
Fast Compression of Meshes for GPU Ray-Tracing

Vasco Costa
INESC-ID/IST

Rua Alves Redol, 9
1000-029 Lisboa,

Portugal
vasco.costa@ist.utl.pt

João M. Pereira
INESC-ID/IST

Rua Alves Redol, 9
1000-029 Lisboa,

Portugal
jap@inesc-id.pt

Joaquim A. Jorge
INESC-ID/IST

Rua Alves Redol, 9
1000-029 Lisboa,

Portugal
jaj@inesc-id.pt

ABSTRACT
We present a novel and expedite way to compress triangles meshes, fans and strips for ray-tracing on a GPU. Our
approach improves on the state of the art by allowing the lossless compression of all connectivity information
without changing the mesh configuration, while using linear time and space with the number of primitives. Fur-
thermore, the algorithm can be run on a stream processor and any compressed primitive can be indexed in constant
time, thus allowing fast random-access to geometry data to support ray-tracing on a GPU. Furthermore, both trian-
gle and quad meshes compress particularly well, as do many type-specialized mesh structures where all primitives
have an equal number of vertexes. Our results show that the compression algorithm allows storing and ray-tracing
meshes with tens of millions of triangles on commodity GPUs with only 1GB of memory.

Keywords
Ray-tracing, gpu, mesh, compression.

1 INTRODUCTION

Polygon meshes are the most common representation
for scene geometry. Triangles are the most common
primitive although quad meshes are also popular in
some applications being particularly suitable for archi-
tectural scenes where large and flat surfaces are the
most preeminent features in a scene.

Triangle meshes may also be represented with triangle
fans or triangle strips. These allow additional space sav-
ings by taking advantage of the fact that there will often
be common edges in a triangular mesh. The common
edges in fans and strips also mean the computational
costs required to compute visibility will be reduced by
virtue of symmetry in the adjacent triangles.

However, meshes are a very inefficient and storage con-
suming way of representing complex scenes, which
makes it difficult to fit even moderately complex scenes
inside graphical cards with limited memory, in more
complex scenes it may be required to use different kinds
of primitive types to enable higher face data compres-
sion as can be observed in Figure 1.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 1: Sponza scene. Triangles are shown in red,
quads are yellow, triangle fans are blue, triangle strips
are violet. A triangle mesh representation would use
1.62 MB of space compared to the representation in the
figure which only requires 1.17 MB. Thus we achieve
a 72% compression ratio just by employing these more
complex primitives.

A common way used to store such meshes with differ-
ent primitive types is displayed in a simplified form in
Figure 2. For example in PBRT [PH10] a scene is stored
in a list of primitives where each primitive is subclassed
from a main object class. This leads to much waste
of memory storing pointers, C++ class data, etc when
the scene is a mesh, so PBRT supports type specialized
triangles meshes as well for improved performance in
such cases as can be seen in Figure 4. Similar special-

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 10 ISBN 978-80-86943-74-9

Figure 2: Regular data structure to store an n-gon mesh.

TRIANGLE QUAD TRIANGLE FAN TRIANGLE STRIP

Figure 3: Primitive types.

ized quad meshes could have been implemented just as
well as can be observed in Figure 5.

In this work we shall present an algorithm for mesh
storage. This algorithm shall enable storing triangle
meshes and quad meshes with low storage require-
ments, like the type specialized versions, thanks to an
innovative way of storing and compressing the prim-
itive array data using arithmetic encoding. In addi-
tion the algorithm can also store and compress n-gon
meshes with triangles, quads, triangle fans, and triangle
strips. Face data is stored in a compressed array with
the leading zeros trimmed out.

Our algorithm thus employs non-lossy primitive com-
pression (arithmetic encoding) and face compression
(discard leading zeros). It can also quantize 32-bit ver-
tex coordinate data down to 16-bits in a lossy fashion.
In practice the lossy compression scheme seems to have
little impact on final output quality for the tested scenes,
as can be seen in Table 4, and enhances compression
further. In order to minimize the loss of precision all
coordinates are converted from world to scene coordi-
nates prior to the quantization step.

Our algorithm does not require expensive preprocess-
ing, e.g. the construction of temporary data structures
for doing adjacency queries on the mesh, so it runs in
O(n) linear time. It produces similar compression re-
sults to other more complex hybrid geometry and ac-
celeration structure compression schemes.

Finally we will do a performance comparison of
our achieved compression ratios versus the industry
standard GZIP [Deu96] compression tool which uses
a Lempel-Ziv [ZL77] compression scheme. GZIP is
inherently serial since it is required to read previous
values to determine the next consecutive value in the
stream.

