG2006 Short Papers Proceedings 27 ISBN 80-86943-05-4

Scribble However, since ELI is size and rotation indepen-
l dent, we need to carry out additional computation to
‘ Calligraphic Recognition ‘ determine scripple orienta}tion and size. This calli-
graphic recognition step yields two categories of ges-
1 tures: shape gestures and command gestures. There-
Gesture fore, after identifying the category to which the de-
/ \ tected gesture belongs, we apply distinct parsing paths
Shape Command for shapes and commands.

/ \ To perform gesture identification we apply the gram-
Element Generation ‘ ‘ Command Interpretation ‘ mar.presented_ir) Figure 7. This set of simple.rule.s
provides an efficient manner not only to determine if
l l the scribble is a command or a shape, but also to iden-
Element Command tify the command or element corresponding to a given
l l scribble.

Syntactic Validation ‘ ‘ Command Processing ‘ We consider the application of the grammar men-
l l tioned above to be the gesture identification process.
This process implements the first levels of the recog-
. B nition strategy, which is the transformation of scribbles
Figure 4: Recognition strategy into elements or commands. In this process, rectangles
are transformed into entities or actions, depending on
validated to become useful. Thus, the whole process tiieir geometric properties, triangles into relationships,
handling the user input and producing correspondingircles into properties and lines into connectors. On the
output both to the user and to the framework, plays ather hand, pre-specified gestures are transformed into
major role in our calligraphic tool. "delete", "select" and "copy" commands.
. When a scribble is identified as an element, it goes
4.1 Symbol Recognition through validation. To that end, context information is
In order to provide on-line recognition of sketches, ouused to verify if such element makes sense in the current
approach processes the scribbles individually and ngtheme. In the case of a connector, such information is
the entire sketch on demand, as performed by SILKIso valuable to determine if it is a simple connector
and SM-U-SKETCH. These scribbles are clusters ofor a role. If the generated element passes the syntac-
strokes drawn by the user which are submitted to #c validation, the corresponding instruction is created
recognition process when the user’s pauses are longafid sent to the World Generator. Semantic validation is
than a given time between strokes.
We use a multi-level recognition and parsing strat-

Instruction Instruction

egy, outlined in Figure 4, in order to convert scribbles // = L

drawn by users into instructions f&®N World Gener- - é /;,,.,/‘;7
ator. This strategy is divided in several steps, detaile Line Arrow

below. -

We start by performing the calligraphic recognition
of submitted scribbles. To that end, we us&.(a fast,

O 00 -
D H

simple and compact scribble recognizer used in Java$ Cire Elipse
ketchlt. CaLl identifies shapes of different sizes and T
rotated at arbitrary angles, drawn with dashed, contin < T
uous strokes or overlapping lines. It detects not only ’Re ctangle Diarnonc

the most common shapes in drawing such as triangle P
lines, rectangles, circles, diamonds and ellipses, usin e \V W - %
multiple strokes, but also other useful shapes such g L

arrows, crossing lines or wavy lines, as depicted in fig1 Triangle Delete

ure 5. MM % v /\ > <
For this work we only need to detect a subset of

the CaLl gestures to specify elements and commands WavyLine Move
These gestures are depicted in Figure 6. The scribblg
to represent the elements were selected based on its >< ‘iﬁ/\/ C D U m

sual similarity with the hand-drawn elements, usually,
sketched by developers when schematically represen.
ing their agent worlds.

Cross Copy

Figure 5: Gestures detected by CALI

WSCG2006 Short Papers Proceedings 28 ISBN 80-86943-05-4

— 1 A o o

Entity Relationship Property Action

W, < C

Delete Select Copy
Figure 6: Gestures for elements and commands.

Unknown scribble!

