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Abstract

This thesis is focused on design and implementation of the full text search in
the EEG/ERP Portal. This full text search capability includes searching text in
the EEG/ERP Portal database as well as in related data from social networks,
such as LinkedIn or Facebook. With the development of the Portal and the
increasing amount of processed data, a proper full text search mechanism for
information retrieval is necessary for improving the user experience by enabling
efficient document retrieval.

iii



Contents

1 Introduction 1

I Theoretical Part 2

2 Full Text Search 3

2.1 Information retrieval . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Principles of Full-text Search . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Full-text Search Engine Architecture . . . . . . . . . . . . 4

2.3 Full-text versus RDBMS Searching . . . . . . . . . . . . . . . . . 9

3 Available Search Engines 11

3.1 Indri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Lucene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Sphinx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Xapian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Zettair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 Lucene-based Search Solutions . . . . . . . . . . . . . . . . . . . . 13

4 EEG/ERP Portal 16

4.1 About EEG/ERP Portal . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Hibernate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Hibernate loading strategies . . . . . . . . . . . . . . . . . 17

4.3 Spring Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.1 Spring Social . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Wicket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iv



CONTENTS v

II Practical Part 21

5 Analysis 22

5.1 Current State of Full Text Search . . . . . . . . . . . . . . . . . . 22

5.2 Current State of Integration with Social Networks . . . . . . . . . 23

5.2.1 Desired Improvements of Full Text Search . . . . . . . . . 24

5.2.2 Social Network Search . . . . . . . . . . . . . . . . . . . . 24

5.3 Choice of Full Text Search Solution . . . . . . . . . . . . . . . . . 25

5.3.1 Chosing a Lucene-based Solution . . . . . . . . . . . . . . 26

5.4 Using Solr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4.3 Running Solr . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4.4 Solr Integration Possibilities . . . . . . . . . . . . . . . . . 28

5.4.5 Configuring SolrJ with Spring . . . . . . . . . . . . . . . . 31

5.4.6 Securing Solr . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.5 Proposed System Architecture . . . . . . . . . . . . . . . . . . . . 32

6 Index Design 34

6.1 Identifying domain entities . . . . . . . . . . . . . . . . . . . . . . 34

6.1.1 Relation to POJO classes . . . . . . . . . . . . . . . . . . 34

6.1.2 Single versus Multiple Solr Cores . . . . . . . . . . . . . . 36

6.2 Ensuring Document Uniqueness . . . . . . . . . . . . . . . . . . . 36

6.3 Proposed Document Structure . . . . . . . . . . . . . . . . . . . . 38

6.4 Result Highlighting . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.5 Handling Synonyms . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.6 Autocomplete Support . . . . . . . . . . . . . . . . . . . . . . . . 40

6.6.1 Autocomplete Field . . . . . . . . . . . . . . . . . . . . . . 41

6.6.2 Using Edismax Parser . . . . . . . . . . . . . . . . . . . . 42



CONTENTS vi

7 Implementation 43

7.1 Indexing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.1.1 Database Indexing . . . . . . . . . . . . . . . . . . . . . . 44

7.1.2 LinkedIn Indexing . . . . . . . . . . . . . . . . . . . . . . 51

7.1.3 Indexing Searched Phrases . . . . . . . . . . . . . . . . . . 53

7.1.4 Changing Indexed Data . . . . . . . . . . . . . . . . . . . 53

7.1.5 Periodic indexing . . . . . . . . . . . . . . . . . . . . . . . 54

7.1.6 UML Class Diagram . . . . . . . . . . . . . . . . . . . . . 56

7.2 Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2.1 Search Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2.2 Full-text Search User Interface . . . . . . . . . . . . . . . . 58

7.2.3 UML Class Diagram . . . . . . . . . . . . . . . . . . . . . 59

8 Testing 61

8.1 Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.1.1 FulltextSearchServiceTest.java . . . . . . . . . . . . . . . . 61

8.1.2 IndexingServiceTest.java . . . . . . . . . . . . . . . . . . . 62

8.1.3 IndexingTest.java . . . . . . . . . . . . . . . . . . . . . . . 62

8.1.4 LinkedInIndexingTest.java . . . . . . . . . . . . . . . . . . 62

9 Conclusion 63

I DVD Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2



1 | Introduction

Accessing required information from a large set of data in a quick and user-
friendly manner is no longer an unachievable goal. Advancements in the field
of information retrieval in the last few decades have made its applications very
common. Full-text search, as one of such applications, has in fact become an
essential part of everyday’s life in a modern society.

This work deals with the topic of full-text search over data belonging to the
domain of the EEG/ERP Portal, a piece of software which is being developed at
the University of West Bohemia in Pilsen.

The work is organized into two main parts. The first part, theoretical part, includes
chapters 2-4 and covers theoretical knowledge used throughout the thesis. Chapter
2 deals with the problematics of full-text search, its core concepts are introduced
and a comparison between full-text search and relational database systems is made.
Specific open-source full text search engines and libraries are listed in Chapter
3. In Chapter 4, the EEG/ERP Portal together with its underlying technologies,
which are currently used for its development, are presented.

The practical part of the thesis is dedicated to creation of the full-text search
functionality and is formed by chapters 5-8. Chapter 5 includes analysis of the
state of the EEG/ERP Portal before any changes were made, and collecting
full text-search requirements. Based on the requirements, a full-text search
solution is chosen and the overall system architecture is proposed. Chapter 6 is
focused on creating a document model for indexed data, and on all necessary
configuration related to indexing and searching these data. Chapter 7 is devoted
to implementation of the full-text search functionality into the EEG/ERP Portal
application. In Chapter 8, unit tests that confirm the functionality of the created
code are described.

The final chapter, Chapter 9, contains a summary of the thesis and presentation
of results.
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Part I

Theoretical Part
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2 | Full Text Search

The amount of information has grown rapidly in the last few years due to the
information explosion caused mainly by the World Wide Web. The result is
that nowadays, people are exposed to much more information than they used to
be. In order to manage such amount of data and obtain relevant information
very quickly (in the order of milliseconds), new powerful techniques operating on
vast collections of data were needed. The aim of this chapter is to explain basic
concepts applied in full-text search, one of the methods dealing with the problem
of searching information.

2.1 Information retrieval

Full-text search can be considered as a part of a subdiscipline of computer science
known as information retrieval (IR) [1]. There is a number of available definitions
of information retrieval. According to [2], information retrieval (IR) is loosely
defined as

“the subfield of computer science that deals with the automated storage
and retrieval of documents”

This definition as well as the definitions from other sources (e.g. from [1]) sum up
the purpose of IR in a very general way. There also exist stricter IR definitions
that explicitly mention working with unstructured data. One such definition of
IR can be found in [3]:

“Information retrieval (IR) is finding material (usually documents) of
an unstructured nature (usually text) that satisfies an information
need from within large collections (usually stored on computers).”

All IR systems - and full-text search engines are no exception - are based on the
same architecture described in Section 2.2.1 which is adapted to requirements
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that the specific systems have. In addition, these systems share common IR
terminology, whose most important terms are explained in this chapter.

2.2 Principles of Full-text Search

The field of full-text search covers a wide range of topics, including efficient
algorithms and data structures that enable fast and reliable full-text search over
large amount (in practice gigabytes) of data. It is not the aim of this thesis
to provide a deeper, more complex insight into this problematics. The final
implementation of the full-text search feature will be based on an existing full-text
search engine. However, there are several terms and concepts that must be at
least briefly explained so that the reader can fully understand the latter text.

2.2.1 Full-text Search Engine Architecture

As can be seen in schema in Figure 2.1, full-text search engines comprise several
steps in order to provide a user with search results to a given query. Query is in
this case a text phrase, optionally enriched by special operators which serve for
refining the query. It is a user of the IR system who comes up with the query,
expecting that the system will fulfill his or her information need by returning
relevant search results.

Documents

Search engines need to ingest source data first to have something to search on.
The basic informational unit which is processed by the search engine and returned
to the user in case of match with the query is called document. Documents consist
of one or more fields with content. In this context, documents inserted to the
system represent real documents, such as HTML, PDF files or relational database
data. Therefore, a series of data transformations must be made first in order
to extract all desired searchable information from different data sources. These
transformation steps are discussed in the practical part of the thesis in Chapter 7
and are for reasons of clarity not depicted in the schema.
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Full Text Search Engine

Indexing
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Results
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Information
Need

Documents

User Interface

Figure 2.1: IR Architecture Schema. Adapted from [4, 5].

Preprocessing

Both input query and documents usually undergo several preprocessing steps.
These steps transform the original query or document content to searchable text
units called terms. If documents are processed, the created terms are then together
with document metadata passed on for indexing. It is important to mention that
in order to get correct results, the same preprocessing steps must be applied for
both search queries and documents.

The first preprocessing step is called tokenization. During the process of tokeniza-
tion, the document content is treated as a character stream. It is broken into
basic elements called tokens, in some sources also referred to as words, by using
appropriate tokenizers. Tokenization happens typically at the word level, so a
token can be seen as a simple word of ordinary text in most cases. Apart from
the obvious creation of tokens by splitting the input stream by the whitespace
characters, tokenizer implementations also remove punctuation and may include
more sophisticated strategies that are oriented to a given problem domain [3].

After a token stream is created, those tokens that bring no or very little information
are often filtered out, thus not indexed. These tokens, mainly articles, prepositions
and conjunctions, such as “the”, “an”, “to”, “and” etc. are normally called stop
words and are included in the so-called stop list. Although eliminating tokens
listed in the stop list can reduce the final index size and speed up processing, it
will disable finding phrases made of stop words only, such as "to be or not to be".

The next step concerns token normalization. It is a process that includes token
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transformations, such as case-folding (converting all letters to their lowercase
equivalents or vice versa), removal of accents and diacritics etc. The output
of token normalization is the creation of equivalence classes. The equivalence
classes ensure that “matches occur despite superficial differences in the character
sequences of the tokens” [3].

Sometimes it is useful to retrieve documents containing not only an exact searched
keyword, but also one of its possible variations, such as walk, walks, walking, walked
for the keyword walk. The corresponding transformation based on reducing words
to their root forms (or stems) is known as stemming. One of the stemming positive
side-effects is a decreased index size due to storing only the created stems in the
index. Using stemming, however, may lead to obtaining false positives, if different
words are assigned the same stem, or false negatives, if different forms of the
same word get different stems assigned. There are several stemming algorithms
available and more information about them can be found e.g. in [2].

It is also possible to do synonym expansion of tokens. The synonym expansion
can be triggered either during indexing, or during querying. Similarly to defining
stop words, synonyms are stored typically in a list of synonyms. The usage of
synonyms is very domain-specific, so irrelevant query results might be obtained if
the usage of synonyms is not optimized.