We note that our algorithm features constant time O(1)
random access to any primitive, while GZIP works only

Figure 4: Specialized triangle mesh.

on streaming data, thus GZIP requires O(n) time in
the worst case to access any random primitive. Hy-
brid schemes often store the scene in a tree structure
in which accesses take O(logn) time to complete.

2 RELATED WORK
We are going to limit ourselves to mentioning other al-
gorithms which work purely on scene compression first.
Our algorithm is intended for generic use, specifically
for meshes, and is agnostic to the kind of ray tracing
acceleration scheme being used.
For those rendering algorithms which operate on large
blocks of data say on a page level basis, such as out-of-
core algorithms, they may still find Lempel-Ziv or other
similar general purpose compression schemes worth-
while. While these algorithms are inherently serial mul-
tiple blocks can be worked in parallel with a minor com-
pression ratio penalty. This is the approach followed by
the LZSS streaming compression algorithms [OSC12].
Also essential is work on processing variable length
data on streaming architectures [Bal10] in an efficient
fashion with a parsimonious use of atomic operations.
Given that we are using a ray-tracer primitive inter-
section tests for triangles [MT97], quads [LD05], fans
[GA05], and triangle meshes in general [AC97] demand
being mentioned.
In the realm of geometric compression and mesh opti-
mization several works stand out:

• Isenburg [ILS05a, ILS05b] uses arithmetic encod-
ing to compress vertex coordinates while taking
advantage of parallelogram predictors in triangular
meshes by virtue of having knowledge beforehand
of the mesh topology leading to improvements in
the encoding predictor function.

• Yoon [YLPM05, YL06] reorders the geometry in or-
der to increase memory coherency during the ren-
dering pass thus improving rendering performance.

Figure 5: Specialized quad mesh.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 11 ISBN 978-80-86943-74-9

Figure 6: Compact data structure to store an n-gon mesh.

There are other interesting works on compressing ray
tracing acceleration structures together with the geom-
etry. These are not acceleration scheme agnostic and
take advantage of local knowledge coming from the
cells. For example, take a partition cell’s bounding box,
and improve compression of both the partitioning struc-
ture and the geometry contained therein since you know
the vertexes range of values is constrained to the box.

Most of the interest in this sort of scheme lies with
bounding volume hierarchies (BVHs) since in that sce-
nario you do not need to store the same faces twice in
different leaves of the tree.

BVHs do not have duplicated primitive instances in
different cells. Yoon [YL07, KMKY10] has done
a lot of work in this area of hybrid BVH and mesh
storage schemes. More recently Garanzha [GBG11]
has worked on a more simplified hybrid BVH and mesh
storage scheme implemented for use on a streaming
architecture. Another approach is that taken by Lauter-
bach [LYM07] where a hybrid Kd-tree and triangle
strip scheme is used to represent mesh data. The main
issue with all of these particular hybrid algorithms is
their complexity, requiring expensive preprocessing
e.g. the construction of temporary data structures
for doing adjacency queries on the mesh, and their
difficulty of implementation. Preprocessing takes a
long time so these methods are not useful for dynamic
scenes with destructible geometry. The encoding meth-
ods of Garanzha are much more amenable for GPU
implementation than Yoon’s more elaborate work and
the algorithm provides good rendering performance
due to the use of a surface area heuristic (SAH) BVH,
good data locality, and aligned memory loads.

Our work is intended to be acceleration structure ag-
nostic so we do not rely on any of these schemes. The
algorithm we devised is also amenable to implementa-
tion on a streaming architecture and can be computed
in O(n) linear time. Our algorithm may be used on any
object/space subdivision structure: BVHs, KD-trees,
Grids. It is also applicable for other applications which
do not require the use of an acceleration structure and
just require random access to the mesh geometry.

3 ALGORITHM

Our algorithm compresses an n-gon scene. As an exam-
ple the scene can be described in the .OBJ file format.

3.1 Scene Loading
The scene loader processes the scene data and generates
a regular data structure such as that seen in Figure 2 as
output.

Since .OBJ file format n-gons are not necessarily planar
this means we cannot use explicit ray-polygon intersec-
tion routines safely.

So we load the scene n-gons in the following fashion:

• if the polygon has three faces, the output is a triangle
which is stored in the primitive and face arrays.

• if the polygon has four faces, the output is a triangle
fan which is stored in the primitive and face arrays.

• if the polygon has five or more faces, the output is
passed through the GLUTESSELATOR which splits
the n-gon into triangles, triangle fans, and triangle
strips that are in turn stored in the primitive and face
arrays.

In the next step we process an array such as the one in
Figure 2 into a compact array like the one which can be
seen in Figure 6. This is done with a SCAN operation:

d e f scan (u i n t ∗prims , u i n t npr ims) {
f o r (u i n t i =1 ; i <= npr ims ; ++ i) {

p r ims [i +1] += pr ims [i] ;
}

}

Listing 1: SCAN.