Figure 8: Example of an unrecognized scribble.
performed by the World Generator and, if the instruc-

tion is valid, thelON framework is updated. In any wporeover, the on-line connection with the framework
case, the World Generator gives proper feedback to thowseditlON to provide immediate feedback to the
Scheme Manager. Finally, this information is used tQ,ser from the agent framework. To that end, syntac-
provide visual feedback to the user, replacing the sketGly and semantic verifications of the sketches are per-
by the corresponding element on the screen or showifigrmed while the world is being constructed. Thus, it
an meaningful error message. is no longer necessary to design the complete world to

~ If ascribble is identified as a command, the contex¢heck if any errors exist, as it usually happens in other
is analyzed to verify its validity. It uses information ex-tqg|s.

tracted from context to produce an instruction to send 1rs. to create an agent world wigdittON the
to the World Generator. As for the elements, the worlgiser sketches each element at a time using single or

generator processes the instruction and provides infogy si_stroke scribbles. The scribble is immediately in-
mation that will be used to give visual feedback to theferpreted by the sketch recognizer. When it is inter-

user. preted as a valid element, the corresponding formal
4.2 Interaction with editlON symbol replaces the sketch.
Besides elements, the user can also sketch com-

Currently, users sketch their agent world in sheets of panands. These are also interpreted by the recognizer
per before coding it into the framework. &uitiON and, if they are valid, the corresponding action imme-
we take advantage of the users’ ability to draw agerdiately takes place and the drawing area is updated
worlds with a pen to automate the boring and timeaccordingly.
consuming task of writing unnecessary lines of code. |f the scribble is not recognized, it is marked in a dif-
Therefore, users can sketch the world in ¢uitlON ferent color and a text message informs the user of such
calligraphic interface using a pen-based digitizer and Hjtuation. Figure 8 depicts an example of an unrecog-
will be automatically created in the agent framework. nized scribble, showing the feedback given to the user.

Since we perform on-the-fly gesture recognition, therhis information remains on the screen for a couple of
sketch is interpreted and validated as it is being drawminutes or until the user restarts sketching. Then, both

the message and the unknown scribble are deleted.

GESTURE|DENTIFICATION-GRAMMAR (S)::= Similarly, if the user sketches a line, recognized as a
valid_gesture— shape | command connector, but one or both of its endpoints are not over
shape— entity | action | relationship | property | connector an element, it is drawn in a distinct color with the cor-
command— delete | select | copy responding message. The same happens if the sketched
entity — Gesturg¢S RECTANGLE & connection is invalid. Invalid connections occur when

SizeWithinS, Tma , Tmire) & AspectRati¢S, 4,3) the connector extremities are over entities that cannot

action— GesturéS RECTANGLE &
SizeUndefS ta) & AspectRati@S 1,1)
relationship— GesturéS TRIANGLE &

be connected, for instance if the user is trying to con-
nect two entities or an action to a property, as illustrated

SizeWithifS, Tmar, Tmink) n Flgl.”e %
property— GesturéS, CIRCLE) & SizeUnde(S, tp) Besides the unrecognlz_ed and invalid scribbles, some
connector— GesturgS, LINE) elements have no meaning unless they are connected
delete— Gestur¢S DELETE) with others. The property and action elements depend
select— Gestur¢S CROS$
copy — GesturéS, COPY) -)
Gesturé¢sct) — Scribblescrecognized by GL1 ast v Kl |
SizeWithiisc tu,ty) — Size ofscis within ty andt [=
SizeUndefsct) — Size ofscis belowt [Connector st comect two elements | lvald elements for conmectionl
AspectRatitscw, h) — Aspect ratio olsc~ w:h S @

-
Figure 7: Grammar for gesture identification. Figure 9: Two examples of invalid strokes.

WSCG2006 Short Papers Proceedings 29 ISBN 80-86943-05-4

on an entity and the relationship must be connected t[m: = [E]]|
at least, two entities. In these cases, we consider thi 2
the recognized element is incomplete. TéditION
keeps incomplete elements in the drawing area, but thq
are represented in a different color.
Figure 10 depicts an agent world being created us —
ing theedittON while a new entity is being sketched | [ERiLEEE]
and its recognition is underway. In this example, som| | "= I
elements have already been recognized and validate] | metos: Code;
However, the relationship is incomplete, since it need || e, |G oy
to be connected to, at least, two entities. Likewise, on| || = e oo T 8

action and one property remain unconnected, thus ii Ed L
complete.