Indexing

Indexing deals with effective storage of created document terms. Therefore,
indexing involves transformation of documents to a more convenient data structure
for the needs of information retrieval - the index.

Index

Index is defined by Frakes [2] the following way:

“A collection of terms with pointers to places where information about
them can be found.”

Based on information found in [1, 2, 3], there are three main methods of indexing
– inverted index, signature file and bitmaps. Based on the comparisons made in [1]
and in [6], using inverted indexes should be the preferred way due to their search
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efficiency and lower index size they require. The remaining two alternatives are
recommended to be used only in certain circumstances which are very rare in
practice.

Inverted Index

This data structure, sometimes referred to as the inverted file [2], can be thought
of as the well-known index at the end of a book. It consists of a vocabulary
(sometimes also called as lexicon) of indexed terms. If the IR terminology is
followed, the inverted index can be characterized more precisely. One of such
more precise characteristics can be found in [1] and claims that:

“An inverted file contains, for each term in the lexicon, an inverted
list that stores a list of pointers to all occurrences of that term in the
main text, where each pointer is, in effect, the number of a document
in which that term appears.”

To visualize the basic idea of the inverted index, Figure 2.2 shows a few indexed
terms in the dictionary and their corresponding inverted lists (also known as
postings lists [4]). Inverted lists contain typically document identifiers that point to
documents themselves. Inverted indexes are usually stored in a highly compressed
form on disk and this why many index compression techniques targeted to their
compression have been studied [7].

elephant

snake

zebra

1 2 5 9 12 23 27 52

1 2 4 9 10 20 45 66 82 85

2 12 22 89

Dictionary Postings lists

Figure 2.2: Inverted Index Schema. Adapted from [3].
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Query Processing, Searching and Ranking

In addition to the steps done in the processing phase, a query based on the usage
of an inverted index must go through the following three steps [5]:

1. The query terms are searched in the index vocabulary.

2. From each term found in the vocabulary, all the posting lists are retrieved
and decoded.

3. The lists are then manipulated so that results of the query are received.

The type of manipulation depends on the type of the used model of information
retrieval.

In the case of the Boolean model, the query terms are combined with three basic
Boolean operators - intersection (AND), union (OR) and difference (NOT). “The
answers, or responses, to the query are those documents that satisfy the stipulated
condition.” [1]. This model suffers from several disadvantages. First, it is difficult
for many users to formulate correct Boolean queries in order to get expected results
[8]. Furthermore, only exact matches are retrieved (document either matches the
Boolean expression or not) and all terms are equally important, so the model
gives no information about the relevance of retrieved documents.

More advanced retrieval models use term weights which provide additional in-
formation about importance of individual terms in the documents. The weights
are derived from statistical information about a term, usually by calculating
the term frequency (the number of occurrences of a term in a document) and
inverse document frequency (the inverse-like value of the number of documents
that contain a specific term) for each query term contained in a document. More
information about the term weight calculation can be found e.g. in [9, 3]

One of the retrieval models that uses term weights is the vector space model. This
model represents queries and documents as vectors in a multidimensional vector
space, in which each dimension belongs to one term. The final vector size and
orientation is composed of individual term weights for each dimension (see Figure
2.3). The vector sizes and angles between them can be then compared by using
appropriate similarity measures. Consequently, measuring similarity of a query
vector and found document vectors enables ranking of the query results.
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Figure 2.3: Query and Document Representation in the Vector Space Model.
Adapted from [9].

Another IR model used in practice by several search engines is the probabilis-
tic model. This model is based on probabilistic theory and its more detailed
explanation, which is out of scope of this work, can be found e.g. in [10].

2.3 Full-text versus RDBMS Searching

Relational database management systems (RDBMS) are a proved solution to
storing large volumes of structured data, in which they excel. As long as there
is no need to search in a lot of data stored in a RDBMS, relational databases
are a recommended solution for our domain. However, the usage of a classical
RDBMS to search a phrase in a block of text, for example in a text column, may
become unacceptable due to too much time needed to scan a huge amount of
data. Traditional search engines offer the SQL (Structured Query Language) LIKE
operator. The LIKE operator is used for searching a given pattern in a specific
column. When using LIKE, full table scan is needed to be performed [11]. It
means that each row is examined to check if it matches the searched string or not.
With the increasing amount of data in the table, it takes more time to process
them by the full table scan.
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Another disadvantage of using SQL queries containing the LIKE operator is the
fact that if more terms are searched, the associated SQL query grows in complexity.
Since it is intended to store normalized data in RDBMS to avoid data redundancy
and ensure their consistency, searched data are often stored in multiple tables.
This is why multiple JOIN operations must be used to fetch all data from the
corresponding tables. Furthermore, the query must be written the way to ensure
finding the records with terms not necessarily next to each other, too. As the query
gets more complex, it therefore takes more time to get query results. Another
reason why the query execution slows down is that the query needs to match each
term individually.

It is important for a user to know how much the found results match the input
query. RDBMS simply output the records matching the criteria. This way the
found results of the output result set do not contain any information about the
relevancy to the searched terms.

Full-text search engines, on the other hand, use different data structures especially
designed for full-text searching needs. If there is a lot of data to be searched,
inverted index provides a fast way to return matching documents by looking
up the corresponding terms in the index dictionary which point to the target
documents. Documents are usually stored in a denormalized form, meaning that
there may exist duplicate, redundant information across the document collection.
In this aspect they are more similar to NoSQL document-oriented databases, such
as MongoDB. Furthermore, by using methods described in section 2.2.1, full-text
search engines output ranked search results that do not have to match the input
query completely.
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3 | Available Search Engines

According to the comparisons of fulltext search engines in [5] and [12], there are
several reasonable options to choose from. Unfortunately, there is not enough
comparative benchmarks on performance of search engines. Available comparisons
are often not so objective since, for example, only the default settings of search
engines are used in the tests or just one use case is applied (as in [12]). This may
lead to false conclusions obtained from these benchmarks because search engines’
capabilities might not have been fully demonstrated and tested.

It is also worth mentioning that some comparisons were made a few years ago and
are likely to be out-dated since these technologies evolve quite quickly. All these
experiments showed, however, that relational database full-text search performance
is very slow compared to full-text search engines. [13, 14].

In the following paragraphs, the reader can gain a basic overview of several full-
text search engines which are considered to be fairly performant and usable for
common full-text search scenarios.

3.1 Indri

Indri [15] is an academic C++ based text search engine developed at the University
of Massachusetts and is a part of the Lemur Project. The engine is interesting
because of its implementation as it combines inference networks with language
modeling. Its API is accessible also from other languages such as Java or C#.
Great support of scaling and support of true multithreaded operations, enabling
concurrent adding, querying and deleting documents, belong to its main features.
In the technical paper [16] it was shown that Indri is very performant and in
comparison with Lucene it achieves even better results in terms of retrieval
effectiveness for short queries, index size and performance.
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3.2 Lucene

Lucene [17] is an open source Java-based search library. It can enrich applications
by its ability to index data and search over them. These two main items form
what is commonly reffered to as Lucene core. Apart from the core, its latest
version comprises useful features related to full-text search problems (e.g. result
highlighting). Lucene is highly modularized and its API enables a user to extend
its functionality relatively easily [18].

It stores its index as files on disk. When the search is made, segments of indexes
are copied to memory, thus its memory consumption is high and mostly stable.

According to [5, 16], it belongs to the fastest engines and its performance is high
especially when querying one- or two-word phrases. Its small size of index it
creates is also a plus when the lack of memory could be an issue. Due to its
portability and its active development and active and numerous community, it has
become the leading open source search engine used in many successful projects
[19].

According to its official documentation [20], “Lucene scoring uses a combination of
the Vector Space Model (VSM) of Information Retrieval and the Boolean model”.
The Boolean model is used to filter the documents that are then scored.

The current version of Lucene, Lucene 4.0, „represents a significant milestone
in the development of Lucene due to a number of new features and efficiency
improvements as compared to previous versions of Lucene.“ [21]

3.3 Sphinx

Sphinx [22] is an open source search server distributed under GPL license. It
consists of an indexing tool, which is also referred to as indexer, and a searching
daemon. Sphinx is written in C++ and is especially designed for indexing database
systems (it integrates well with MySQL). The reason behind its connection with
MySQL RDBMS is to enable efficient full-text search on a large amount of database
data [23]. It allows a user to issue queries with SQL-like syntax for indexing
the database content and searching in the index. Besides database indexing, it
also supports an XML format for arbitrary data. Considering results from all
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found benchmarks involving Sphinx [15, 5, 24, 14], its indexing speed is quick and
its search speed belongs to the fastest ones. It offers API bindings for several
platforms including Java. Among its strengths we can name quick installation
and deployment and a perfect online documentation for an open source project.
Extensibility is quite an issue if our application requires additional features [25].

3.4 Xapian

According to information found on its official website [26], it is an open-source
search library written in C++ based on a probabilistic retrieval model. It provides
a user with bindings that allow to use it from a couple of other languages, including
Java, C# or Ruby. Its index size is generally larger when compared to other search
engines, but this extra piece of information contained in the index allows Xapian
to delete or update a document in a more correct way. It is done by storing a list
of elements in each document in the termlist table [27]. The benchmarks in [12]
from 2009 show that its search performance is said to be equally good as the one
of Lucene.

3.5 Zettair

Another search engine that received a very positive rating in [5] is Zettair [28].
The comparison in this paper concludes that Zettair has the fastest indexer,
provides fast querying speeds and has also the best retrieval effectiveness on
average. Zettair is being developed at the Australian university and is written
entirely in C. One of its main features is the ability to handle large data sets (100
GB and more) due to its scalability to large collections [28].

There are currently no ports to other languages available, so the full-text search,
when using Zettair, must be implemented in C.

3.6 Lucene-based Search Solutions

Popularity of Lucene is reflected in the existence of several search solutions which
are based on this search library. Because Lucene itself as a search library provides
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the core functionality, i.e. indexing and searching documents, its direct integration
in applications without any additional enhancements can be cumbersome in the
most common use cases. Unless there are special requirements involving access
to low-level APIs of Lucene, opting for the already proved search solutions is
recommended [29].

The solutions built on top of Lucene can be divided into search tools and search
servers. Search tools extend Lucene in a specific way to cover the problem domain
and can be embedded to an application in a form of a library. They are usually
dependent on other technologies which must be included in the target application.
A widely used example of such search tool is Hibernate Search. Search servers, on
the other hand, are fully independent standalone applications which communicate
with the application typically by using the HTTP protocol. The representatives
of this category are Solr and Elasticsearch.