The complexity of a SCAN also known as PREFIX-SUM
operation is O(n) but in a parallel processor it can be
computed even faster. With such a pass we reduce the
amount of memory required to store the primitive array
by roughly a half.

3.2 Geometry Compression
Next to the primitive array compaction we proceeded to
its compression.

We employ arithmetic encoding to compress the prim-
itive array using the PACKPRIMITIVES function. The
predictor function we are employing assumes all the
primitives in the scene have the same number of faces.
So for triangle meshes and quad meshes the primitive
array is shrunk to nothing and the array degenerates to
those seen in Figures 4 and 5 respectively. This is the
optimum outcome.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 12 ISBN 978-80-86943-74-9

LADY BIRD BULLDOZER SANDAL FAIRY FOREST LAMBORGHINI SPONZA

num vertices 23903 105507 2636 97124 575416 39742
original
num faces 93984 436587 11676 365949 3017847 149926
num triangles 0 145529 1197 17715 1005949 1170
num quads 23496 0 1970 78201 0 34819
num fans 0 0 29 0 0 649
num strips 0 0 0 0 0 248
triangulated
num faces 140976 436587 15852 522351 3017847 228462
num triangles 46992 145529 5284 174117 1005949 76154

Table 1: Scene geometry data.

For more complex scenes with dissimilar primitives the
delta between the predicted and actual value is stored
packed tightly as a small integer of range 2pMSB in a bit
array.

d e f p a c k P r i m i t i v e s (u i n t ∗prims , u i n t npr ims) {
f l o a t avg ;
avg = f l o a t (p r ims [npr ims + 1]) / npr ims ;

i n t Min = 0 ;
i n t Max = 0 ;

min = pr ims [npr ims + 1] ;
f o r (u i n t i =0 ; i <= npr ims ; i ++) {

u i n t p r e d i c t = avg∗ i ;
u i n t a c t u a l = pr ims [i] ;
i n t d i f f = long (a c t u a l)− p r e d i c t ;

Min = min (d i f f , Min) ;
Max = max (d i f f , Max) ;

}

/ / a r i t h m e t i c encode
pMSB = log2 (Max−Min) ;
hpr ims = c a l l o c B i t s (npr ims +1 , pMSB) ;

f o r (u i n t i =0 ; i <= npr ims ; i ++) {
u i n t p r e d i c t = avg∗ i ;
u i n t a c t u a l = pr ims [i] ;

u i n t d i f f = a c t u a l −p r e d i c t −Min ;
pack (hpr ims , i , d i f f) ;

}

u i n t 2 params ;
params . x = a s _ i n t (avg) ;
params . y = Min ;
r e t u r n params , h p r i m i s ;

}

Listing 2: PACKPRIMITIVES.

Compression of face data proceeds in a similar fashion
to the small integer packing method mentioned before.
We compress away the leading zeros in the face data
using the PACKFACES function.

The small integers will have a range of 2 f MSB. The
faces of primitives other than triangles are shifted to the

left one bit to accommodate a flag stating if they are a
triangle fan (0) or triangle strip (1) respectively.
d e f packFaces (u i n t ∗f a c e s , u i n t n f a c e s , u i n t n v e r t i c e s) {

u i n t fMSB = log2 (n v e r t i c e s ∗2) ;
h f a c e s = c a l l o c B i t s (n f a c e s , fMSB) ;

/ / compress l e a d i n g z e r o s
f o r (u i n t i =0 ; i < n f a c e s ; ++ i) {

pack (h f a c e s , i , f a c e s [i]) ;
}
r e t u r n h f a c e s ;

}

Listing 3: PACKFACES.

Finally we quantize the vertexes from 32-bits per x,y,z
component to 16-bits per component. First we take care
to ensure we do this while operating in scene bounding
box space in order to reduce the range of data we will
compress. Then the quantization to 16-bits per compo-
nent is done. This is our only lossy compression step.
This PACKVERTICES function compresses vertexes by
50%.
d e f p a c k V e r t i c e s (Axisbox bounds , u i n t ∗v e r t i c e s , u i n t n v e r t i c e s) {

h v e r t i c e s = new u s h o r t 3 [n v e r t i c e s] ;

/ / t r a n s f o r m t o s c e n e bounding box c o o r d i n a t e s and q u a n t i z e t o 16− b i t s
c o n s t f l o a t 3 s c a l e = 65535 .0 f / (bounds . Max−bounds . Min) ;

f o r (u i n t i =0 ; i < n v e r t i c e s ; ++ i) {
h v e r t i c e s [i] = v e r t i c e s [i] − bounds . Min) ∗ s c a l e ;

}
r e t u r n h v e r t i c e s ;

}

Listing 4: PACKVERTICES.

