
University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and Engineering

MASTER THESIS

Pilsen, 2013 Petr Miko

University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and Engineering

Master Thesis

Mobile system for management
of EEG/ERP experiments

Pilsen, 2013 Petr Miko

I hereby declare that this diploma thesis is completely my own work and that
I used only the sources cited.

Pilsen, May 16, 2013 Petr Miko, .

Abstract

Gathering EEG Data Using RESTful Web Service and Android

The goal of the thesis is to present a problem and a solution of mobile
gathering of EEG data. EEG researchers need to have their data available and
synchronize them in manner of reading and writing meta-data and uploading
data files. This thesis presents development of a RESTful web service on
Java EE server and creation of an Android RESTful web service client, while
respecting requirements and needs of EEG researchers.

Keywords: mobile, web service, Java, RESTful, Android, EEG, Spring,
RestTemplate.

Contents

1 Introduction 1

2 EEG and ERP 3

3 EEG Base 4

4 Requirement Analysis 5

5 Web services: SOAP and REST 8
5.1 SOAP Web Services . 8
5.2 RESTful Web Services . 9
5.3 Basic Comparison . 11

6 Java technologies 12
6.1 Annotations vs. XML Definitions 12
6.2 JAXB . 13
6.3 Apache Maven . 13

6.3.1 Directory Structure . 14

7 Mobile Platforms 16
7.1 Windows Phone . 16
7.2 iOS . 17
7.3 BlackBerry . 18
7.4 Android . 18
7.5 Selection Decision . 20

8 Android Specifics 22
8.1 Resource Handling . 22

iii

Contents

8.1.1 Application Localization 23
8.1.2 Application Layouts 24

8.2 The Life Cycle . 24
8.2.1 Activity . 25
8.2.2 AsyncTask . 26
8.2.3 Service . 27

8.3 Manifest File . 27

9 Architecture 28

10 Server Side: RESTful WS 29
10.1 Messages . 29
10.2 Requests and Responses . 29

10.2.1 Servlet Definition . 30
10.2.2 Controller . 31
10.2.3 Service . 32

10.3 Security . 33
10.3.1 User Verification . 33
10.3.2 HTTPS and SSL . 34

11 Client side I: Creating a New Project 36
11.1 Creating Android Application Using Apache Maven 36
11.2 Project’s Maven Settings . 37
11.3 Android Manifest . 38

12 Client side II: Working with Data 40
12.1 SharedPreferences: Storing User Data 40
12.2 ListView and Complex Data Types 40
12.3 Providing Data Between Activities 41

13 Client Side III: RestTemplate 43
13.1 Communication Using HTTP/SSL 43

iv

Contents

13.2 Direct Usage of RestTemplate 44

14 Client side IV: Navigation 46
14.1 Option Menus . 46

14.1.1 Activities . 47
14.1.2 Fragments . 48

14.2 Tabs Navigation . 49
14.3 Spinner Navigation . 50

15 Client Side V: EEG Base for Android Specifics 51
15.1 Resources . 51

15.1.1 Application Localization 51
15.1.2 Application Layouts 51

15.2 Archetypes: Project Specifics 52
15.3 Data Layer . 53

15.3.1 Container . 53
15.3.2 Adapter . 54

15.4 Web Service Communication 54
15.5 User Interface . 55

15.5.1 Startup . 56
15.5.2 NavigationActivity . 57
15.5.3 Record Browsing . 57
15.5.4 Creating a New Record 59
15.5.5 Choosing File for Upload 59
15.5.6 Settings . 60

15.6 Utilities . 61

16 Testing 62

17 Future enhancements 65
17.1 WADL Support . 65
17.2 Changing Tabs by Swipe Gesture 65

v

Contents

17.3 File Downloading . 65
17.4 Visualizing Data File . 66

18 Conclusion 67

A JAXB Annotations Example 75

B Parcelable Data Container 78

C Installing Android Application 81
C.1 Maven Build and Install . 81
C.2 Install from APK . 81

D EEG Base for Android: User Manual 82

vi

1 | Introduction

If we had to define aspects of modern application, mobile and service-oriented
aspect would be certainly among the most mentioned ones. Being accessible
from everywhere and anytime, while providing functionality equal to user’s
experience from computers, is a goal of application creators and most desired
wish of many users.
Currently there are common expectations upon any of us that we are quick
in our jobs and efficient at the same time. It requires having all the necessary
data within our reach. Giving the fact that personal computers are not always
available right away, focus of many companies and developers have shifted
on devices, which are with us most of the time – our mobile phones and also
tablets, whose market share increases literally every day.
Having a native application for mobile devices gives its creator advantage
against common and in some cases obsolete ways to work with users data.
User, who has just written an important note, does not want to manually
copy the file, when he gets to the computer – he wants to save it and have
it available in his/her computer by the moment, the computer is turned
on. User, who searches for a specific piece of information, which is already
available on a server, does not want to turn on the computer especially
if he/she needs information right away – such user needs to have a possibility
to access the information from his/her mobile phone, which is most definitely
on the user and ready to be used. When an application provides to user
such possibility, which extends and improves user’s usecase, we speak of this
possibility as of a service.
Modern application often provides many separate services which are joined as
modules of an complex and sophisticated application. Every service provides
its public interface, by which it is available for user, so a client application
could access it and use it for its purpose. This approach of application design
is recognized as SOA, service-oriented architecture, and application developed
this way is, by definition, service-oriented.
This thesis is dedicated to provide a solution for a need of EEG researchers
to have a quick, simple and accessible way to obtain basic information about
their experiments and to store measured data, when measuring computer
does not dispose of internet connection, while their mobile devices do.

1

Chapter 1. Introduction

The theoretical part of this thesis analyses requirements originated from
such needs, submits solutions and explains the features of chosen solution.
Specifics and basic description of required technologies are also presented in
this part.
The following part of practical realization puts its focus on description of
development process of an Android client application, service-oriented server
side and also submits means to develop own application.
The last part of the thesis presents testing results, proposes ideas for future
application enhancement and submits the thesis conclusion.