Hibernate Search

Hibernate Search [30] is an enterprise search tool that forms a bridge between
Hibernate and Lucene. The aim of Hibernate Search is to enable full-text search
over persistent domain model by overcoming certain mismatches between the
domain model and simple Lucene documents. In order to make Hibernate Search
work, Hibernate or JPA must be used as an object-relational mapping between
Java objects and database tables. It manipulates with persisted Hibernate entities
and makes them searchable by adding them in the Lucene index. By default,
Hibernate Search automatically updates Lucene index after an object is saved or
updated by using Hibernate. In order to achieve indexing of Hibernate entities,
created model classes must be enriched of specific Hibernate Search annotations
for full-text search purposes.

Solr

Solr [31] is an open source search server built on top of Lucene which runs within
a servlet container, such as Jetty or Tomcat. Because it can be considered as
a Lucene extension, most of the Lucene terminology is used for Solr as well.
Unlike Lucene, document fields have to be defined in the application schema file
schema.xml. Apart from obligatory field definitions in the schema file, it is also

14



defined how the values of different fields are processed.

Solr extends Lucene by providing many useful features related to full-text search,
e.g. keyword highlighting, faceted search, rich document handling or the did-
you-mean feature, just to name a few. Since Solr runs as a separate process,
it communicates with applications via HTTP requests, which represent query
data, and HTTP responses, representing search results found in the index, by
exposing its REST-like API. This technology is configuration-driven and compared
to Lucene, many full-text search aspects can be set up with no need of writing a
single line of Java code.

Elasticsearch

Elasticsearch [32] is another promising young technology build on Lucene, designed
from its early beginnings as a highly scalable solution suitable for big data.

Unlike Solr, it provides a more flexible approach of data definition. Elasticsearch
is a one-man project with a steadily growing community, but compared to Solr, it
is relatively immature in terms of some of its features [33, 34].
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4 | EEG/ERP Portal

This chapter describes the motivation behind the creation of the EEG/ERP Portal.
Crucial technologies and frameworks that have been used in development of the
EEG/ERP Portal are also described.

4.1 About EEG/ERP Portal

The EEG/ERP Portal [35] (Figure 4.1) is a web-based application which serves
to neuroinformatics researchers as a means of managing, sharing and evaluating
measured data. The application also comprises advanced features designed specif-
ically for the needs of the EEG/ERP researchers, such as tools for manipulation
with EEG signals.

Figure 4.1: EEG/ERP Portal Welcome Page.
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4.2 Hibernate

Hibernate [36] is an open-source object-relational mapping framework, whose
purpose is to facilitate storage and retrieval of Java domain objects. It is used in
the EEG/ERP Portal to map its data model to the object model and vice versa.

4.2.1 Hibernate loading strategies

Hibernate provides two strategies of fetching data from the database to their
object representations. As an analogy to database relationships, POJO (Plain Old
Java Object) objects can maintain associations to other objects. The strategies
differ in the way they treat these object associations, both having their advantages
and disadvantages.

The first possible way is to load all associated object collections at the same time
when the database record corresponding to the object is fetched. This is called
eager loading. The second way is to return only the data belonging directly to the
object and not to fetch the collections until they are required to be fetched. This
approach is known as lazy loading.

Lazy loading is generally considered a preferred way in most of the applications.
The main reason behind this is performance effectiveness. When a certain POJO
object (actually the underlying table record) is accessed, it is sufficient for most of
the use cases to fetch only the fields of primitive types, because associated collec-
tions are not needed. By using lazy loading in such scenarios, many unnecessary
JOIN and SELECT operations are often avoided. In the end, the operation savings
reflect both in lower time and memory costs which results in faster application
responses.

On the contrary, overusing eager loading can considerably slow down the appli-
cation and may lead to the n+1 selects problem described e.g. in [37]. However,
there are many reasonable situations when all associated object data have to be
always available. As an example, one can imagine a requirement to always display
writers together with all the books they have written. Then it is completely
legitimate to apply eager loading to load the books for each of their authors
because of the certainty specified by the requirement.

There are also cases when it is desired to load otherwise lazily initialized collections
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eagerly. Hibernate also allows enforcing temporary eager loading.

To understand how lazy loading works in Hibernate, it is important to briefly
explain the dynamic proxy pattern.

Dynamic proxy

Hibernate uses dynamic proxies to implement lazy loading of object properties.
The “Design Patterns” book written by Gang of Four (GOF) [38] describes the
proxy pattern the following way:

“Allows for object level access control by acting as a pass through entity
or a placeholder object.”

<<interface>>
ISubject

operation()

Client

ProxySubject

-  realSubject:  Subject

+  operation()

Subject

+  operation()

uses

calls

Figure 4.2: Proxy Design Pattern.

When an object is required to be loaded, some of its object properties are not
actually fetched from the database. Instead, they are represented by their cor-
responding proxy objects. The proxy object is usually referred to as stub and
does not hold any actual information. Its only ability is to call the real object
it represents. The UML diagram depicted in figure 4.2 helps visualize the whole
mechanism. Since these stub objects are in the case of Hibernate created dynami-
cally at runtime by using the bytecode libraries javassist or CGLIB, we talk about
dynamic proxies.
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4.3 Spring Framework

The Spring Framework [39] facilitates creating Java-based enterprise applications.
It applies a principle called dependency injection which helps make the classes
loosely coupled. The idea of this principle is to let the framework do all necessary
wiring of objects, so that the objects can focus on their core responsibilities.
By reducing dependencies among application components, the code becomes
more testable and reusable. A thorough explanation of the dependency injection
principle can be found for example in Martin Fowler’s infamous article [40].

4.3.1 Spring Social

Spring Social is one of the Spring Framework extensions that was created to
enable easier connection of Spring-based applications with Software-as-a-Service
(SaaS) providers, like Facebook, LinkedIn, Twitter and others. The EEG/ERP
Portal uses Spring Social to interact with LinkedIn. Spring Social offers a variety
of methods which wrap the existing LinkedIn REST API calls.

LinkedIn REST API

LinkedIn provides REST API to access various information. Representational
State Transfer (REST) is pragmatically defined in [41] as “a set of principles
that define how Web standards, such as HTTP and URIs, are supposed to be
used”. REST takes the advantage of the HTTP protocol to describe the action
that should be performed on a given resource. Resource is an entity that can be
identified by URL. Internal domain model of LinkedIn, which includes entities
like people, companies and jobs, is mapped to REST resources.

Required information one wishes to obtain can be specified by URI parameters in
the JSON format. Examples of its usage are contained in the practical part of the
thesis in Chapter 7.
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4.4 Wicket

Wicket [42] is a component-based framework for creating user interface of web
applications. The EEG/ERP Portal’s presentation layer is being developed in
Wicket by the time of writing this thesis. In the case of the EEG/ERP Portal, it
is a replacement of JSP pages and Spring MVC. This decision was made due to
clearer separation of application logic and markup which, in effect, leads to more
readable and maintainable code.

A web page created by using the Wicket framework consists of a HTML file that
determines the page appearance, and a paired Wicket WebPage class instance that
contains a component hierarchy. The binding of HTML files and their relevant
Java classes is done by specifying component identifiers. In case of an HTML page,
a value set to the special wicket:id tag attribute identifies a Wicket component.
The same value of the component name must be then specified in the matching
component in Java code.
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5 | Analysis

This chapter focuses on the analysis of the state of the EEG/ERP Portal before
making any changes in the application code.

5.1 Current State of Full Text Search

Currently, the EEG/ERP Portal application uses Hibernate Search as a mecha-
nism to index chosen data stored in Oracle RDBMS. Hibernate search provides
an annotation interface which serves for indexing purposes. A subset of these
annotations is used to mark indexed entities and fields withing them which should
form the document in the index. Furthermore, a few field annotations enable to
configure how the fields are later processed by specifying analyzers to be applied
on those fields.

By using Hibernate Search to implement full-text search, the application is enforced
to use Hibernate or JPA for data persistence [43]. Using any other technologies
than these two results in a malfunctioning application. The main drawback of
using Hibernate Search in our case the inability to index data from different
sources than the database. Since one of the requirements is to enable searching
data from social networks, the current solution can hardly fulfill this requirement.

In the current state of full-text search, the indexed data are stored in memory.
Keeping an in-memory index provides fast performance of searching because
accessing data in memory is much faster than if data are stored on disk. A
disadvantage of the in-memory index is that these data are lost every time the
application server stops. This is the reason why the index must be created each
time the application starts running. Furthermore, as the size of the index gets
bigger, the available amount of memory may be insufficient. The lack of memory
then results in disk swapping which causes serious performance degradation.

Since Hibernate Search uses Lucene as a search library which is responsible for
indexing and full-text search, the created classes that represent full-text search
logic in the EEG/ERP Portal make a heavy use of the Lucene API. Direct Lucene
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API usage is considered low-level for these purposes, the created code is more
difficult to maintain and it is more likely that new bugs are introduced. In the
current state, for example, text highlighting of a subset of found results does not
work as expected in some cases.

It is shown in Figure 5.1 that the current implementation of full-text search
is, apart from its dependency on Hibernate, tightly coupled with the whole
application.

Database Server

RDBMS Oracle 11g

 Hibernate
Search

Domain Model
(POJO)

Lucene Index

indexes / searches / stored in

persists into

Hibernate Core

Hibernate

Application Server

EEG/ERP Portal

indexes / searchespersists

uses

Figure 5.1: Architecture with Hibernate Search.

5.2 Current State of Integration with Social Net-
works

Currently, the EEG/ERP Portal is successfully integrated with its LinkedIn group.
A user can use the EEG/ERP Portal to publish LinkedIn articles as well as to see
all of them. Users can also log in to the EEG/ERP Portal via LinkedIn. Since
LinkedIn uses the OAuth 2.0 security protocol for authentication, the OAuth
authentication flow is implemented by using Spring Social.
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5.2.1 Desired Improvements of Full Text Search

Appearance

The user interface of the page with search results should basically remain the
same. As far as search forms are concerned, it is expected to have:

• one search text field on the search page,

• another one in the header of each web page so the search can be executed
from any page of the website.

Search Functionality

In terms of search features, there is a need to enable easier navigation among
found results. This is why faceting search based on result categories should be
made. Furthermore, synonym search is desired to allow finding also the results
that contain defined synonymic keywords. Moreover, wildcard search as well as
using Boolean AND, OR and NOT operators for querying is required.