The error produced by the quantization step is minimal
in the scenes we tested as can be seen on the rightmost
column in Table 4.

In a typical scene composed of manifolds there are
more polygons than vertexes so face compression is
very important contrary to what one might otherwise
assume. This can easily be established empirically by
looking at the scenes in Table 1.

3.3 Intersection Testing
During ray tracing scene traversal it will be required
to test if a given primitive is intersected by a ray. All
primitive intersection tests are done using the Möller-
Trumbore [MT97] ray-triangle intersection algorithm.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 13 ISBN 978-80-86943-74-9

This can be accomplished with the TEXTPRIMITIVE
pseudo-code.
boo l t e s t P r i m i t i v e (Axisbox bounds , u i n t id , I n t e r s e c t i o n ∗ i s e c t) {

c o n s t u i n t i = p r ims [i d] ;
c o n s t u c h a r n v e r t s = pr ims [i d +1] − i ;

s w i t c h (n v e r t s) {
c a s e 3 :

{
c o n s t u i n t 3 i d x = v lo ad 3 (0 , f a c e s + i) ;
r e t u r n t e s t T r i a n g l e (bounds , idx , v e r t i c e s , ray , i s e c t) ;

}
b r e a k ;

c a s e 4 :
{

c o n s t u i n t 4 i d x = v lo ad 4 (0 , f a c e s + i) ;
r e t u r n t e s t Q u a d (bounds , idx , v e r t i c e s , ray , i s e c t) ;

}
b r e a k ;

d e f a u l t :
i f ((f a c e s [i] & 1)) {

r e t u r n t e s t S t r i p (bounds , n v e r t s , v e r t i c e s , f a c e s + i , ray , i s e c t) ;
} e l s e {

r e t u r n t e s t F a n (bounds , n v e r t s , v e r t i c e s , f a c e s + i , ray , i s e c t) ;
}
b r e a k ;

}
r e t u r n f a l s e ;

}

Listing 5: TESTPRIMITIVE.

Unfortunately, like we mentioned before, it cannot be
trusted that the quads in an .OBJ file will be planar as
is indeed the case in the FAIRY FOREST, SANDAL, and
other test scenes. It is debatable if we should just con-
strain the primitives to e.g. triangles and fans in order
to support n-gons since it would greatly simplify the
control code and save 1 bit per face.

4 TEST METHOD
The algorithm was implemented in C++ and OpenCL
on Linux. The test platform is an AMD FX 8350 8-
core CPU @ 4.0 GHz powered machine with 8 GB of
RAM. The graphics card includes a NVIDIA GeForce
GTX 660 Ti GPU with 2 GB of RAM. All ray tracing
rendering is offloaded to the GPU.

The ray-tracing engine supports hashed grids [LD08]
as a spatial subdivision acceleration structure. All the
compute intensive parts of the grid construction algo-
rithm are also run on the GPU. Due to limitations of
space we do not describe this engine in detail here.

All scenes were rendered at 1024 × 1024 resolution
with one sample per pixel using Phong shading.

We selected several test scenes not just for having large
amounts of geometry but for the richness of their poly-
gon soup so to speak. In order of presentation the
scenes are:

LADY BIRD Quad mesh of an organic creature.
BULLDOZER Triangle mesh of a construction vehicle.
SANDAL More complex primitives. e.g. triangle fans

in the sole of the shoe.
FAIRY FOREST Standard benchmark scene which features

both triangles and quads.
LAMBORGHINI Large triangle mesh of a car with over 1M

triangles.
SPONZA Complex scene in terms of geometric detail

due to the arches but also features several flat
surfaces such as walls.

For more information on the scene geometry data
please consult Table 1.

The following tests were considered to be interesting:
- To test our proposed compression methods vs other
schemes, namely [GBG11], specific for geometry com-
pression for GPU ray tracing purposes.

- To determine the performance of the primitive array
predictor function in the arithmetic coding phase we
test the misprediction residuals i.e. the delta between
the predicted and actual values in the test scenes.

- Compression ratio of our proposed compression meth-
ods vs uncompressed data in terms of: space savings
and rendering frame rate.

- Compression ratio of our proposed compression meth-
ods vs GZIP to determine how good our compression
algorithms are at achieving space savings compared to
a standard streaming compression algorithm.

5 RESULTS
As can be seen in the left of Table 2 our implementa-
tion uses less memory than the non-compressed trian-
gle meshes of [GBG11] because we do not store du-
plicate triangle vertexes. Our compressed face and ver-
tex scheme achieves similar compression results to their
compressed quad mesh for the tested scenes without re-
quiring any pre-processing to convert the triangle mesh
to a quad mesh as they do. Our algorithm also supports
the use of quad meshes but, as can be seen in the right
of Table 2, this is not required to achieve good com-
pression ratios due to our face compression algorithm
and the storage of unique vertexes only.