2

2 | EEG and ERP

In matter of recording brain activity, there are two possible approaches. A first
approach is obtaining a record using an electroencephalogram in an diagnostic
procedure called Electroencephalography (EEG). This method provides
non-invasive and relatively cheap way to measure an active electric potential
of brain cells. Even though this method is usable for diagnosing diseases like
epilepsy or recognize brain death, its drawback is that the record is a mixture
of hundreds different neural signals, in which might be difficult to recognize
specific neuro-cognitive processes.
A second possibility is a derivative of EEG measurement – ERP measurement,
in which we seek for Event Related Potentials. Event related potentials
are measurable electric potentials created in reaction to a stimulus of sensory
origin, like touch, smell or sight. Stimuli might be both of conscious or
unconscious type, while the stimuli response might be usually more distinctive
to observe in the recording, when a tested subject does not expect the stimuli
to come. Such fact is often used when measuring stimuli response called P3
or also P300. Such potential has positive voltage deviation and occurs right
about 300 milliseconds after stimulus. Also, ERP potentials are measured
locally at desired brain cortex, while EEG itself represents a global method
of measuring the brain activity.

3

3 | EEG Base

EEG researchers produce large amount of recordings and related meta data
during their experiments, like specific measuring scenario details, description
of a measured subject etc. The EEG Base is a web portal created in order to
provide a complex database for gathering such information, while extending
researchers’ possibilities in manner of sharing stored information between
each other inside the scope of the EEG Base.
The functionality of the EEG Base has been incrementally improved and
extended. Besides storing data and meta data the EEG Base now provides
methods for processing stored experimental data and disposes of SOAP web
services for third-party application access. Also, each user of the EEG Base
is affected by rights that are assigned to his/her account – that ensures, user
can access data, which are either public, or to which user participates.
Technologically, the EEG Base is a Java Enterprise Edition application, which
uses frameworks as Spring, Hibernate, Apache CXF, etc. The portal is being
developed under supervision of Roman Mouček, Petr Ježek and Petr Brůha in
cooperation with students, who may gain useful knowledge of current software
development technologies by participating on the development process.
The portal identifies itself with an INCF (International Neuroinformatics
Coordinating Facility) effort in the development and standardization
of neuroinformatical databases.

4

4 | Requirement Analysis

An experimenter uses a personal computer for his/her work with special
hardware peripheries, like EEG caps or Brain Vision recorder. There must be
clearly defined scenario and described a set of used hardware for experiment
itself, in order to repeat such experiment. Also information about a tested
subject is required – besides usual information of name and surname is
relevant if the subject is left-handed, currently suffering from some disease
etc. Environment, in which the experiment is conducted, is relevant too. Its
description must be made and preserved.
All these pieces of information, and even more, must be stored as well as the
experiment recording itself – EEG Base mentioned in the previous chapter
serves for this purpose. Most of the time might be sufficient to use the very
same personal computer as for conducting the experiment, but there are at
least two valid situations, when using a computer is not a viable option.

1. Computer is not connected to the Internet
Computer dedicated for conducting experiments may not dispose of
internet connection. Assuming, that other members of research group
are depending on experiment results and are not currently present, there
arises a problem with delivering the data towards them.

2. Need of quick access to existing information
Researchers may be out of reach to computers in need to quickly
access some specific basic information about their experiments and
scenarios (e.g. during a conference). If there is no viable alternative,
experimenters might find themselves in situation, when they must work
with incomplete information, or postpone their current activity till they
can access the information required.

A solution must be presented for these unresolved needs of data gathering
and data storing. Giving the fact that the EEG Base offers both the
functionality and information required, an obvious solution is to use services
of the EEG Base with a mobile device application.
Mobile devices are the perfect solution for filling the "unreachable computer"
gap, because they are in present day almost always with us and do provide

5

Chapter 4. Requirement Analysis

internet connectivity. In addition, modern mobile operation systems and
platforms built on them provide a solid and stable runtime for creating
powerful client applications that can cover experimenters’ needs.
Despite the facts that there are laptops with mobile internet connection and
that the mobile phones might provide internet connection using tethering
technology, the mobile phone by itself is more accessible in terms of device
size and faster in terms of time required to start to use the application. Time
to launch a native application in an already running mobile phone is shorter
than time required to start a larger laptop, in which a web browser would
have to be started. Mobile devices with right application provide better user
experience than their possible alternatives.
Solution for data gathering and data storing itself must comply with a set of
requirements, in order to cover the needs mentioned. The requirements are
based upon the experimenters’ needs and were discussed with EEG researchers
of the University of West Bohemia.

• Provide access to experimenters’ data from almost everywhere.

• Access itself must be simple, user-friendly and intuitive.

• Creation of new data file records is usually not needed nor possible
without a computer, which would process them, unlike creation of meta
data records. Meta data contain important information by themselves,
so it is desired that they would be available any time for further
operations. This fact results in a requirement that data files must
be only stored to EEG Base, while meta data must be available any
time, either for storing or for retrieving them once again.

• Experiments and scenarios must be creatable through the client
application.

Moreover, these requirements originate with experimenters’ use cases, which
were also identified and are visible in Figure 4.1.
With services already existing inside the EEG Base application, a proper
communication interface for the client-server contract must be defined.
The best solution are web services, which provide clean and simple abstraction
with clear definition of communication usable across platforms. In this case
RESTful web services are a perfect fit due to small communication overhead
and simple implementation (details in the following chapter).