5.2.2 Social Network Search

Since Hibernate Search is used as a technology responsible, among others, for data
indexing, only the data stored in the relational database can be indexed. However,
articles and other information found in the LinkedIn group of the EEG/ERP
Portal have no direct connection to the database, so Hibernate Search cannot
reach these data and therefore cannot save them to the index it keeps. A possible
solution which partially solves this problem would be to keep duplicate records
about the articles in the EEG/ERP Portal database. Apart from the problem
with keeping three copies of basically the same information (the original article
published on LinkedIn, its copy in the database and its representation in the
Lucene index), those articles published directly from LinkedIn and not from the
EEG/ERP Portal via a form would get unnoticed by the application and their
corresponding documents in the index would not exist.
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5.3 Choice of Full Text Search Solution

From the search engines listed in previous parts of the thesis and technologies
on which the EEG/ERP Portal is based, the choice of the search engine can be
restricted by the following criteria:

• speed - Based on information provided in Chapter 3, it turns out that the
speeds of compared search engines differ only slightly and the observable
differences depend on a specific use case. However, due to their overall great
performance, all listed search engines can be considered a suitable solution
with respect to this criterion.

• integration with the EEG/ERP Portal - The EEG/ERP Portal is based on
Java technologies and this is why search engines providing Java API are
easier to be integrated to the working infrastructure and therefore preferred.

• other features and extensions - Because full-text search engines as they are
take care of indexing and searching data, it is desirable to have a set of
built-in features, such as result highlighting, faceted search, synonym search
or more-like-this search, to make building full-text search easier. It is taken
for granted by the end users to use the full-text search with some of such
features implemented.

• independence on data sources - The chosen search engine must be able
to accept data from various sources and to not be limited to only one
specific data source, such as relational database. The reason behind this is
the mentioned need to index LinkedIn articles as well as to enable further
possible indexing scenarios in the future, such as indexing .pdf or XML files.

• independence on other technologies - This criterion means that the search
engine should not rely on a specific technology to be used. Dependence of
Hibernate Search on Hibernate or heavy orientation of Sphinx on MySQL
may serve as the examples of the search engines which perform well if certain
conditions are met, but cannot run or do not perform well if not.

• community - Numerous and active developer community also plays a big
role in the final choice. The bigger community around the search engine is,
the higher is the chance that the engine development will not stop early, new
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features will be introduced and found bugs will be resolved quickly. Although
relatively new one-man projects can look very promising and their future
development is more likely to be managed by a still growing community,
their stability is not guaranteed and there is a higher risk of stopping the
project. A well-documented project, many available tutorials, active user
groups and a large number of users are good signs of project stability and
ensure that there will be probably someone from the community willing to
help solve given problems.

The search engines were evaluated based on these criteria. Since it was stated for
the speed criterion that its differences for the discussed search engines were not
significant, it is not included in the final evaluation. This evaluation can be seen
for reasons of clarity in table 5.1

Table 5.1: Comparison of Full Text Search Engines.

Search Engine Integration Extension Independence Community
Indri 4 7 4 1/5
Sphinx 4 7 4 3/5
Lucene 4 4 4 5/5
Zettair 7 7 4 1/5
Xapian 4 4 4 1/5

It is worth mentioning that the last criterion, Community, cannot be evaluated in
an exact manner. This criterion involves the size of mailing lists, the number of
search results about the search engines found on Google, the number of related
blog posts as well as the number of posts on specialized websites, such as Stack
Overflow.

The result of the comparison is to base the the EEG/ERP Portal full-text search
feature on the Lucene search library. As mentioned in section 3.6, the Lucene-
based search applications are in practice built by using more sophisticated search
solutions (also mentioned in section 3.6).

5.3.1 Chosing a Lucene-based Solution

From the solutions based on Lucene listed in section 3.6, it is obvious that
Hibernate Search cannot be used due to the reasons that can be found in section
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5.1. Although both Solr and ElasticSearch are likely to be good full-text search
solutions for the EEG/ERP Portal, it was decided to choose a more proved and
mature alternative (by the time of making this decision, in November 2012). This
is why the preference was given to Solr.

5.4 Using Solr

This section briefly explains the specifics of Solr and is devoted particularly to its
deployment. It is needed to provide the explanation of some of its aspects upon
which the forthcoming text is based.

5.4.1 Installation

The whole Solr distribution can be downloaded from the Solr website [31]. It comes
in a form of a directory that contains everything needed to run the application,
including its .war archive. Hence, the whole directory can be copied to the target
destination.

5.4.2 Configuration

Apart from the Solr application itself, the distribution also includes a set of
configuration files. Solr can be configured in many ways by modifying its .xml
files. In solr/collection1/conf directory, there are two important .xml files
that are customized in Chapter 6:

• schema.xml - This file contains information about document fields and their
processing in indexing and querying phases.

• solrconfig.xml - It contains server-related configuration. Particularly,
request handlers and response writers are set in this file. They handle
incoming requests and generate responses of a search, respectively.

Solr provides an administration user interface which is depicted in Figure 5.2. It
helps a user analyze and optimize a current Solr configuration by running and
analyzing queries.
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Figure 5.2: Solr User Interface.

5.4.3 Running Solr

By default, Solr runs on the embedded Jetty server which can be started by running
java -jar start.jar relatively to the Solr home directory. Two Solr instances
can be found at the host address http://147.228.63.134/solr of the EEG/ERP
Portal server on ports 8585 and 8686 for production and testing, respectively. In
order to run the instances on the server automatically, the shell scripts (one for
each instance) were made. The mentioned port numbers are set in these scripts
by specifying the jetty.port system property, such as -Djetty.port=8686 for
the testing Solr server.

5.4.4 Solr Integration Possibilities

There are basically two ways of how to integrate Solr with an existing application.
The first way is based on configuration of periodically executed SQL queries that
handle database indexing. To do this, the DataImportHandler (DIH) tool is used.
Another way is to apply a programmatic approach and to use a Java API called
SolrJ.
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DataImportHandler

DataImportHandler (DIH) offers fast indexing of data from a variety of sources,
including relational databases. The extraction of database data for indexing is
based on creating custom SQL queries. The SQL queries serve as a mapping
mechanism between query target attributes and document fields.

Although DIH configuration is straightforward to set and its indexing performance
is excellent, it has several limitations and disadvantages:

• data model changes - In order to index new data and to enable delta imports,
i.e. to index only the changed data since last indexing, it is necessary to
add a new time stamp column for each table whose data we wish to index.
Each record of these new columns contains a time value of the last indexing
activity. Another issue that needs to be solved on the database level is
managing deleted database records. There exist several methods to reflect
the changes in the index and can be found for example in the Rafał Kuć’s
article [44].

• dealing with changes of the database schema - If the database schema changes,
all affected SQL queries must be rewritten in order to index the database
correctly again.

• code separation - The logic in the form of the SQL queries is out of reach of
the EEG/ERP Portal application logic since the queries must be written in
a special configuration file managed by the Solr server.

• for indexing only - DIH is just an indexing tool that creates index documents.
It cannot be used for retrieving the documents, so their searching must be
implemented in a different way.

SolrJ

Solr provides the official Java API for integration of Java applications with the
Solr server called SolrJ. SolrJ client can be used not only for indexing, but also
for integration of an existing Java application with the Solr server. Compared to
DIH, SolrJ offers richer debugging possibilities.

29



SolrJ offers two possible ways of running Solr. Apart from the remote commu-
nication with the Solr server provided by the HttpSolrServer class, Solr can
also be embedded within the EEG/ERP Portal application by running as the
EmbeddedSolrServer instance. The latter option is generally not a recommended
way to run Solr. As the Solr documentation [45] says:

“The simplest, safest, way to use Solr is via Solr’s standard HTTP
interfaces. Embedding Solr is less flexible, harder to support, not as
well tested, and should be reserved for special circumstances.”

Following the stated requirements, the embedded version of Solr is not a suitable
option for the EEG/ERP Portal either.

Maven Dependencies

EEG/ERP Portal uses the Maven build automation tool. For both Solr and SolrJ,
there are available Maven dependencies that can be added to the Maven pom.xml
file. Listing 5.1 shows these added dependencies.

Listing 5.1: Solr and SolrJ Maven Dependencies.
1 <dependency>

2 <groupId>org.apache.solr</groupId>

3 <artifactId>solr -core</artifactId>

4 <version>4.1.0</version>

5 <exclusions>

6 <exclusion>

7 <artifactId>slf4j -jdk14</artifactId>

8 <groupId>org.slf4j</groupId>

9 </exclusion>

10 </exclusions>

11 </dependency>

12
13 <dependency>

14 <groupId>org.apache.solr</groupId>

15 <artifactId>solr -solrj</artifactId>

16 <version>4.1.0</version>

17 </dependency>
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5.4.5 Configuring SolrJ with Spring

In order to use SolrJ, it is needed to create a SolrServer class instance to enable
communication with the remote Solr server. This is why a Spring bean defining
the HttpSolrServer instance has to be created in the Spring application context.
The code sample in Listing 5.2 shows how to configure the bean.

Listing 5.2: Configuration of the Solr Server Bean.
1 <bean name="solrServer" class="org.apache.solr.client.solrj.impl.←↩

HttpSolrServer">

2 <constructor -arg name="baseURL" value="${solr.serverUrl}"/>

3 <constructor -arg name="client" ref="httpClient"/>

4 <property name="connectionTimeout" value="${solr.←↩

connectionTimeout}"/>

5 </bean>

The bean specifies a reference to the Apache Commons’s HttpClient bean which
was created due to the need for secure communication.

5.4.6 Securing Solr

Solr is not secured after the installation. Hence, anyone can use its web services
to access and manipulate indexed data, which is a serious security risk. In order
to enable authorized communication with the server, it has been decided to use
HTTP Basic Authentication to protect the access to the Solr server on the path
level.

The description of setting basic authentication of Solr running under Jetty is
omitted because the exact configuration steps can be found in the corresponding
section of Solr documentation [46].

On the EEG/ERP Portal application side, the created BasicAuthHttpClient

class extends DefaultHttpClient by providing preemptive basic authentication.
It means that the credentials are automatically passed on the first request. Listing
5.3 shows the corresponding lines in the constructor of the BasicAuthHttpClient
class.

Listing 5.3: Preemptive Basic Authentication.
1 BasicCredentialsProvider credsProvider = new ←↩

BasicCredentialsProvider();
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2 credsProvider.setCredentials(new AuthScope(url.getHost(),

3 AuthScope.ANY_PORT),

4 new UsernamePasswordCredentials(username , password));

5 setCredentialsProvider(credsProvider);

All parameters necessary to use the BasicAuthHttpClient instance are set in its
Spring bean as shown in Listing 5.4 below. Note that in order to achieve thread-
safe communication, ThreadSafeClientConnManager is used as its connection
manager.