One of the big issues with any scheme employing arith-
metic coding is getting the right prediction function.
In our case, since we want random access in constant
time we cannot consult prior values since that would
require decoding them beforehand, plus all the pre-
vious values to those, to begin with. So our predic-

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

m
is

sp
re

d
ic

ti
o
n
 o

f
th

e
 p

ri
m

it
iv

e
 o
ff

se
t

h
e
u
ri

st
ic

primitive

Lady Bird
Bulldozer

Sandal
Fairy Forest

Lamborghini
Sponza

Figure 7: Delta between the predicted and actual values
in the test scenes. It displays perfect prediction in the
triangle and quad meshes such as Lady Bird, Bulldozer,
Lamborghini scenes. For the other scenes the mispre-
diction residuals can be quite large.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 14 ISBN 978-80-86943-74-9

OURS P [GBG11] NCT OURS PFV [GBG11] CQ
DRAGON 123.92 MB 247.85 MB 80.03 MB 82.62 MB7 MTRI

THAI 171.66 MB 343.32 MB 114.44 MB 114.44 MB10 MTRI

LUCY 481.61 MB 963.22 MB 331.11 MB 321.07 MB28 MTRI

Table 2: Comparison of the space required to store a mesh using our
algorithm versus Garanzha [GBG11]. First we compare the memory
usage of both our specialized triangle meshes. Next we compare the
performance of our compressed face and vertex scheme versus their
compressed quad mesh.

tion function must rely only on a table of values inde-
pendent of the compressed array. In our case we use
a linear prediction function to approximate the primi-
tive data values. This works well when the scenes all
have similar sized n-gons i.e. triangle or quad meshes
where the residuals are zero. The mispredictions and
residuals increase with the storage of different sized n-
gons. This can be observed in Figure 7 where the LADY
BIRD, BULLDOZER, LAMBORGHINI primitive arrays
get compressed to 0 bits per primitive while on the other
scenes namely SANDAL, FAIRY FOREST, and SPONZA
this does not happen. This problem could probably be
reduced by employing higher order prediction functions
such as polynomial functions with more terms than our
linear function.

From the extensive test results, which can be observed
in Table 3, we managed to confirm several of our hy-
pothesis as matters of fact. The support for triangle
and quad mesh scenes, such as LADY BIRD, BULL-
DOZER, and LAMBORGHINI, is excellent with very
good compression capabilities and, in some cases, we
even achieve enhanced frame rates over the uncom-
pressed baseline due to improved data locality caused
by the compression. This is most obvious when com-
pressing the primitives array and enabling the lossy
vertex compression together in the pure triangle and
quad meshes i.e. the PV results. This option also
enables reasonable compression ratios in the order of
∼ 70%.

We can also observe that for the more complex scenes
using large n-gons we often get higher frame rates by
triangulating the scene beforehand. This is rather evi-
dent in the SPONZA and SANDAL scenes in particular.
This is due to spatial subdivision. These larger primi-
tives will occupy more cells in the grid and hence there
will be more redundant intersection calculations going
on. This could perhaps be improved with the use of
mailboxing. We did not attempt to use mailboxing in
our implementation. Another possible improvement is
better specialized ray-triangle fan, and ray-triangle strip
intersection routines which reduce the amount of redun-
dant ops such as those mentioned in Section 2. This
does not apply to the FAIRY FOREST scene because of
its smaller n-gons. That scene consists of only triangles
and quads.

We get our worst frame rate results when face compres-
sion is enabled. This is due to the loss of use of vector-
ized memory loads in our implementation and the un-
aligned memory accesses to access elements after the
compression. This can most likely be improved further
by creating dedicated vectorized load operations for our
bitarray structures.

Invariably the highest compression ratios happen when
we enable all of our compression techniques: primitive
compression, face compression and vertex compression
i.e. the PFV results. In fact with all these techniques
enabled we get better compression ratios than GZIP in
many scenes such as LADY BIRD, SANDAL, FAIRY
FOREST. The only scenes where GZIP manages to win
over our compression scheme are those scenes where
the vertexes have redundant coordinates or there are re-
dundant vertexes such as the BULLDOZER, the LAM-
BORGHINI, and SPONZA. This problem with vertex
quantization techniques had already been identified by
Isenburg et al.

We remind the reader that contrary to GZIP our al-
gorithm allows random access to any primitive in the
scene in O(1) constant time which is essential for ray-
tracing and other applications. This is particularly rel-
evant for stringy kd-trees with few primitives per leaf.
We get compression ratios in the order of ∼ 40− 50%
which is commensurate with streaming lossless com-
pression techniques which are a lot harder to parallelize
on a GPU properly since they require sequential access
to compress or decompress data.