6

Chapter 4. Requirement Analysis

EEG Researcher

Creates new scenario

Creates new experiment

Books EEG laboratory for a research group

Creates a new subject person

Creates a new artifact record

Creates a new disease record

Creates a new digitization record

Uploads experimental data le

Creates a new electrode location and x records

EEG Base client application

Browses existing scenarios

Browses existing experiments

Browses existing EEG laboratory booking times

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Creates a new weather record

<<include>>

Figure 4.1: EEG Database client application use case diagram

7

5 | Web services: SOAP and
REST

When a client application needs to use a service located on a server, using
the remote procedure calls or remote method invocation can be difficult.
Large pieces of shared code can be required and the solution will be probably
platform dependent. But there is a better solution – to use a web service.
Every web service specifies its own communication protocol and provides
a public interface for access; thus it is accessible equally from multiple
platforms and keeps services modularity without a need of shared code.
There are two separate web service technologies with different approach to
the execution of remote procedure calls:

• SOAP web services

• RESTful web services

5.1 SOAP Web Services

Older, yet still vastly used, web services are SOAP web services. The SOAP
represents name of a communication protocol, which these web services use
– a Simple Object Access Protocol. This protocol is responsible for
delivering messages usually via the HTTP protocol, which is used due to
lower probability of being blocked by firewalls during their route.
Every SOAP web service provides public interface, which is accessible through
specified URL. This service point of entry is called an endpoint. When
a user wants to use capabilities of a SOAP web service, he/she needs to
know the exact endpoint and an interface definition, which is contained in
a WSDL file.
WSDL is a XML file written using the Web Service Definition Language,
which states what service methods are available, which objects are used as
return types and method parameters, and what is the structure of such objects.
In terms of RPC, WSDL defines a server stub. Client stub is represented by
source files, which are generated using the WSDL file. These files are used

8

Chapter 5. Web services: SOAP and REST

within a client application afterwards.

ServiceRegistry

ServiceProviderServiceRequestor

find publish

bind

Figure 5.1: Communication diagram between web service elements [3]

If we want to relate to a common model of web services as in Figure 5.1,
relations would be following:

• Service Registry: A location which contains information about
available web services and their providers. These pieces of information
are saved by service providers themselves →
each web service is registered in a registry implemented usingUniversal
Description, Discovery and Integration protocol (UDDI)[17] and
a WSDL file, which represents the service’s interface, is generated or
manually created for each service.

• Service Provider: A hardware or software unit providing the web
service itself → accessible by endpoint URL.

• Service Requestor: A subject requesting a specified web service →
a client application which uses a code generated from WSDL.

5.2 RESTful Web Services

Representational state transfer is a architectural style for developing
applications, which is specific by a set of constraints, as mentioned in [4].

9

Chapter 5. Web services: SOAP and REST

• Client-server separation of concerns – a server does not need to
handle GUI or an application state. In combination with a uniform
interface this results in platform independence, allows better client
scalability and server side itself is much simpler.

• Stateless – client-server communication is in REST stateless, so every
request from client to server must contain all necessary information.
Keeping of state belongs to the client side.

• Cachable – data within responses must be labeled whether they are
cacheable or not, so client application could reuse them by saving them
into a cache for further use. It lowers a necessary number of interactions
and bandwidth usage overall.

• Layered system – a client does not need to obtain data precisely from
the requested location, the requested location might be an intermediary,
which works as a client itself upon other nodes in the network. This may,
if well designed, improve scalability due to possible load balancing while
using previously mentioned caches.

• Code-On-Demand – a server might provide to client a code, which
executes on the client side and provides extra functionality. This
principle is purely optional in the REST architectural style.

While SOAP protocol extends HTTP, REST reuses HTTP methods of GET,
PUT, POST and DELETE to perform CRUD1 operations over specified URL.
For an information transfer it is used HTML, XML or, lately popular, JSON.
To information transferred we refer as of resources and mentioned HTTP
methods are used for analogical operations over them.
By mentioning a RESTful web service we mean an API2, which complies
with the REST specification and also communicates using XML or JSON via
the HTTP protocol using its methods.
A RESTful web service’s server side listens on specific URL, which usually
contains a name of a domain object with which HTTP methods should work.
Let us say, there is URL ending with suffix /experiments.
A common expectation for such URL is, that using HTTP methods we can:

• fetch all experiment records using a GET method
1Create, Read, Update, Delete – recognized as basic data operations
2Application Programming Interface

10

Chapter 5. Web services: SOAP and REST

• remove all records by a DELETE request

• replace all records with a PUT method

• create a new experiment record using a POST HTTP method

For updating or deleting a single record we would need to know a resource
identifier, which is usually put as a suffix to the original URL.

5.3 Basic Comparison

The fact, that for implementing of a RESTful web service client we require
only simple HTTP communication and using protocol’s methods, vastly
helped to using RESTful web services as a primary solution for many simple
client-server applications. It applies even more in case of mobile device
software. With no need to generate a client stub, we only need to know
service URLs and how to operate over them. Moreover, messages from SOAP
web service are larger that the RESTful ones, due to necessity of complying
with SOAP standards.
On the other hand, SOAP services can rely on WSDL files, while RESTful
web services might provide a web service description written in the WADL –
Web Application Description Language. However WADL is not standardized
and is not mandatory – user must rely on developers that they provide
WADL or sufficient documentation of endpoint URLs. Also, RESTful web
services should be stateless unlike SOAP ones, which implicates that SOAP
web services are more suitable for other cases then RESTful web services,
e.g. state-dependent sequential data processing.

11

6 | Java technologies

6.1 Annotations vs. XML Definitions

When creating a well-designed modern application, a certain level of code
abstraction, modularity and separation of semantics and implementation is
mandatory. What was created mainly in order to reasonably maintain large
enterprise applications it became almost a part of clean code best practices.
This level of abstraction, modularity and semantics separation was at first
achieved using XML files. XML files are suitable thanks to their flexibility
of writing a required schema, which we need to contain specific information
without loss of descriptiveness. This approach is still widely used, but it
has a drawback in necessity of keeping both implemented code and its XML
description.
Annotations represent other approach, which allows us to define code specifics
right in the code implementation. Thus there is no further need for searching
proper component configuration, because all of its semantics is defined right
next to the code itself. Annotations are in its raw form a special form of
interfaces, which are load and separated using Java reflection technology.
Also, annotation definitions are usually simple and do require much less
text written for proper settings of component’s behaviour than the XML
alternative [21].
Using annotations becomes vastly used approach in modern applications
and is recommended, while there are still cases, when XML definitions are
either easier or provide other benefits over the annotations, due to the fact
that annotations are still a rising technology. As examples of frameworks,
where XML definitions coexists with annotations, we can point out Spring
framework, Hibernate or JAXB.
Bearing in mind the benefits of annotations simplicity, while keeping the same
information and behaviour as the XML definitions, is the annotation way of
implementation used in this thesis, unless the XML variant would significantly
benefit us over the annotations.