Listing 5.4: BasicAuthHttpClient Spring Bean.
1 <bean id="httpClient" class="cz.zcu.kiv.eegdatabase.logic.util.←↩

BasicAuthHttpClient">

2 <constructor -arg name="url" value="${solr.serverUrl}"/>

3 <constructor -arg name="username" value="${solr.username}"/>

4 <constructor -arg name="password" value="${solr.password}"/>

5 <constructor -arg name="connManager">

6 <bean class="org.apache.http.impl.conn.tsccm.←↩

ThreadSafeClientConnManager">

7 <property name="defaultMaxPerRoute" value="${solr.←↩

defaultMaxConnectionsPerHost}" />

8 <property name="maxTotal" value="${solr.maxTotalConnections}"←↩

/>

9 </bean>

10 </constructor -arg>

11 </bean>

5.5 Proposed System Architecture

Based on the text from the preceding paragraphs, a new system architecture was
proposed. The architecture schema is depicted in Figure 5.3. SolrJ API is used for
both indexing and the needed interaction with the EEG/ERP Portal. There are
two Solr Server instances running. One of them is used for maintaining indexed
data of the production environment. The second one is utilized for testing purposes.
Using a separate Solr test server was preferred to its application-embedded version
due to the reasons described in previous text.
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Figure 5.3: Architecture with Solr Included.
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6 | Index Design

The aim of the following chapter is to design an index structure for the data to
be searched. Based on the described limitations and collected requirements from
Chapter 5, the index structure is proposed and its advantages and disadvantages
are mentioned in the text.

6.1 Identifying domain entities

To design a document structure properly, it is crucial to know what kind of
information is going to be searched and what should be displayed to a user. This
is the reason why the EEG/ERP Portal application’s domain model must be
explored first.

Based on the search requirements, the full-text search functionality will be oriented
on searching and displaying information about five main domain entities: articles,
experiments, persons, research groups and scenarios.

6.1.1 Relation to POJO classes

The corresponding POJO representations of the domain entities are, however,
logically split into multiple POJO classes. Nevertheless, there are several classes
which contain the core data belonging to their representing domain entities. These
POJO classes are of our main interest and will be considered parent classes in
the full text search context. There exist one-to-one or one-to-many associations
among parent POJO classes and some other, child classes. The Solr documents
created from the class hierarchy, which is identified in the text below, will mainly
consist of textual data. In practice, it means that mostly String object fields will
be stored in the documents.

The following list captures relations between entities of the domain model and
their respective parent POJO objects:
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• article - Articles are represented by the Article class. It contains the
title and text string fields that hold values of article title and its text,
respectively. Articles can be commented on, so each article may have one
or more article comments associated. Text of the comments themselves is
contained in the ArticleComment instances.

• experiment - The Experiment class has the environmentNote field to de-
scribe the experiment environment. Apart from this field, it also refers to
related Weather, Disease, DataFile, Hardware and Software objects that
include information about weather, diseases of a tested subject, related data
files, and used hardware and software during an experiment, respectively.

• person - The Person class contains a person’s name, surname and a note
about the person. Although it also has associations to other classes, it is
not necessary to include them for indexing and searching purposes.

• research group - The ResearchGroup class keeps a name, title and description
of a research group and as in the case of the Person class, its structure
matches the structure of its domain entity, so no other referenced class
instances are needed.

• scenario - The class Scenario contains its name, title and description. The
class itself corresponds to its domain entity.

After inspecting the aforementioned classes, it turns out that there are several
fields that most of the objects have in common. For example, many POJO classes
possess the title and description fields. It is also worth noticing that the class
fields description, text and note have a very similar meaning in this context.
This repeatability and similarity of class fields can be conveniently used to create
a single type of a Solr document.

On the other hand, there are several class fields that are distinctive only for a few or
for a single domain entity (such as the temperature field in the Experiment class
or the type field in the Hardware class to specify parameter data type attribute).
Unlike a database, not populating some document fields has no additional overhead
[29].
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6.1.2 Single versus Multiple Solr Cores

Solr can maintain multiple schemas with their own configuration stored in different
cores that run within a single Solr instance. In this case it is necessary to decide
whether it is better to create one universal document type and use a single Solr
core or to use multiple Solr cores for each of the domain classes, each managing
its own document type.

Both alternatives have their strengths and weaknesses. If separated searching of
multiple document types is expected (e.g. in the case of different applications
using the same Solr server instance, or having multiple language mutations of an
application) then it is more reasonable to use multiple cores with different schemas,
since the core can run independently on each other. To support searching by using
a single search box, the final choice depends strongly on data heterogeneity, i.e.
how much different the data in the document types are.

According to the Solr wiki [47], “The more heterogeneous (different kinds of data)
you have in one field or in one index, the less useful it is.” If different types of
things are put into a common field, the field terms that are frequent for one entity
do not have to appear frequently anymore. It affects scoring, because Solr uses
document frequencies for its calculation. Thus, with the increasing heterogeneity
of data, the quality of final document scores decreases [29].

Another factor worth considering is the expected total number of documents. Due
to scalability reasons, it is in practice recommended to split documents to multiple
cores if their number stored in a single index exceeds one million [29].

In the EEG/ERP Portal, the are some fields of different entities that can be put
together under one document field. Furthermore, the document types tend to be
similar and the total number of documents is not expected to be over one million.

Thus, the choice of having a single core, meaning using a single index, will be
preferred.

6.2 Ensuring Document Uniqueness

When storing different types of documents under a single index, a problem of
document uniqueness arises. Although a relational database record can be, for
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example, uniquely identified by its primary key and a source table, its information
about the source table is lost after its corresponding Lucene/Solr document is
created. Hence, the original uniqueness is lost as there might be documents created
from records coming from different tables and having the same id. This is why a
custom mechanism ensuring a unique id for each document was implemented, as
can be read in chapter 7.

The need of document uniqueness is reflected on the document level as well. The
following fields related to unique identification of documents were added in the
Solr schema file:

• id - The purpose of the id field is to keep the original object ID value.

• class - Identifies a type of an indexed document. There are two reasons of
having this field. First, in combination with the id field value, it provides a
means of identification of a specific object. Therefore, a link to the found
record in the application logic can be created. Second, the class field value
can be used for displaying a category of a found result to a user as well as
for enabling categorization of search results.

• uuid - This field serves as a unique identifier for each document in the
index. It consists of two concatenated parts. The first part is the whole
class name of an indexed object, the second part is the actual ID value of
the object. To provide an example, the uuid value of an article with ID 20
is cz.zcu.kiv.eegdatabase.data.pojo.Article20.

These Solr fields were added to the schema.xml configuration file, whose incrimi-
nated lines are displayed in Listing 6.1.

Listing 6.1: Configuration of Identification Fields in the Solr Schema.
1 <field name="uuid" type="string" indexed="true" stored="true" ←↩

required="true" multiValued="false" />

2 <field name="id" type="int" indexed="false" stored="true" required=←↩

"true" multiValued="false" />

3 <field name="class" type="string" indexed="true" stored="true" ←↩

omitNorms="true"/>
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6.3 Proposed Document Structure

Based on the object hierarchy and the fields these objects contain, the following
document fields were configured:

• title - Title of a parent object.

• text - A longer textual sequence, such as description or a note, of a parent
object.

• name - It contains a person’s name (both first name and last name).

• source - This field determines a source of indexed documents. It can be set
either to linkedin, if a LinkedIn article was indexed, or to database, if a
POJO instance was indexed.

• temperature - Stores temperature during an experiment.

• param_datatype - It represents a data type or another type field of a parent
POJO class.

• file_mimetype - Stores mimetype values of parent POJOs. In this case, it
concerns the Scenario class.

• child_title - It is a multivalued field which stores all titles of child objects.

• child_text - This field is analogous to the text field. The difference is that
it is multivalued and stores all textual values of child objects.

• child_param_datatype - It is used for the same reasons as the param_-

datatype field, except that it is used for child object values.

6.4 Result Highlighting

In order to enable highlighting of search results, the solrconfig.xml configuration
file had to be modified. This modification in a form of default highlighting settings
is shown in Listing 6.2. The fields that will be highlighted are surrounded by the
str tag with the hl.fl value of its name attribute (see line 5 in Listing 6.2).
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For more information about the used configuration properties, see Chapter 5 or
refer to the official Solr documentation at [48].

Listing 6.2: Highlighting configuration.
1 <requestHandler name="/select" class="solr.SearchHandler">

2 <lst name="defaults">

3 ...

4 <str name="hl">true</str>

5 <str name="hl.fl">title text name source child_title child_text←↩

child_param_datatype</str>

6 <str name="hl.requireFieldMatch">false</str>

7 <str name="hl.usePhraseHighlighter">true</str>

8 <str name="hl.highlightMultiTerm">true</str>

9 <str name="hl.snippets">10</str>

10 <str name="f.text.hl.snippets">5</str>

11 <str name="hl.fragSize">100</str>

12 <str name="hl.mergeContiguous">true</str>

13 <str name="hl.encoder">html</str>

14 <str name="hl.simple.pre">&lt;b&gt;</str>

15 <str name="hl.simple.post">&lt;/b&gt;</str>

16 <str name="f.title.hl.alternateField">title</str>

17 <str name="f.text.hl.alternateField">text</str>

18 </lst>

19 ...

20 </requestHandler>

6.5 Handling Synonyms

Solr has a built-in synonym expansion support and used synonyms are defined in a
plain text file. The file synonyms.txt is used and some of its synonym definitions
look as shown in Listing 6.3.

Listing 6.3: Example of Synonym Definitions.
1 experimentation , test => experiment

2 holiday , vacation

In the first line in Listing 6.3, the terms on the left side of “=>” are replaced by
the term experiment, but not vice versa. The rule in the second line treats all
terms equally and does expansion of each term to the remaining synonyms.
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Synonym handling can be configured in Solr in schema field type definitions.
Listing 6.4 shows the configuration of synonym handling for the text_general

field type which is used for storing searched text.

Listing 6.4: Synonyms configuration.
1 <analyzer type="index">

2 ...

3 <filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt"←↩

ignoreCase="true" expand="false"/>

4 ...

5 </analyzer>

In this case, synonym expansion happens at index time. Since the expand attribute
is set to false, all equivalent synonyms will be reduced to the first one in the list
[49].

Index time synonym expansion should be preferred to query time synonym ex-
pansion [29, 49]. The main reason of doing so is to support using multi-word
synonyms. In query time, the query parser performs whitespace tokenization that
always precedes the analyzer chain. Therefore, multi-word synonyms are split into
separate tokens and are not recognized. However, index-time synonym expansion
is less flexible. If any changes in the synonym file are made, the whole index must
be rebuilt in order to apply the changes.