6 CONCLUSIONS
We have demonstrated an n-gon (triangle, quad, tri-
angle fan, triangle strip) scene compression algorithm
which can compress such a scene in linear O(n) time
with constant O(1) scene primitive access time. For the
special case where the n-gons in the scene are all the
same size like triangle or quad meshes the additional
space used over a type specialized structure is essen-
tially zero. The algorithm can optionally provide lim-
ited compression ratios with improved rendering per-
formance, or much improved compression with worse
rendering performance than in the uncompressed case.
The compression ratios, in the order of ∼ 40 − 50%,
are competitive with those achieved using the GZIP tool
which, contrary to our algorithm, does not allow con-
stant time random access to the data.

In the future it should be possible to significantly im-
prove the primitive array compression level using non-
linear prediction functions. We also believe that either
a limit on the size of triangle fans and triangle strips
is imposed, in order to improve the performance under
spatial subdivision ray tracing, or there needs to be a
way to more quickly detect misses for such complex
primitives, use mailboxing, or more than one of these

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 15 ISBN 978-80-86943-74-9

schemes. Otherwise the rendering performance for the
complex primitives will be subpar, even if the com-
pressed sizes for scenes using these primitives would
be a lot better.

7 ACKNOWLEDGMENTS
This work was supported by national funds through
FCT - Fundação para a Ciência e Tecnologia, under
project PEst-OE/EEI/LA0021/2013.

We would like to thank Gilles Tran (Lady Bird), Ralph
Garmin (Bulldozer), John Burkardt (Sandal), Ingo
Wald (Fairy Forest), Temur Kvitelashvili (Lamborgh-
ini), Marko Dabrovic (Sponza) and the Stanford 3D
Scanning Repository (Dragon, Thai, Lucy) for the test
scenes.

REFERENCES
[AC97] J. Amanatides and K. Choi. Ray Tracing

Triangular Meshes. In Proceedings of the
Eighth Western Computer Graphics Sym-
posium, pages 43–52, 1997.

[Bal10] A Balevic. Parallel variable-length encod-
ing on GPGPUs. In Euro-Par 2009, Par-
allel Processing Workshops, pages 26–35.
Springer, 2010.

[Deu96] P. Deutsch. GZIP file format specification
version 4.3. RFC 1952, May 1996.

[GA05] E. Galin and S. Akkouche. Fast Pro-
cessing of Triangle Meshes using Trian-
gle Fans. In Shape Modeling and Appli-
cations, 2005 International Conference,
pages 326–331. IEEE, 2005.

[GBG11] K. Garanzha, A. Bely, and V. Galaktionov.
Simple Geometry Compression for Ray
Tracing on GPU. In GraphiCon’2011,
2011.

[ILS05a] M. Isenburg, P. Lindstrom, and
J. Snoeyink. Lossless Compression
of Predicted Floating-Point Geometry.
Computer-Aided Design, 37(8):869–877,
2005.

[ILS05b] M. Isenburg, P. Lindstrom, and
J. Snoeyink. Streaming Compression
of Triangle Meshes. In ACM SIGGRAPH
2005 Sketches, page 136. ACM, 2005.

[KMKY10] T. Kim, B. Moon, D. Kim, and S. Yoon.
RACBVHs: Random-accessible com-
pressed bounding volume hierarchies. Vi-
sualization and Computer Graphics, IEEE
Transactions on, 16(2):273–286, 2010.

[LD05] A. Lagae and P. Dutré. An Efficient Ray-
Quadrilateral Intersection Test. Journal of
Graphics Tools, 10(4):23–32, 2005.

[LD08] A. Lagae and P. Dutré. Compact, Fast and
Robust Grids for Ray Tracing. In Com-
puter Graphics Forum, pages 1235–1244.
Wiley Online Library, 2008.

[LYM07] C. Lauterbach, S. Yoon, and D. Manocha.
Ray-Strips: A Compact Mesh Represen-
tation for Interactive Ray Tracing. In In-
teractive Ray Tracing, 2007. RT’07. IEEE
Symposium on, pages 19–26. IEEE, 2007.

[MT97] T. Möller and B. Trumbore. Fast, Min-
imum Storage Ray-Triangle Intersection.
Journal of Graphics Tools, 2(1):21–28,
1997.

[OSC12] A. Ozsoy, M. Swany, and A. Chauhan.
Pipelined Parallel LZSS for Streaming
Data Compression on GPGPUs. In Par-
allel and Distributed Systems (ICPADS),
2012 IEEE 18th International Conference
on, pages 37–44. IEEE, 2012.