12

Chapter 6. Java technologies

6.2 JAXB

XML manipulation is one of the most performed operations nowadays, more
importantly due to web services, whose communication is basically built on
XML technology. Java Architecture for XML Binding is a framework
for simple manipulation with XML in Java and can be simply described as
"ORM for XML". The framework does most of the XML heavy-lifting for
user in a way that the user does not need to know anything about differences
between SAX and DOM parsing [19].
With JAXB technology the user defines or specifies a XML schema, by which
is performed so called binding. It means that for specified XML schema are
generated Java classes, which are afterwards used for reading existing XML
files in a process called unmarshalling. The opposite process, when we store
initialized objects of binded classes is called marshalling.
Basic usage assumes a XML schema defined in a XSD file, for which are
generated Java classes using JAXB libraries. The libraries are available
either in JDK 6 and higher, or stand-alone for separate download and usage.
Another option is to define the XML schema in a Java code by a developer
using annotations.
Marshalling and unmarshalling is by default handled by a developer’s code,
but with technologies like Spring it is simple to make the framework handle
the marshalling/unmarshalling process by itself. With Spring framework,
annotations have become a powerful tool, which gives us option to handle
XML files easily, while keeping the code clean with all the semantics in one
place.
An example of creating and reading a XML file using JAXB is available in
appendix A.

6.3 Apache Maven

Maintaining a software project is a significant part of the development process.
A developer needs to create a project structure, take care of required library
dependencies, deploy a created application and so on. Taking care of these
operations manually could be difficult, but fortunately there is a way to
automate them, like with Apache Maven [5].
Apache Maven depends on its Project Object Model (POM) stored in
a pom.xml configuration file. It contains projects meta-information, like

13

Chapter 6. Java technologies

a name and parent POM reference, library dependency definitions, plugin
definitions, report settings, profile definitions and many more. Giving the fact
that Maven is fully extensible using plugins, POM.xml content, ergo Maven
build behaviour, depends only on used plugins and their configuration.
In addition to Maven’s extensibility, it uses repositories for storing plugins
and dependencies. It allows companies or individuals to create their own
repository, in order to keep their own files private, or simply to prevent issues
related to unavailability of a public repository.
A basic set of plugins required for Maven to run and a repository reference for
downloading other dependencies and plugins are located in Maven’s Super
POM. Every user creating POM file inherits this POM, either directly or
indirectly through a parent POM.
Moreover, Maven defines a clear on-disc directory structure. A developer can
rely on Maven that he/she finds expected files inside of an expected directory
location.
Apache Maven provides more features than mentioned directory structure
and extensibility – another one worth to mention might be creating tags
and branches in repository, uploading build application to a production
server, etc. This technology has some drawbacks. The most annoying one is
possible dependency collision, when Maven cannot decide which library from
which dependency should be used. In such situation Maven build results in
an error and user must resolve it. This is a known issue, which is continuously
attempted to resolve – Maven 3 has better dependency resolving than Maven
2, or lately using an Aether library for dependency management, which
should bring better behaviour than native implementation.
But even with its occasional dependency issues, Maven usage spreads in
Java projects world-wide as it gradually becomes a standard in definition of
keeping and maintaining larger Java projects.

6.3.1 Directory Structure

Every Maven-based project has a directory structure as it is visible in Figure
6.1, unless it is defined otherwise. Either IDE creates the directory structure,
when we choose that we are going to create a new Maven-based project, or we
must create the directories manually.
Source files are located in the src directory, resource files in the res directory
and files used or generated during build are located in the target directory.
The pom.xml file contains all the information required for performing build

14

Chapter 6. Java technologies

and also contains meta-data about project.

/
src/
res/
target/
pom.xml

Figure 6.1: Maven Directory Structure

15

7 | Mobile Platforms

Before creating a mobile device application a platform must be chosen.
While in computer software we can usually choose programming language,
the mobile platforms are usually limited by a specific programming language
or a framework, in which developers create their applications.
In this chapter all major platforms for mobile devices will be described with
their specifics and drawbacks.

7.1 Windows Phone

Windows Phone is a Microsoft’s proprietary mobile platform, which is based
on Windows CE (Windows Phone 7.x, first release in 2010) and on modified
Windows NT (Windows 8.x, first release in 2012) kernels. This platform
provides truly distinguished user experience against other platforms due to
its user interface based onModern Design Language (previously called Metro),
which is based on a tiles driven interface. Each tile contains a specific set of
information, which is related to the application to which the tile belongs.
In terms of programming languages and frameworks, Windows Phone is built
upon with Microsoft’s .NET framework. User interface graphics is defined in
special XML files called XAML files [15]. XAML is a language based upon
XML and defines UI elements locations and their behaviour, using events and
data bindings. This design language is a part of Windows Presentation
Foundation module of .NET framework.
While the UI and UX basics lies in Modern Design Language and Windows
Presentation Foundation as a rendering framework, in terms of programming
Windows Phone platform uses .NET framework and C# as a programming
language. C# allows to developers fully object oriented programming, while
UI design definitions are located in separate XAML files.
Strengths:

• Free optimized IDE for WP application development (Visual Studio
Express 2012 for Windows Phone)

• C# as a simple and powerful OOP language

16

Chapter 7. Mobile Platforms

• WP devices must comply with Microsoft HW specifics, ergo there are
no weak devices and almost unified HW environment

Drawbacks:

• market share (currently below 2% of global market)

• proprietary – requirement of MSWindows for development (for Windows
Phone 8.x development are required Windows 8)