6.6 Autocomplete Support

In order to enable the autocomplete functionality, an extra document field needed
to be added. The field autocomplete contains all searched phrases which are
copied from selected source fields. It is done by utilizing the copyField element
for all affected source fields. The excerpt from the schema.xml configuration file
can be seen in Listing 6.5 below.

Listing 6.5: Configuration of Autocomplete.
1 <field name="autocomplete" type="text_autocomplete" indexed="true" ←↩

stored="true" multiValued="true" />

2 ...

3 <copyField source="title" dest="autocomplete"/>

4 <copyField source="name" dest="autocomplete"/>

5 <copyField source="child_title" dest="autocomplete"/>
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6 <copyField source="file_mimetype" dest="autocomplete"/>

7 <copyField source="param_datatype" dest="autocomplete"/>

8 <copyField source="source" dest="autocomplete"/>

6.6.1 Autocomplete Field

A new Solr field designed for text completion was created. The configuration of
the autocomplete field type can be seen in Listing 6.6: The tokens stored in this
field are processed both in index and query phase. Both phases have one tokenizer
and one filter class in common. First, the usage of KeywordTokenizerFactory
which, according to the Lucene/Solr documentation, “Emits the entire input as a
single token.” ensures treating stored field data as a single phrase. To prevent
letter case mismatches, LowerCaseFilterFactory was applied.

During the search phase, the terms related to autocomplete are additionally made
by using Solr EdgeNGramFilterFactory class. This class creates n-grams for an
input term. Based on these n-gram tokens, the target phrase will be suggested.
The minimal and maximal n-gram lengths are set to 2 and 50, respectively, which
allows meaningful phrase suggestions up to the total string length of 50 characters.
In practice, it means that, for example, the filter output for the input string “hello”
will be 4 tokens: “he”, “hel”, “hell”, and “hello”. By typing a string that matches
one of these n-gram tokens, the original “hello” string will be suggested.

Listing 6.6: Autocomplete Field Type.
1 <fieldType name="text_autocomplete" class="solr.TextField" ←↩

positionIncrementGap="100">

2 <analyzer type="index">

3 <tokenizer class="solr.KeywordTokenizerFactory"/>

4 <filter class="solr.LowerCaseFilterFactory"/>

5 <filter class="solr.EdgeNGramFilterFactory" minGramSize="2" ←↩

maxGramSize="50" />

6 </analyzer>

7 <analyzer type="query">

8 <tokenizer class="solr.KeywordTokenizerFactory" />

9 <filter class="solr.LowerCaseFilterFactory"/>

10 </analyzer>

11 </fieldType>
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6.6.2 Using Edismax Parser

The default query parser set in the Solr configuration is LuceneQueryParser.
Although it offers a lot of possibilities, any Solr syntax mistakes result in ParseEx-

ception. To avoid checking every potential state which leads to a syntax error,
such as an odd number of parentheses, it is recommended to use ExtendedDismax-
Parser [29]. This parser is more tolerant to syntax errors and guarantees that an
exception will not be thrown in most of the cases. Instead, an empty search result
set is returned. Compared to the default parser, its performance is generally the
same [29]. Therefore, the Edismax parser is an appropriate choice for common
search use cases since it offers the same query possibilities as the default parser.
Listing 6.7 depicts the lines responsible for configuration of Edismax parser.

Listing 6.7: Configuration of the Edismax parser.
1 <requestHandler name="/select" class="solr.SearchHandler">

2 <lst name="defaults">

3 ...

4 <str name="defType">edismax</str>

5 ...

6 </lst>

7 <\requestHandler>
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7 | Implementation

This chapter describes the implementation steps to create a full text search. It is
based on the designed index schema and Solr configuration described in Chapter
6.

7.1 Indexing Data

It was mentioned in Chapter 5 that it was needed to index data coming from
different data sources. Although the ways to build input Solr documents differ,
the principle of indexing as the whole is the same for all data sources and can be
divided into the following steps:

1. A Solr document is created from input data.

2. A connection between the Solr server and the EEG/ERP Portal application
is established.

3. The document is sent to the Solr server.

4. Information about the created document is logged.

It is obvious that the steps 2,3 and 4 are common for all kinds of data sources.
To separate common functionality of indexing from the specialized step during
which a Solr document is built, the Template Method design pattern [38] was used.
By applying this design pattern, the class hierarchy depicted in Figure 7.1 was
implemented.

The parent abstract class Indexer takes care of performing the generic steps only by
providing a HttpSolrServer instance and implementing the index(), indexAll()
and logCommitResponse() methods, respectively. The step of document creation
is handed over to its corresponding implementation of the prepareForIndexing()
method in one of the child classes.
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Indexer<T>

- solrServer  : SolrServer

+ index(T): void
+ indexAll (List<T>): void
+ prepareForIndexing (T): SolrInputDocument
+ unindex (T): void
+ unindexAll (): void
+ getSolrServer (): SolrServer
+ setSolrServer (SolrServer ): void
# logCommitResponse (UpdateResponse ): void

PojoIndexer

+ prepareForIndexing (Object):
SolrInputDocument

+ unindex (Object): void
+ unindexAll (): void

LinkedInIndexer

+ prepareForIndexing (Post):
SolrInputDocument

+ unindex (Post): void
+ unindexAll (): void

AutocompleteIndexer

+ prepareForIndexing (String):
SolrInputDocument

+ unindex (String): void
+ unindexAll (): void

Figure 7.1: UML Diagram of Indexer Classes

There were three child classes (indexers) created and can be found in the cz.zcu.-
kiv.eegdatabase.logic.indexing package of the project. Each of the classes is
responsible for processing different input data:

• PojoIndexer - indexer of POJO classes,

• LinkedInIndexer - indexer of LinkedIn articles,

• AutocompleteIndexer - indexer of searched phrases that improves the
autocomplete functionality.

The following sections focus on the provided solutions to creating index documents
from input data. Therefore, three different implementations of the prepareForIn-
dexing() method in the classes listed above will be described.

7.1.1 Database Indexing

Generally speaking, the structure of data stored in RDBMS is not suitable for
index of full-text search engines. The reasons behind this were already covered in
Chapter 2. Therefore, a transformation from relational data to document data
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had to be made. The domain model, the related POJO classes and their fields of
our interest were identified in Chapter 5. Based on this identification, the Solr
schema fields were created (described in Chapter 5).

Possibilities of Indexing

Primarily, it is necessary to choose the method of mapping the POJO fields into
Solr schema fields. By using the SolrJ API, it can be done by the following
mechanisms:

• @Field annotation - The purpose of the @Field annotation is to mark
the POJO fields that are to be indexed. In combination with the addBean()
and addBeans() methods provided by SolrJ API, Solr documents can be
created.

However, this approach can be used only in a limited number of cases where
a direct mapping of single-POJO fields is satisfactory. In more advanced
scenarios, such as mapping an object hierarchy to a Solr document, another
alternative must be chosen. This limitation lies in the inability to use the
@Field annotation to mark nested objects or object collections.

Furthermore, the usage of provided annotations brings a problem of ambi-
guity of mapped objects. Documents stored in the Solr index must possess
an identifier which is unique across all stored documents. Object IDs are
unique only in the class scope, so global uniqueness is not ensured.

• using the SolrJ’s addField() method - Although this alternative is not
so comfortable as the previous one, it gives more control of creating a Solr
document. This is because merging multiple POJOs into one Solr document
can be achieved. Nevertheless, using this method only would result in
creating a less flexible code which is harder to maintain.

• integration with Hibernate Search and using its annotation mechanisms - The
core idea of this proposed alternative is to use Hibernate Search capabilities,
such as advanced indexing annotation support and automatic indexing of all
collected changes, for the initial phase of indexing. Though it is possible to
combine Hibernate Search and Solr (one of such ways to combine them can
be found in [50]), there would be an extra undesired dependency on another
technology.
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• custom annotation mechanism - By exploiting possibilities offered by Java
Reflection and combining them with custom Java annotations, a universal
solution covering all needs can be implemented. This way, the problem of
creating a Solr document from a class hierarchy, as well as the problem of
the same document IDs, can be overcome. This alternative is undoubtedly
the most challenging one, but its implementation can assure covering all
specified needs.

For the above-mentioned reasons, it was decided to create a custom annotation
mechanism for mapping POJO fields to their respective Solr document fields.

Java Reflection

Java Reflection was frequently used to implement the new full-text search solution.
Therefore, this mechanism will be described in the next section. Then, its usage
throughout the created code of full-text search will be demonstrated.

Introducing Java Reflection

Reflection is the ability to inspect the code and make its modifications at runtime.
It is a feature that makes staticly-typed languages like Java more dynamic. Its
heavy usage can be found especially in modern frameworks such as Spring or
Hibernate, that both use reflection for instantiating classes from information in
configuration files.

A very common use case of reflection in Java is the usage with annotations. This
combination opens many possibilities of manipulating class metadata. In JUnit 4,
for example, the @Test annotation was introduced. The JUnit framework looks
up all methods marked by this marker annotation and call them in each execution
of running unit tests.

The root class of the Java object hierarchy, the Object class, has the getClass()
method providing the corresponding Class object, meaning that all Java classes
can be invoked or inspected by means of reflection.
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Annotation Interface

In order to inspect classes and collect required field values, the classes as well
as the some of the fields within them need to be marked by annotations. Three
different annotations serving different purposes were created:

• @Indexed - both class (type) and field annotation that can be used in two
ways: When it is used to annotate classes, it marks the parent POJO classes;
when used on the field level, it marks child POJO classes or their collections,

• @SolrField - a field annotation which marks the fields whose values should
be contained in a Solr document,

• @SolrId - a field annotation that determines the fields belonging to the
unique identifier of indexed classes.

The annotation interfaces can be found in the cz.zcu.kiv.eegdatabase.data-

.annotation package of the EEG/ERP Portal.

Listing 7.1 provides an example of creating the @SolrField field annotation. Note
that this annotation has the name attribute which serves to specify the matching
field name in the Solr schema. All used Solr field names are defined as enumeration
constant values of the IndexField enumeration type to avoid mistyping them.

Listing 7.1: Example of Creating the @SolrField Annotation.
1 @Target(ElementType.FIELD)

2 @Retention(RetentionPolicy.RUNTIME)

3 public @interface SolrField {

4 IndexField name();

5 }

The usage of the defined annotations is demonstrated on the code of the Experiment
class in Listing 7.2 (irrelevant lines are omitted). It is worth noting that the asso-
ciated POJO collections, whose fields logically belong to the same Solr document,
are annotated accordingly.