[PH10] M. Pharr and G. Humphreys. Physically
based rendering: From theory to imple-
mentation. Morgan Kaufmann, 2010.

[YL06] S. Yoon and P. Lindstrom. Mesh Lay-
outs for Block-Based Caches. Visualiza-
tion and Computer Graphics, IEEE Trans-
actions on, 12(5):1213–1220, 2006.

[YL07] S. Yoon and P. Lindstrom. Random-
Accessible Compressed Triangle Meshes.
Visualization and Computer Graphics,
IEEE Transactions on, 13(6):1536–1543,
2007.

[YLPM05] S. Yoon, P. Lindstrom, V. Pascucci, and
D. Manocha. Cache-Oblivious Mesh Lay-
outs. ACM Transactions on Graphics
(TOG), 24(3):886–893, 2005.

[ZL77] J. Ziv and A. Lempel. A Universal Al-
gorithm for Sequential Data Compression.
Information Theory, IEEE Transactions
on, 23(3):337–343, 1977.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 16 ISBN 978-80-86943-74-9

LADY BIRD BULLDOZER
REGULAR 739.03 KB REGULAR 3.43 MB
TRIANGULATED 1014.37 KB TRIANGULATED 3.43 MB

TECHNIQUES GZIP OURS COMP RATIO FRAME RATE GZIP OURS COMP RATIO FRAME RATE

393.12 KB 739.03 KB 100 % 102.94 FPS 1.28 MB 3.43 MB 100 % 88.58 FPS
V . . . 598.97 KB 81.05 % 100.93 FPS . . . 2.82 MB 82.39 % 87.87 FPS
F . . . 555.46 KB 75.16 % 81.44 FPS . . . 2.70 MB 78.74 % 69.24 FPS
FV . . . 415.41 KB 56.21 % 78.06 FPS . . . 2.10 MB 61.13 % 68.66 FPS
P . . . 647.24 KB 87.58 % 111.16 FPS . . . 2.87 MB 83.81 % 94.51 FPS
PV . . . 507.18 KB 68.63 % 104.92 FPS . . . 2.27 MB 66.19 % 95.30 FPS
PF . . . 463.68 KB 62.74 % 84.25 FPS . . . 2.14 MB 62.55 % 73.26 FPS
PFV . . . 323.62 KB 43.79 % 85.53 FPS . . . 1.54 MB 44.94 % 74.93 FPS

T 465.78 KB 1014.37 KB 100 % 87.16 FPS 1.28 MB 3.43 MB 100 % 87.98 FPS
TV . . . 874.31 KB 86.19 % 90.81 FPS . . . 2.82 MB 82.39 % 88.40 FPS
TF . . . 739.03 KB 72.86 % 65.04 FPS . . . 2.70 MB 78.74 % 69.23 FPS
TFV . . . 598.97 KB 59.05 % 67.92 FPS . . . 2.10 MB 61.13 % 68.52 FPS
TP . . . 830.80 KB 81.9 % 97.14 FPS . . . 2.87 MB 83.81 % 94.37 FPS
TPV . . . 690.74 KB 68.1 % 100.40 FPS . . . 2.27 MB 66.19 % 95.62 FPS
TPF . . . 555.46 KB 54.76 % 71.23 FPS . . . 2.14 MB 62.55 % 73.08 FPS
TPFV . . . 415.40 KB 40.95 % 73.98 FPS . . . 1.54 MB 44.94 % 74.91 FPS

SANDAL FAIRY FOREST
REGULAR 88.99 KB REGULAR 2.87 MB
TRIANGULATED 113.46 KB TRIANGULATED 3.77 MB

TECHNIQUES GZIP OURS COMP RATIO FRAME RATE GZIP OURS COMP RATIO FRAME RATE

54.56 KB 88.99 KB 100 % 195.99 FPS 1.54 MB 2.87 MB 100 % 25.45 FPS
V . . . 73.55 KB 82.64 % 186.20 FPS . . . 2.32 MB 80.66 % 25.03 FPS
F . . . 61.91 KB 69.57 % 157.39 FPS . . . 2.26 MB 78.74 % 19.39 FPS
FV . . . 46.47 KB 52.21 % 151.69 FPS . . . 1.71 MB 59.4 % 18.92 FPS
P . . . 79.23 KB 89.03 % 180.00 FPS . . . 2.67 MB 92.84 % 22.52 FPS
PV . . . 63.79 KB 71.68 % 168.37 FPS . . . 2.11 MB 73.5 % 21.82 FPS
PF . . . 52.15 KB 58.6 % 145.47 FPS . . . 2.06 MB 71.58 % 17.18 FPS
PFV . . . 36.71 KB 41.25 % 141.51 FPS . . . 1.50 MB 52.24 % 17.41 FPS