7.2 iOS

All devices created by Apple Inc. are powered by iOS operating system. As
well as Windows Phone the iOS is not an open source, but unlike WP is used
only on Apple’s devices – no other hardware manufacturer but Apple creates
iOS powered mobile devices. Although iOS devices do not belong among
the cheapest ones, thanks to them Apple nowadays competes with Google’s
Android operation system for majority in mobile devices market.
iOS is an operation system derived from OS X, which is an Apple’s operation
system for their computers and laptops. As a primary programming language
for application development an Objective-C is used, in which is also created
Cocoa Touch API [14] – an UI framework for building software applications
for iOS platform.
Current devices are equipped with iOS 5 (released in 2011) and iOS 6 (released
in 2012).
Strengths:

• Loyal user base – almost no piracy, users tend to buy applications

• Clear application guidelines – a developer can learn best practices from
a reliable source

• Support – Apple provides thorough support in return to annual payments

Drawbacks:

• Necessity to comply to the application guidelines – if not conforming
to them, application is refused to App store

• Annual payments – developer not willing to pay is not able to develop
applications

17

Chapter 7. Mobile Platforms

7.3 BlackBerry

BlackBerry devices were for a long time a clear choice for a corporate segment
of market. Their creator the BlackBerry company (former Research in Motion,
RIM) have lost in past four years [20] many of its former customers due to
far too long development process of new BlackBerry 10 OS. BlackBerry 10
OS was finally released in early 2013 and hopes to regain its slice of mobile
device market.
A new BlackBerry platform provides the largest scale of available development
languages and frameworks. A developer can use native C/C++ SDK with
Qt for a user interface, or he/she can develop applications using Adobe AIR,
HTML5 or even repackage existing Android application [1].
While BlackBerry now seems to be as a perfect choice for power-users and
developers who want to try a new technology, its market share is so unsignificant
that probably only the corporate segment can make Blackberry significant
once more.
Strengths:

• Many ways to develop an application – C/C++ with Qt or QML,
HTML5, Adobe AIR, . . .

• Corporate customers – based on BlackBerry’s past and sofisticated
security could be expected, that the BlackBerry platform will be vastly
used in the corporate segment once again. This strength could be
applied to applications primarily developed for corporate environment.

Drawbacks:

• Market share – BlackBerry had significantly dropped its market share
in past few years and BlackBerry 10 OS is a brand new platform

• Number of devices – only few devices using new BlackBerry OS so far

7.4 Android

Android is an open-sourced platform using Linux operation system, inside of
which a Dalvik process virtual machine, a Java-based sandbox for Android
applications, is ran. Currently it is with iOS one of the most used platforms,
but while iOS devices are quite expensive and manufactured exclusively by

18

Chapter 7. Mobile Platforms

Apple, Android devices have multiple different manufacturers and cover price
span from very cheap ones to as expensive as best Apple device.
Due to the fact of many manufacturers, Android stands and falls on support
of various hardware and screen resolutions and depths [2]. In some cases,
poorly HW equipped devices are equipped with new and more performance
demanding Android versions, which may result in overall user’s frustration
over slow or even unusable device. It is caused by a fact that Google does
not require minimum HW configuration for specific version of Android and it
is only on manufacturer, how well-equipped device creates. Moreover, some
manufacturers create their own user interface changes in order to distinguish
their devices from other ones.
Since the version 4.0 (codename Ice Cream Sandwich) Android presented
a new reworked API and design guidelines, which stands upon Holo theme.
With new devices having Android 4.0 or newer and ongoing updating of older
ones, there is decreasing necessity of supporting older versions of Android in
order to benefit of features, which new API presents.
Similarly to Windows Phone, Android holds UI definitions separately
to implementation in XML files. Android applications are written in Java
(unless using C++ for native linux development) and then are compiled
into class files transformed into Dalvik executables (dex files). Like
Java packages compiled code into executable JAR files, Dalvik executables
are packaged into APK files, which are used for distribution of Android
applications.
Strengths:

• Independence of development machine OS – Android SDK is available
for Windows, Mac OS and Linux equally.

• Documentation and community tutorials – Whole Android ecosystem
is heavily maintained both by Google and developers community, which
results in thorough documentation and countless How-To articles.

• Java – Android development is based on Java, one of the most spread
programming languages.

Drawbacks:

• Fragmentation – API version fragmentation and HW fragmentation due
to various devices; a programmer must test functionality and behaviour
over larger span of devices or use an emulator.

19

Chapter 7. Mobile Platforms

• Android plugin for Eclipse IDE – while IntelliJ Idea in its new version
offers an ideal development environment for Android, Eclipse IDE with
its Android plugin is still recommended for development of Android
applications. The problem is that an Android plugin does not work all
the time as it should work.

• Cross-device inconsistency in user experience – due to different changes
in the user interface per manufacturer, the user can be confused when
using an other Android device, unlike in an other mobile platform.

7.5 Selection Decision

Following platform selection criteria were established:

• well documented API

• free SDK

• development platform independence

• large market share of mobile platform

Although iOS provides free SDK for universities, Objective-C is not a common
programming language and considering the current price of any Apple mobile
device it is not expected that an EEG researcher would be equipped with it.
For bothWindows Phone and BlackBerry applies that although they represent
an interesting piece of technology, their market share is not large enough to
pay attention to them as a primary application platform. However, that
may change in time, yet for Windows Phone there is still a limitation to
the Microsoft Windows operation system.
Respectively for aforementioned issues of other platforms, Android was selected
as a development platform. In addition, Android has the following benefits:

• Free – everyone can develop their application without payments

• No registration needed – the developer does not need to create any
account to access the SDK

• Multiplatform development – Android SDK is available for Windows,
Mac and Linux equally

20

Chapter 7. Mobile Platforms

• Market share – Android’s market share is one of the largest and it still
keeps growing

• Java-based applications – it is fairly simple to write an application,

• Documentation – many tutorials are available on Android Developers
web as well as common JavaDoc documentation

• Community – There are numerous forums dedicated to Android

• Open source with support from Google – While Android is developed
as an open source platform, Google organizes developers meet-ups
and even maintains a YouTube channel dedicated to development on
Android: Android Developers.

Moreover, Android of SDK v15 (4.0.x) was chosen for development since this
version and higher ones represent majority in Android platform (see Figure
7.1 [6]).