Listing 7.2: Example of Using Indexing Annotations in the Experiment Class.
1 @Indexed

2 public class Experiment implements Serializable {

3 @SolrId
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4 private int experimentId;

5 @Indexed

6 private Weather weather;

7 @SolrField(name = IndexField.TEMPERATURE)

8 private int temperature;

9 @SolrField(name = IndexField.TEXT)

10 private String environmentNote;

11 @Indexed

12 private Set<Hardware > hardwares = new HashSet <Hardware >(0);

13 @Indexed

14 private Set<Pharmaceutical > pharmaceuticals = new HashSet <←↩

Pharmaceutical >(0);

15 @Indexed

16 private Set<Disease > diseases = new HashSet <Disease >(0);

17 @Indexed

18 private Set<Software > softwares = new HashSet <Software >(0);

19 ...

20 }

The first practical application of Java Reflection discussed in this text is strongly
related to the created set of annotations. To leverage the semantics hidden behind
the used annotations, it is necessary to use reflection to introduce indexing logic
by inspecting these annotated classes.

Indexing Algorithm

In the prepareForIndexing() method, it is first found out if the type of a given
Object instance, sent as the method parameter, has the @Indexed annotation
assigned. If it does, it can continue traversing the class fields by searching a
field with the @SolrId annotation. The value of such annotated field is used for
assembling Solr document fields for later identification of a document. These
document fields were described in Chapter 6.

The next step of the algorithm is of recursive nature and happens on two levels -
on the parent and the child level. In both cases, all values of those fields containing
the @SolrField annotation are extracted. On the parent level, in addition, the
fields with the @Indexed annotation are searched to identify the associated child
Collection or Object classes which are then traversed.

The schema in Figure 7.2 visually depicts the main idea of the described algorithm.
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@Indexed

@SolrId

@SolrField

@SolrField

@Indexed

...

@Indexed ...

id
uuid

class

title
text

child_title

child_text

Document POJO Hierarchy

Collection

Figure 7.2: POJO Indexing Algorithm Schema.

Ensuring eager loading

In order to make the indexing algorithm work, associated POJO collections, whose
object field values are desired to be indexed, have to be already initialized. This
condition, however, is not always met. As written earlier in Chapter 4, it is desired
to apply lazy loading of object collections for as many cases as possible. If it is
necessary, switching to the eager loading strategy can be done using the following
ways:

• change of Hibernate mapping configuration - This modification involves
setting the lazy=”false” attribute for collections to be eagerly loaded. It
means that all affected 1:N relationships are always loaded together with
the parent object. This approach is not very flexible, because no proxies
are created and the lazy loading behavior cannot be therefore configured at
runtime.

• custom HQL queries or Hibernate criteria that force eager fetching - If HQL
queries are used, one can specify eager fetching using the fetch keyword. In
case of using the Criteria Query API, the setFetchMode() method with its
fetch mode attribute set to FetchMode.EAGER does the job. This alternative
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is more flexible than the previous one since lazy object initialization, which
is set by default, is overridden by the eager fetch mode. The created proxy
objects call the associated real objects to fetch necessary data. The drawback
of this solution is the necessity to create custom HQL queries or Hibernate
criteria for each entity that will cause collections to be loaded lazily. As the
created queries can differ a lot, it is very difficult to apply this solution in a
generic way.

• usage of the Hibernate.initialize() method - This method is used
to initialize lazy-loaded collections. Its parameter takes an object that is to
be fetched by the parent object. The method also ensures that all already ini-
tialized objects will be omitted. The power of the Hibernate.initialize()
method lies in its universality. When used together with Java Reflection, a
universal solution enforcing eager loading of collections for any POJO object
can be achieved. It can be used even if the Hibernate session is closed [37].

Based on the aforementioned possibilities and the current requirements, using
the Hibernate.initialize() method in combination with the power of Java
Reflection was preferred.

This decision leads to modification of the SimpleGenericDao class. It was enriched
of a new generic method which implements the chosen eager loading strategy.
The method, namely the getAllRecordsFull() method, works on the principle
of finding out all proxied object fields, i.e. those fields which are not initialized
yet. All fields are accessed by reflective calls of their respective getter methods
available in a given class. The fields are then initialized by adding them as the
parameters of subsequent Hibernate.initialize() method calls.

The following Listing 7.3 shows the implementation of eager loading on demand
described in the paragraph above.

Listing 7.3: Enforcing Eager Loading by Using Java Reflection.
1 public List <T> getAllRecordsFull() {

2 List <T> records = getAllRecords();

3 for(T record : records) {

4 Method[] methods = record.getClass().getDeclaredMethods();

5 for (Method method : methods) {

6 if(method.getName().startsWith("get") && !method.←↩

getReturnType().isPrimitive()) {

7 try {
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8 initializeProperty(method.invoke(record));

9 } catch (IllegalAccessException e) {

10 log.error(e);

11 } catch (InvocationTargetException e) {

12 log.error(e);

13 } catch (Exception e) {

14 log.error(e);

15 }

16 }

17 }

18 }

19 return records;

20 }

21
22 ...

23
24 protected void initializeProperty(Object property) {

25 if(!Hibernate.isInitialized(property)) {

26 getHibernateTemplate().initialize(property);

27 }

28 }

7.1.2 LinkedIn Indexing

Using Spring Social

The methods provided by Spring Social are configured to give a user a set of default
fields that are appropriate for some use cases. Although it is very convenient to
have such layer of abstraction, sometimes there is a need to obtain other fields
or to omit some of them. For example, if the Spring Social method for getting
all articles in a group is called, some information, such as article summaries and
their time stamps, is missing.

In such cases, a custom LinkedIn REST call must be created and put as a parameter
of the restOperations().getForObject() method provided by Spring Social.
The call can contain field selectors which are used to specify fields to return in
the response.

The following example in Listing 7.4 shows the usage of field selectors in the
REST call. The REST call in the listing gets full information about twenty latest
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LinkedIn articles published in the EEG/ERP Portal group. Note the group-id

placeholder which is later substituted by the real value of the EEG/ERP Portal
group ID.

Listing 7.4: Example of a LinkedIn REST API call.
1 http://api.linkedin.com/v1/groups/{group -id}/posts:

2 (creation -timestamp ,title ,summary ,id,creator:(first -name ,last -name)←↩

)?

3 count=20&start=0&order=recency"

In the application code, LinkedIn REST calls are wrapped in the methods of the
LinkedInManager class. The class includes these methods using direct LinkedIn
REST calls:

• getGroupPostsWithMoreInfo(int count, int start) - It uses a very sim-
ilar REST call as the one in Listing 7.4 to obtain LinkedIn articles. The
number of retrieved articles and the index position of the first retrieved
articles are defined in the method parameters.

• getPostById(String id) - Gets a LinkedIn post by its unique ID.

• deletePost(String id) - Deletes a post by specifying its ID as the method
parameter.

Apart from the methods mentioned above, the following methods were added to
the LinkedInManager class as well:

• getLastPost() - This method returns the last post added to the EEG
Portal LinkedIn group.

• getLastPostId() - Returns the id value of the last post added to the EEG
Portal LinkedIn group.

Usage of these methods is related to indexing LinkedIn articles which are created
by using the EEG/ERP Portal.
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Article-document Mapping

Compared to POJO-document mapping, mapping from the LinkedIn article to
the created Solr document structure is straightforward. Received LinkedIn Post

objects store only unique string ID, article title and summary values, so converting
them to Solr documents involves copying these values to the respective uuid, text
and title document fields. Apart from that, the document fields class and
source must be populated in order to find these articles successfully while doing
a full-text search.

7.1.3 Indexing Searched Phrases

It was decided to make searched phrases indexable. Indexing them enables the
phrases to appear in the autocomplete box. Moreover, by indexing search phrases,
search frequency of each phrase can be found out and stored together with the
phrase in the document. This way, indexed phrase frequencies enable suggesting
the most queried phrases first.

Internally, a phrase and its search frequency are stored together in the autocomplete
Solr field and are separated by the number sign (#) symbol.

7.1.4 Changing Indexed Data

When some data stored in RDBMS are removed or edited, the made changes need
to be reflected in the Solr index. In case if parent POJO objects are changed, the
analogous document changes can be performed by using the indexer’s index()
and unindex() methods. The first method simply overwrites a stored document
having the same uuid field as the new inserted one. The latter method removes a
document determined by an object set as the method parameter.

However, child objects have no direct document equivalents, because they form
only a part of the documents of parent objects. Although partial updates are
possible since Solr 4.0, they are not implemented. The reasons of not implementing
them are the following:

• It is expected that the EEG/ERP Portal application is designed to treat
the child objects always in the context of their parent object.
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• Adding the partial update support brings a new level of complexity into the
application. Due to the application nature and its requirements, the added
complexity was not worth the effort in this case.

Nevertheless, if a change of a child object happens, the index will become inconsis-
tent. This is why periodic indexing of database data has to be ensured to prevent
potential inconsistent index states and to reach the so-called eventual consistency.

Almost the same applies to LinkedIn articles where the problem is extended by
adding, updating and removing the articles by the means of the LinkedIn website.

7.1.5 Periodic indexing

LinkedIn Articles

There are two ways to add an article to the EEG/ERP Portal group: either
indirectly by filling in the form on the EEG/ERP Portal website or directly from
LinkedIn.

In the first case, articles can be indexed immediately after publishing them because
their times of publishing are known due to the interaction with the EEG/ERP
Portal. The last published article in the LinkedIn group can be fetched by the
means of LinkedIn REST API. Its object can be then used by the indexer, which
adds information about the article to the index.

The latter case is more complicated as there is no interaction with the EEG/ERP
Portal. So in order to index all LinkedIn articles, the article data must be
retrieved first. It can be done by using LinkedIn REST API calls to receive their
object representation. Since there is no available information of when articles
are uploaded to LinkedIn, the REST calls must be done periodically. This way,
periodic indexing of all articles published on LinkedIn can be achieved.

Although the obvious disadvantage of periodic indexing is the existence of a delay
between publishing times of some articles and their indexing times (which is equal
to the indexing period in the worst case), this method assures that all articles get
indexed in the end.
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Scheduling in Spring

The Spring Framework has a native support of task scheduling and asynchronous
calls. Since its version 3.0, methods can be scheduled and also run asynchronously
by using annotations, namely the @Scheduled and @Async annotations.

The first mentioned annotation, when added to a method, makes the method
schedulable by Spring. Usage of this annotation is restricted to the void methods
with no parameters. The @Scheduled annotation has to contain a piece of
metadata to tell Spring how to plan the method scheduling.