T 61.66 KB 113.46 KB 100 % 193.17 FPS 1.80 MB 3.77 MB 100 % 21.95 FPS
TV . . . 98.02 KB 86.39 % 183.96 FPS . . . 3.21 MB 85.25 % 21.34 FPS
TF . . . 76.69 KB 67.6 % 158.19 FPS . . . 2.90 MB 76.87 % 16.90 FPS
TFV . . . 61.25 KB 53.98 % 151.65 FPS . . . 2.34 MB 62.12 % 16.49 FPS
TP . . . 92.81 KB 81.8 % 196.04 FPS . . . 3.10 MB 82.37 % 23.72 FPS
TPV . . . 77.37 KB 68.19 % 188.65 FPS . . . 2.55 MB 67.63 % 23.66 FPS
TPF . . . 56.05 KB 49.4 % 158.18 FPS . . . 2.23 MB 59.24 % 17.67 FPS
TPFV . . . 40.60 KB 35.78 % 154.70 FPS . . . 1.68 MB 44.49 % 17.76 FPS

LAMBORGHINI SPONZA
REGULAR 21.93 MB REGULAR 1.17 MB
TRIANGULATED 21.93 MB TRIANGULATED 1.62 MB

TECHNIQUES GZIP OURS COMP RATIO FRAME RATE GZIP OURS COMP RATIO FRAME RATE

8.87 MB 21.93 MB 100 % 53.27 FPS 426.95 KB 1.17 MB 100 % 54.73 FPS
V . . . 18.64 MB 84.99 % 54.10 FPS . . . 962.61 KB 80.52 % 52.20 FPS
F . . . 17.98 MB 81.96 % 43.74 FPS . . . 920.95 KB 77.04 % 43.49 FPS
FV . . . 14.68 MB 66.95 % 44.19 FPS . . . 688.08 KB 57.56 % 41.24 FPS
P . . . 18.10 MB 82.51 % 58.93 FPS . . . 1.08 MB 92.09 % 50.47 FPS
PV . . . 14.80 MB 67.49 % 61.11 FPS . . . 868.04 KB 72.61 % 47.14 FPS
PF . . . 14.14 MB 64.46 % 47.16 FPS . . . 826.38 KB 69.13 % 40.10 FPS
PFV . . . 10.85 MB 49.45 % 49.03 FPS . . . 593.52 KB 49.65 % 38.38 FPS

T 8.87 MB 21.93 MB 100 % 53.02 FPS 548.34 KB 1.62 MB 100 % 64.05 FPS
TV . . . 18.64 MB 84.99 % 53.77 FPS . . . 1.39 MB 85.94 % 59.70 FPS
TF . . . 17.98 MB 81.96 % 43.84 FPS . . . 1.21 MB 74.73 % 48.51 FPS
TFV . . . 14.68 MB 66.95 % 43.93 FPS . . . 1004.45 KB 60.67 % 45.88 FPS
TP . . . 18.10 MB 82.51 % 58.93 FPS . . . 1.33 MB 82.03 % 62.45 FPS
TPV . . . 14.80 MB 67.49 % 60.80 FPS . . . 1.10 MB 67.97 % 59.45 FPS
TPF . . . 14.14 MB 64.46 % 47.14 FPS . . . 939.83 KB 56.77 % 47.35 FPS
TPFV . . . 10.85 MB 49.45 % 48.96 FPS . . . 706.97 KB 42.7 % 45.95 FPS

Table 3: Performance results. Includes data about total memory required without compressing scene data, the out-
put size by compressing the scene data with gzip, the amount of the memory required to store the scene with some
of our techniques enabled, the compression ratio, and finally the frame rate using any combination of the given
methods. T triangulates the scene geometry, P losslessly compresses the primitive lists using arithmetic encoding,
F losslessly compresses the faces by discarding the leading zeros of a vertex index, V does lossy quantization from
32-bits to 16-bits.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 17 ISBN 978-80-86943-74-9

PSNR: Y: 51.72 dB, Cb: 66.10 dB, Cr: 61.41 dB

PSNR: Y: 47.84 dB, Cb: 64.43 dB, Cr: 58.51 dB

PSNR: Y: 39.22 dB, Cb: 54.87 dB, Cr: 49.03 dB

PSNR: Y: 41.23 dB, Cb: 56.71 dB, Cr: 50.69 dB

Table 4: The first column from the left allows the visualization of the primitives types in the test scenes: triangles
are shown in red, quads are yellow, triangle fans are blue, triangle strips are violet. The second column shows
image output without vertex compression. The third column shows image output with lossy vertex compression
quantized from 32 to 16 bits.

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 18 ISBN 978-80-86943-74-9

	!_2013-WSCG-Full.pdf
	A47-full.pdf