Figure 7.1: Android OS versions market share in April 4th, 2013

21

8 | Android Specifics

8.1 Resource Handling

The Android platform has a specific way of resolving resources in matter of
which one will be used. The resources are separated into different resource
directories by their purpose. The list of basic resource directories and their
contents is following [11]:

• animator – XML files of property animations [10],

• anim – XML files of tween animations [13],

• color – specific colour behaviour for assigned view components,

• drawable – pictures,

• layout – layout definitions,

• menu – options/context/sub menu definitions,

• raw – files which are accessed using streams, usually binaries,

• values – files containing values used in an application. There is an existing
naming convention for following files:

– arrays.xml – value arrays,
– colors.xml – colours values,
– dimens.xml – dimension values,
– styles.xml – styles definitions.

• xml – files, which are accessed using Resources.getXML() method.

Resources can be further distinguished using suffixes in resource directory
name. The suffixes, which are separated by dash from one another, represent
device’s parameters or abilities – qualifiers. Using them we can create
multiple resource directories, in which we put resource files which belong only
to devices with a specific set of attributes. However, if no qualifier is used or

22

Chapter 8. Android Specifics

no resource is found in a directory with specific qualifier, a default directory
with no qualifier defined is used as a fallback. A complete process of selecting
proper resource is observable in Figure 8.1 and the list of available qualifiers
is available on Android Developers site [12].

Eliminate qualifiers
that contradict the
device configuration

Identify the next qualifier
in the qualifier list

Do any
resource
directories
use this
qualifier?

Eliminate directories that
do not include this qualifier
(in case of screen density

pick the best match)

Yes

Continue until
only one directory
for the desired

resource
is left

No

Figure 8.1: Resource selection flowchart [12]

8.1.1 Application Localization

When writing an Android application, it is most recommended to avoid
using hard-coded strings and use Android’s references to string resources
instead. These resources are located in values directories in strings.xml
files. The plural is used intentionally, because it can be easily distinguished
which strings should be used by specifying locale qualifier in values directory
name .

23

Chapter 8. Android Specifics

The locale is distinguished by a two-letter language code (ISO 639-1), which
might be optionally followed by a dash and two-letter region code (ISO
3166-1-alpha-2), like de for German, ja for Japanese, etc. It means that
texts in German should be located in resource file values-de/strings.xml.
The same logic applies to other languages.
Each string in strings XML resource file is an application string resource.
String of an application name could be stored like in Figure 8.2 and then
referenced in a code by its name app_name.

1 <resources>
2 <string name="app_name">EEG Base</string>
3 </resources>

Figure 8.2: Example of strings.xml structure

8.1.2 Application Layouts

With Android devices supporting a large scale of devices with various screen
resolutions and densities, developers must adapt their applications so they
work correctly on all of them. Obviously, an adapting application layout
is inevitable in order to provide acceptable user experience over such large
amount of devices.
As well as with localization strings, there may be multiple layout directories
with proper qualifiers, which allow us to provide desired user experience
across various devices.

8.2 The Life Cycle

The foundation stone of Android applications are Activities, Services and
AsyncTasks. Activities are primarily meant to display GUI and to interact
with a user. Services and AsyncTasks provide parallel operations to a GUI
thread (i.e. Activities).
Important is that all the components have their life cycles. The life cycle
clearly defines, where a specific logic should be putted. Because of in this
thesis we will not meet Services any further, let us focus on a life cycle of
an Activity.

24

Chapter 8. Android Specifics

8.2.1 Activity

An Activity life cycle can be simply described as a phase of creation, productive
life and its destruction. The creation and destruction phases consist of
several methods, where each method has special purpose. All of the life cycle
methods have their default behaviour, which can be altered. In order to alter
the activity’s behaviour, we need to override the default implementation –
yet in most cases it is mandatory to call super equivalent of a given method,
in order to all internally required operation would be performed.
The creation process is the life cycle part, where layout is inflated on a screen
and filled with data, or simply reused from a previous run, when its instance
is still available. The methods in this phase are:

• onCreate – Activity is newly created here. The layout is inflated and
available data are filled into view elements. If there is a known previous
state of this activity type, available information from the state can be
reused,

• onRestart – This method is called upon an Activity, which was in
the stopped state and now should be started again. Not used as often
as onCreate method for overriding,

• onStart – the activity becomes visible, yet not interactive,

• onResume – the activity becomes interactive → we are in the state of
productive life.

None of these methods can be interrupted, the logic inside of them is always
performed. It is different from the destruction phase. Before further explanation,
let us present a list of this phase’s methods.

• onPause – another activity becomes interactive (resumed), a current
activity must be paused, yet still visible. The current activity can
become resumed again, or it can be stopped.

• onStop – by now the activity is not visible any more. The activity can
be restarted or destroyed.

• onDestroy – the last step before the activity is destroyed.

While knowing the methods, let us go back to the matter of interruption.
While only the method onDestroy explicitly destroys an Activity instance

25

Chapter 8. Android Specifics

and all of the methods should be performed, it may happen, that the activity
must be killed, e.g. due to a sudden need of freeing memory. In such case
only onPause method run is guaranteed. If there are any critical data to
be stored, it should be done here. However, the activity is still visible in
onPause method, therefore, in order to prevent slowness of user interface, no
large data should be processed here.

Fragments

Fragments are components subsidiary to activities – they represent reusable
components, which are used within activities. As Activities they have own
life cycle, which is dependent on the parent activity. The life cycle has its
methods, which can be overridden, as well as in activities.
Although Fragments are also used in this thesis application, it is not necessary
to describe each method – their functionality is similar to activities’ functionality
and further details are available on Android Developers website[7].

8.2.2 AsyncTask

AsyncTasks are Android components for performing operations in parallel to
a GUI thread. They require a reference to a visible activity, both for context
reference and their ability to write into the GUI thread before and after their
background processing.
The available methods of AsyncTask are:

• onPreExecute – operations which should be performed on GUI, before
background processing starts,

• onProgressUpdate – operations performed, when progress is updated
from doInBackground method,

• doInBackground – all the heavy lifting, which should be performed in
parallel to the GUI thread, should be done here,

• onPostExecute – final steps before AsyncTasks ends. Method runs on
GUI thread in order to reflect results into it.