Currently there are three available attributes for the @Scheduled annotation, from
which the most flexible option is specifying a cron expression to trigger a task as
shown on the following lines:

Listing 7.5: Example of a Cron Expression.
1 @Scheduled(cron=* 0 22 * * SAT-SUN)

2 public void indexAll()

This way, the method indexAll() will be scheduled to run always at 10 pm
only on Saturdays and Sundays. The cron syntax allows a user to create more
sophisticated scheduling scenarios, but discussing the syntax is out of scope of this
work. Since Spring is internally using Quartz as a scheduler, an interested reader
can find all necessary information about the syntax in the Quartz documentation
[51].

The @Async annotation is used to mark the methods to be invoked asynchronously.
It is very easy to use for methods having void return values. Listing 7.6 shows the
usage of the @Async annotation for the indexLinkedIn() and indexDatabase()

methods that handle LinkedIn-articles and RDBMS indexing, respectively.

Listing 7.6: Using the @Async Annotation.
1 @Async

2 public void indexLinkedIn()

3 ...

4 @Async

5 public void indexDatabase()

In order to enable annotation-based scheduling, it is necessary to add a new
element in the application context file as well as the task namespace to which
the element belongs (see Listing 7.7).
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Listing 7.7: Using task Namespace
1 <xmlns:task="... http://www.springframework.org/schema/task"

2 xsi:schemaLocation="... http://www.springframework.org/schema/task/←↩

spring -task.xsd">

3 ...

4 <task:annotation -driven executor="indexingExecutor" scheduler="←↩

indexingScheduler"/>

The annotation-driven element requires executor and scheduler attributes to be
set to handle tasks represented by methods marked by @Async and @Scheduled

annotations, respectively. The related lines can be seen in Listing 7.8:

Listing 7.8: Setting Spring Executer and Scheduler.
1 <task:executor id="indexingExecutor" pool -size="5"/>

2 <task:scheduler id="indexingScheduler" pool -size="1"/>

7.1.6 UML Class Diagram

The relationships among classes that create the indexing part of the full-text
search are depicted in the simplified UML diagram in Figure 7.3.

Figure 7.3: UML Class Diagram of the Indexing Part.

There can be seen these most important classes:

• IndexingService - Contains the indexing methods indexDatabase() and
indexLinkedIn() described above that handle periodic indexing.
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• Indexer - Direct usage of its index() and unindex() methods is made
when any of POJO objects or LinkedIn Posts is created, updated or deleted.
Thus every domain object must be associated with its indexing in the first
two cases and its removal from the index in the last case. It is achieved
by calling these methods in the create(), update() and delete() in the
SimpleGenericDao class and in the publish() and deletePost() methods
of the LinkedInManager class.

7.2 Searching

This section deals with the search user interface. The interface was implemented
by using the Wicket Framework.

7.2.1 Search Logic

Most of the search logic can be found in the FulltextSearchService class. This
method is responsible for:

• returning search results with highlighted keywords for a given query - method
getResultsForQuery()

• returning suggested search phrases for autocomplete - method getTextTo-

Autocomplete()

• returning a total number of found documents for a given query - method
getTotalNumberOfDocumentsForQuery()

• faceting by document categories - method getCategoryFacets(String

solrQuery)

The method getResultsForQuery returns FullTextResult objects that represent
results received from the Solr server for a query. The FullTextResult class, in
fact, contains fields that match those contained in the Solr document, i.e. the
fields whose information has a value for users - document title, text fragments
with highlighted searched keywords, type of the document, class of a Wicket target
page which contains further details, id of a corresponding POJO, and time of
indexation.
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More details about the mentioned methods can be found in the JavaDoc docu-
mentation in the attached DVD (see Attachment A).

7.2.2 Full-text Search User Interface

Objects of the FullTextResult class are handed over to classes that form the
full-text search user interface. The classes are located in the cz.zcu.kiv.eeg-

database.wui.ui.search package of the project.

Namely, these classes include:

• SearchFacets - It creates faceted search by showing number of found results
for each of the document categories, allowing to filter the found results by
the document category. It uses the FacetCategory class, which represents
the facet category by the name and count parameters, and the enumeration
type ResultCategory.

• SearchPanel - This abstract class represents a search panel that provides all
necessary functionality, including the autocomplete capability. The reason
why the class is abstract is that Wicket enforces to have a separate class
for each HTML markup. Since it is required to have one search panel in
the page header and another one, which is different by appearance, in the
search page, their corresponding classes had to be created. There is the
MenuSearchPanel class for the search panel located in the page header. For
displaying the search panel in the search page, the PageSearchPanel class
was made.

• SearchResultPanel - It is responsible for displaying search results. The
search results are rendered by using the created SearchResultDataProvider

class that communicates with the FulltextSearchService class to obtain
the matching FullTextResult instances. Besides that, it also displays the
number of found results per each document category by utilizing an instance
of SearchFacets.

• SearchPage - It represents the search page. It uses the listed SearchRe-

sultPanel and PageSearchPanel classes to display necessary information.

The appearance of the search user interface is depicted in the screenshot in Figure
7.4.
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Figure 7.4: Search User Interface.

7.2.3 UML Class Diagram

The described classes related to searching documents and associations among
them are depicted in the UML class diagram in Figure 7.5
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Figure 7.5: UML Class Diagram of the Search Part.
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8 | Testing

This chapter presents created tests that prove the correct functionality of the
implementation of the full text search for the EEG/ERP Portal. These tests are
JUnit tests and their main purpose is to verify expected functionality of various
classes related to the full-text search.

All tests use test data from the EEG/ERP Portal database server and interact
with an independently running Solr testing server to access indexed data. The
server runs at the address 147.228.63.134/solr on port 8686 and its testing
data come from the EEG database as a result of one-time indexing.

8.1 Unit Tests

There were several test cases created by using JUnit4 and they are discussed in
this section. Integration of JUnit with Spring was already done in the past. In
effect, the defined Spring beans can be used in the tests.

The created test classes can be found in the cz.zcu.kiv.eegdatabase.search

package in the test directory of the EEG/ERP Portal application.

8.1.1 FulltextSearchServiceTest.java

This test class uses the FulltextSearchService class to test its autocomplete and
faceting functionality. The getAutocompleteResultsSuccess() and getAuto-

completeResultsFail() tests the autocomplete part. As their names say, these
methods test returning the expected output for two different input strings. In
case of the first mentioned test, the test passes if any autocomplete suggestions
are found for the query string. On the contrary, the other test passes if a given
search string returns no autocomplete results.

Faceted search is covered by the getDocumentCountForEmptyQuery(), facetAll-
Test() and facetNoneTest() tests. getDocumentCountForEmptyQuery() tests
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obtaining the zero number of search results if an empty string is searched. The
facetAllTest() and facetNoneTest() methods test creating faceted categories.
The facetAllTest() test passes if the number of documents in each category is
greater than zero when all documents are retrieved (by using the * sign as the
input query). facetNoneTest() It uses the empty search string that should not
return any documents. Therefore, this test succeeds if the number of documents
in each category is equal to zero.

8.1.2 IndexingServiceTest.java

This class contains tests of methods of the IndexingService class. The testData-
baseIndexing() method verifies proper indexing of database records. The second
test, testLinkedInIndexing(), checks correct indexing of LinkedIn articles.

8.1.3 IndexingTest.java

It contains methods that test indexing of created sample documents and their
removal from the Solr index. For example, the indexSampleIndexablePojos()

method is a test case that creates an instance of each indexable parent class and
performs a query that returns all documents representing these instances. This
test succeeds if all created documents are returned by the query.

8.1.4 LinkedInIndexingTest.java

This test class contains JUnit tests that index and unindex created test posts.
The tests also check the correct behavior of manipulation with received LinkedIn
articles via the LinkedIn REST API.

62



9 | Conclusion

The aim of this thesis has been to enrich the EEG/ERP Portal of a new full-text
search functionality which enables full-text search over data from a relational
database and social networks. This chapter summarizes the work presented.

In the theoretical part (chapters 2-4), the basic principles of full-text search
systems were explained and their differences compared with relational database
management systems were discussed. Afterwards, several open-source full-text
search engines were presented. It turned out that all of them were more suited for
full-text search than relational database systems and that there was no search
engine, whose overall performance was significantly better.

The practical part starts with Chapter 5, in which the previous EEG/ERP Portal’s
full-text search solution was analyzed and the full-text search requirements were
collected. Furthermore, the introduced search engines and libraries were compared
with respect to the stated requirements. The comparison showed that the Lucene-
based Solr search server was the most suitable solution. Therefore, Solr was
chosen to be used for the full-text search implementation and the overall system
architecture was proposed.

Chapter 6 was focused on designing the Solr index document. There was a need to
index data, that were coming from different sources, into a unified structure. These
sources are the EEG database and LinkedIn, the only social network integrated
with the EEG/ERP Portal so far. After the analysis of indexable data in the
database tables and in LinkedIn articles, an appropriate Solr schema design was
made. Additional fields for autocomplete support were defined in the Solr schema
as well. Furthermore, search result highlighting was configured.

Chapter 7 discussed the implementation aspects concerning indexing and searching
data. Several approaches of indexing different data were analyzed. Different data
sources led to creating indexers for both RDBMS data and LinkedIn articles.
Furthermore, to improve the autocomplete functionality, the indexer of searched
phrases was added. Relational database data were indexed by applying a trans-
formation lying in denormalization of its tabular data. A custom annotation
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mechanism was made to handle object-document mapping. Also optional eager
loading, which is necessary for database indexing, was implemented. LinkedIn
data were indexed by utilizing LinkedIn REST API. Apart from real-time index-
ing of modified or created data, indexing runs periodically by using the Spring
Framework scheduling capabilities.

The second part of this chapter describes the user interface created by using
the Wicket framework, and the search logic which, apart from displaying search
results, handles faceted search by document categories, highlighting of searched
keywords and keyword suggestions.

In the final chapter of the practical part, Chapter 8, the created full-text search
was covered by JUnit tests to prove its validity. The created tests concern checking
proper indexing and searching.

The work meets all set requirements. However, the results that come from this
thesis can be further extended. The created solution is open to indexing other
data sources, such as PDF files or data from social networks like Facebook and
Twitter.
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I DVD Content

The attached DVD contains the following folders:

• javadoc - This folder contains the generated JavaDoc documentation of the
source code.

• solr - In this folder, a configured Solr server is present.

• src - It contains source code of the EEG/ERP Portal which includes the
full-text search implementation.

• thesis - The PDF document of this thesis can be found here. All figures
that appear in the thesis are included in the figures subfolder. The latex
subfolder contains Latex source files as well as other necessary files needed
to generate the output PDF file.
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