© &
17

(—

Incomplete elements are displayed in a distinct colc [=] ﬂj

until the user corrects this situation. While these ele \A,A—'L\ o)

ments are incomplete they are not considered besid}* _
Scheme Manager. This means that no informatiofr— L
about them is sent to the World Manager. Thus, their Figure 11: Changing details of an action

existence is ignored by the framework.

To create agent-based worlds much more informatioplways submitted to validation by the Scheme Manager
is needed in order to make it fully functional. Speci-and the World Manager, depending on the type of mod-
fication of the behavior and the state of each elemeffication. For instance, when changing an element's
is an important part of the definition of agents. Thushame, the name is validated by the Scheme Manager
editlON provides an efficient way to edit all the de-t0 make sure it does not conflict with other names and
tails of each element of the world. A simple click over athen it is validated by the World Manager to check if it
recognized entity allows the user to access such detaisacceptable in the current world.

through a pop-up window. 5 CONCLUSIONS AND FUTURE
An example of a detail pop-up window is depicted WORK

in Figure 11. In this case, the user is changing the de-
tails of an action, more specifically, changing the coddhe proposed calligraphic interface represents an
associated with an event of that action. This kind o#@lternative to current agent management tools. Instead
changing is submitted to the World Generator, whictof writing numerous lines of code or dragging and
performs syntactic and, when possible, semantic val@ropping elements from toolbars and menus, with
dation and provides proper feedback to the user. edittON we bring agent developers closer to tradi-
Many other details can be changed in all elementéonal paper-and-pencil methods when creating agent

using the pop-up window, but any change made here ¥orlds.
Since the sketch is interpreted and validated as it

is being drawn, the user receives immediate feedback
from the agent framework. Therefore, it is no longer
~ necessary to create the complete world to check for er-
rors or incoherence. Most importantly, with this tool,
the user avoids writing sometimes long and complex
scripts to describe the agent world. It can be simply
done by sketching it.

Despite the fact that the proposed tool was devised
for management of thEON framework, we intend to
make it as general as possible in order to allow it to
work with other agent frameworks in the future without
O major changes. To that end, we do not embed the man-
([ager in the framework. Instead, we considditlON
as an independent module that communicates with the

framework using a small set of pre-defined instructions.
The adopted visual language and identification gram-
< > mar are, however, best suited 1@N framework.
Ready The presented version of tleelittON s still under
development and offers limited functionality. Basically

v

Figure 10: Creating an agent world with edittON

WSCG2006 Short Papers Proceedings 30 ISBN 80-86943-05-4

it allows the user to create, change and delete world el- Spring Symposium - Sketch Understandipgges 51—
ements. But we feel it has potential to grow into a com- 58, Palo Alto, USA, March 2002.
p|ete and powerfu| management tool for agent framdHLO00] Jason |. Hong and James A. Landay. Satin: a toolkit for

; o ; ; i informal ink-based applications. WIST '00: Proceed-
works, while retaining most of its simplicity. To that ings of the 13th annual ACM symposium on User inter-

e_nd, m anear fUtUre we plan_t_o_ add, among other func- face software and technologgages 63-72, New York,

tionalities, debugging capabilities exlitiON , offer- NY, USA, 2000. ACM Press.

ing total control over the agent world and providing[KSo4] Levent Burak Kara and Thomas F. Stahovich. Sim-u-

continuous visual feedback on the world status. Skefdc_hi a Sf':ﬁtc\f;\'/bis_ed (':“te][face for S'f:g“nk- P'd"“’\'/ |

f ceedings ot the Working Conference on vance Isual

Wh_en bOthedl,tION andION frameworl’< are fully Interfaces pages 354—-357, New York, NY, USA, 2004.

functional we intend to perform users’ evaluation ACM Press.