The AsyncTask components are more suitable for short operations, which
directly affect flow of application GUI. As an example of the situation suitable
for an AsyncTask is fetching data, which should be displayed right after they

26

Chapter 8. Android Specifics

are available. The data fetching would be performed in parallel to the GUI
thread so it would not freeze and would be updated by AsyncTask when the
job is done.
Only drawback worth mention is that due to its reference towards currently
visible activity, the AsyncTask must be handled when the activity is being
destroyed, otherwise there will occur an error once the AsyncTask attempts
to access the GUI thread.

8.2.3 Service

Services, like activities, hold own context, but they are running outside
the GUI thread. They are primarily meant for performing operations
independent of the rest of application’s flow, like downloading of large files,
which can run independently of the rest of the application.
Because Services are not used in this thesis application, its methods will not
be further discussed.

8.3 Manifest File

An Android manifest is a file gathering essential information about
an application through its properties and components. It is a specifically
formatted XML file, into which developer declares an Android SDK version,
permissions, used activities, services, content providers, etc.
It is necessary that developers define all possible information into the manifest.
Using the Android Manifest devices check, whether they are capable to run the
application and request proper rights from user. Also, without records about
used Android application components (i.e. Activities, Services, Resource
providers and Broadcast Receivers) application cannot run properly. An error
is raised if application tries to access a component not mentioned in Manifest
file.

27

9 | Architecture

In the following chapters we will focus on a server side and a client side
implementation of the RESTful web service. But first, let us take a look on
architecture of such implementation.
Data, which are needed on client side, are already available in the EEG Base;
they only need to be handed over to the client on request. Therefore we
implement controllers, which handle HTTP requests (Spring Controllers),
and a component, which will fetch data from the existing data layer (Data
Access Objects) into a transferable format and which will be available through
the controllers (Spring Services).
All components on the server must use existing technologies. Using Spring
IoC and MVC is an ideal choice, which also define its architecture, due to
dependency injection.
On the client side we implement logic for client-server communication. Such
logic will be present in CommonServices and will be used in CommonActivities,
component representing user interface – both components will be described
further in Chapter 15.
Communication between the server and client must be secured. Since we
use RESTful web service, the communication channel will be the HTTPS
protocol with SSL encryption.
A basic overview of components discussed is visible in Figure 9.1.

Android deviceJetty WebServer

EEG Base

Spring Controller

Spring Service

EEG Base for Android

CommonService

DAO CommonActivity

HTTPS/SSL

Figure 9.1: Deployment diagram

28

10 | Server Side: RESTful WS

Before we start any work on a client side, the server side of a web service must
be implemented. Creation of a RESTful web service for Java EE application
using Spring MVC and JAXB will be discussed in this chapter. A reader
must be aware of Java EE basics in order to understand the following text.
For handling of a HTTP request we use a Spring MVC component of Spring
framework.

10.1 Messages

Only rarely is returning or obtaining of primitive data types sufficient for
a whole RESTful web service, unlike the complex types handling. In order
to provide complex types from the server to the client and vice versa, data
containers have to be transformed into XML or JSON format and be sent to
the client.
In our application are used XML messages. The JAXB framework is used for
Java object → XML message transformation. While we could reuse existing
data containers of current implementation, we assume that the internal data
containers might change in time in matter of adding or removing its properties.
In order to prevent the necessity of editing a client code every time this
internal change occurs, we create border data containers, which contain only
required properties and which are used specifically for our RESTful web
service. Our JAXB annotated data containers are automatically marshalled
and unmarshalled in Spring MVC’s controllers every time a data container
is received in request or sent via response.
In the EEG base, such data containers take place in the wrappers subpackage
of its parent RESTful endpoint and their name ends with a Data suffix.

10.2 Requests and Responses

As in a Java Enterprise web application, we need to define a servlet, which
handles incoming requests and outgoing responses.

29

Chapter 10. Server Side: RESTful WS

For creating a web service endpoint itself is recommended to create a controller
class, service interface and service implementation. Using controller we handle
HTTP requests using service, which is autowired into the controller using
dependency injection by its interface. Separation of service implementation
and its controller is recommended due to better scope handling of transactions,
when operating with the data layer.

10.2.1 Servlet Definition

A servlet name and its mapping must be defined in web.xml at the beginning.
Let us create a servlet named rest.

1 <servlet>
2 <servlet-name>rest</servlet-name>
3 <servlet-class>
4 org.springframework.web.servlet.DispatcherServlet
5 </servlet-class>
6 </servlet>
7 <servlet-mapping>
8 <servlet-name>rest</servlet-name>
9 <url-pattern>/rest/*</url-pattern>

10 </servlet-mapping>

Listing 1: Servlet definition in web.xml

Having this servlet definition we create a new servlet file in the WEB-INF
directory called rest-servlet.xml. Inside of it we create the following beans:

• org.springframework.web.servlet.view.ContentNegotiatingViewResolver

• org.springframework.web.servlet.view.xml.MarshallingView

• org.springframework.oxm.jaxb.Jaxb2Marshaller

• org.springframework.web.multipart.commons.CommonsMultipartResolver

ContentNegotiatingViewResolver resolves view requests by its content
type. In bean’s body we can define multiple view implementations into
defaultViews property list. In our case we define xml view implementation,
which we also set as default by setting application/xml as default content
type. It means that unless the content type is different from aplication/xml,
a XML response is returned.

30

Chapter 10. Server Side: RESTful WS

View implementation for XML is represented by MarshallingView. It
uses internally a JAXB marshaller Jaxb2Marshaller. Inside the JAXB
marshaller bean we define all marshallable data containers into a list
of property named classesToBeBound. By enumerating the data containers
we tell Spring, that instances of such classes should be automatically marshalled
and unmarshalled without the need of using @ResponseBody annotations.
By now, we need to allow Spring MVC annotations and define package,
in which are present annotated classes. We achieve it using the following
lines.