involving developers and researchers from the agenjisvion] James A. Landay and Brad A. Myers. Sketching inter-

area. In these tests we expect not only to validate the faces: Toward more human interface desigiEE Com-

proposed methodology for agent world design, but also puter, 34(2):56-64, 2001.

to collect information in order to refine our approach[-NHLOO] James Lin, Mark W. Newman, Jason I. Hong, and
James A. Landay. DENIM: finding a tighter fit between

according to the users’ needs. tools and practice for web site design. @Hl, pages
510-517, 2000.
ACKNOWLEDGEMENT ’

c O G S [Mae95] Pattie Maes. Atrtificial life meets entertainment: lifelike
Alfredo Ferreira was supported in part by the Por- autonomous agentsCommun. ACM38(11):108-114,
tuguese Foundation for Science and Technology, grant 1995.
reference SEFRH/BD/17705/2004 [MKSAO3] P. A. Mitkas, D. Kehagias, A. L. Symeonidis, and I. N.

) Athanasiadis. "a framework for constructing multi-agent
REFERENCES _applic?tiﬁns aﬂd trainingkinrt]elligent agents"Rroceed-
[ADO1] Christine Alvarado and Randall Davis. Resolving am- :/Ugrsecl)intgi?]e‘grir:gt(. AVgcgEfzggat;;g:ggrét_-%lgenéggSSOft-
biguities to create a natural sketch based interface. In o '
Proceedings of IJCAI-20Qugust 2001. [NNLC99] H. Nwana, D. Ndumu, L. Lee, and J. Collis. Zeus: a

toolkit and approach for building distributed multi-agent
systems. InProceedings of the 3rd conference on Au-
tonomous Agentpages 360-361. ACM Press, 1999.

[Pra05] Rui Prada.Teaming Up Human and Synthetic Charac-

N . ters PhD thesis, Instituto Superior Técnico, Technical
ment of distributed multi-agent systems. In Franco Zam-

niversity of Lisbon, 2005.
bonelli Marie-Pierre Gleizes, Andrea Omicini, editor, University of Lisbon, 2005 . .
5th International Workshop on Engineering Societies|RNO3] Stuart Russell and Peter Norvigvtificial Intelligence:

[AVO05] Ruth Ayllet and Marco Vala. Victec deliverable 3.5.1:
Toolkit final version, 2005.

[BPBT05] Lars Braubach, Alexander Pokahr, Dirk Bade, Karl-
Heinz Krempels, and Winfried Lamersdorf. Deploy-

in the Agents Worldpages 261-276. Springer-Verlag, A Modern Approach Prentice-Hall, Englewood Cliffs,
Berlin Heidelberg, 8 2005. NJ, 2nd edition edition, 2003.
[CGFJ02] Anabela Caetano, Neri Goulart, Manuel Fonseca, andSuté4] Ivan E. Sutherland. Sketch pad a man-machine graphical
Joaquim Jorge. Javasketchit: Issues in sketching the communication system. IDAC '64: Proceedings of
look of user interfaces. IRroceedings of the 2002 AAAI the SHARE design automation workshppges 6.329—
Spring Symposium - Sketch Understandjages 9-14, 6.346, New York, NY, USA, 1964. ACM Press.
Palo Alto, USA, March 2002. [Wil99] U. Wilensky. Netlogo. Center for Con-
[Colol] R.W. Collier."Agent Factory: A Framework for the En- nected Learning and Computer-Based Model-
gineering of Agent-Oriented ApplicationsPhD thesis, ing. Northwestern ~ University, ~ Evanston, IL.,
"University College Dublin”, 2001. <http://ccl.northwestern.edu/netlogo>, 1999.

[FPJO2] Manuel J. Fonseca, César Pimentel, and Joaquim A.
Jorge. CALI: An Online Scribble Recognizer for Cal-
ligraphic Interfaces. IProceedings of the 2002 AAAI

WSCG2006 Short Papers Proceedings 31 ISBN 80-86943-05-4

WSCG2006 Short Papers Proceedings 32 ISBN 80-86943-05-4

	E47-full.pdf