1 <mvc:annotation-driven/>
2 <context:component-scan
3 base-package="cz.zcu.kiv.eegdatabase.webservices.rest"/>

Listing 2: Enabling MVC annotations in
cz.zcu.kiv.eegdatabase.webservices.rest package

10.2.2 Controller

Spring MVC provides controllers, special components meant for handling
HTTP requests. Such components can be created either using XML definitions
and by extending a proper abstract class, or using @Controller annotations.
Controlling HTTP requests we can cover all RESTful web service requirements.
In order to control HTTP requests, we need to create mapping over specific
URL and handle it by controller’s method. The @RequestMapping
annotation over a method makes the method listen on the URL specified in
annotations value property. By default such mapping applies to GET HTTP
requests, if we desire to handle other HTTP methods, we need to specify it
by method property of the annotation.
Mapping’s URL is specified by a string which appends to previous mappings.
Imagine that we request mapping over the whole class with value /experiments
and then again we request mapping /mine over method, which returns
a marshallable container of user’s experiments. A GET HTTP request over
/experiments/mine would trigger the method and a container of user’s
experiments would be marshalled into a response.
URL mapping string can also contain parameters, which serve as input
parameters for a linked method. Every parameter must be named the same
as the method’s input parameter a must be wrapped inside {} brackets. If we

31

Chapter 10. Server Side: RESTful WS

had method annotated as in Listing 3 and a GET request upon URL ending
with /experiments/public/15 suffix, the method getPublicExperiments
would process such request and would pass integer 15 as input parameter.

1 @RequestParam("/experiments/public/{count}")
2 public ExperimentDataList getPublicExperiments(int count)
3 { // method implementation }

Listing 3: Request mapping with an input parameter in a request URL

All method input parameters might not be a part of request URL string, they
may be a part of a request body or parameter. It applies mostly to POST
requests, where we extract parameters using @RequestParam annotation
before an input variable of corresponding data type. For transforming
whole request body into a complex data type we must use @RequestBody
annotation.
During web service processing an error may occur, an exception is thrown.
Every exception should be intercepted and handled in a way, that user
is notified in a proper way. @ExceptionHandler annotation serves for
exception interception and its value is set to an exception type class. This
annotation is being placed over the method which should handle the exception
in some way. In our web service we send error message through a servlet
response. The error message has its HTTP Status set to a proper value and
an exception string as a message body.

1 @ExceptionHandler(RestServiceException.class)
2 public void handleRSException(RestServiceException ex,
3 HttpServletResponse response) throws IOException {
4 response.sendError(
5 HttpServletResponse.SC_INTERNAL_SERVER_ERROR,
6 ex.getMessage());
7 }

Listing 4: Exception handling in web service controller

10.2.3 Service

Service is another Spring component, which is created inside the container. It
provides a specific set of functionality, which is provided to other components
which use it.

32

Chapter 10. Server Side: RESTful WS

In our case, we define service’s methods in an interface, using which we recover
implementation bean for autowiring, and an interface implementation, which
will be annotated using @Service, so that Spring would create its bean.
The services contain logic of web service, which is not related to HTTP
request handling, but to the behaviour itself. It means that we create new
records in it, fill marshallable data containers with proper data, return them,
etc. Another point of view is that our service is an additional layer between
controller and data layer, which only returns data in a marshallable format.
With data access separated from controller we can easily set data transaction
scopes. These are set using @Transactional annotations. With them we
wrap method execution with database session, so that data which yet have not
been fetched due to lazy loading would be fetched right in time. Transactional
session can be either with possibility to edit database content, or for read
only. It is set using annotation’s readOnly parameter. It also is specific for
Transactional annotation, that it must annotate a method in implementation
and not in an interface, as it is usual.
For being able to use Transaction annotations, a transaction manager must
be already created and reference to it must be set in the servlet definition
like in the following line:

1 <tx:annotation-driven transaction-manager="txManager"/>

Listing 5: Allowing transactions annotations

10.3 Security

When creating a web service, two security issues occur. The first issue is
that a user should be able to access only data to which he/she has access
rights. The second issue is a communication channel – data are sent over not
secured http channel by default and there is a risk that someone would read
the communication and obtain private information.

10.3.1 User Verification

A perfect solution for the first issue is the Spring Security framework. It
allows to create a semi-session for each incoming request and destroys it
when the request is handled. It would be probably the most needed feature

33

Chapter 10. Server Side: RESTful WS

for RESTful web services, where is no need to create and keep a classic session
due to web service stateless architecture. For user authentication itself it is
only needed that incoming request had an Authentication HTTP request
header set.
Another benefit of Spring security is its support of annotations. Applying
restrictions in accordance to user’s rights over a method or class was never
easier – all that is necessary is to put @Secured annotation over the class or
method and put the following line into servlet definition, otherwise annotations
won’t be used:

1 <security:global-method-security secured-annotations="enabled"/>

Listing 6: Allowing Spring Security annotations

The Spring Security framework itself must be configured for the application
to run properly, but its configuration is not a matter of this thesis.

10.3.2 HTTPS and SSL

A Java EE application can automatically switch communication to a secured
channel, if server allows it. For the Tomcat server it means to create
a certificate (or use an existing one) and assign it to a secured socket which is
used for HTTPS communication afterwards – the setup process is described
in the Tomcat server manual.
In web application, it is necessary to define a security constraint over a URL
pattern within the web.xml as in Listing 7:

1 <security-constraint>
2 <web-resource-collection>
3 <web-resource-name>Spring REST SSL</web-resource-name>
4 <url-pattern>/rest/*</url-pattern>
5 </web-resource-collection>
6 <user-data-constraint>
7 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
8 </user-data-constraint>
9 </security-constraint>

Listing 7: Forcing secure channel for RESTful web services in web.xml

34

Chapter 10. Server Side: RESTful WS

With these settings, each time a request to http://app-domain/rest/* is
created, it will be redirected to https://app-domain:secured-port/rest/*. It
is thanks to a transport-guarantee parameter, which enforces usage of
protected transport layer connection (HTTPS), and its CONFIDENTIAL
parameter, which requires communication encryption [18].

35

11 | Client side I: Creating a
New Project

Throughout this chapter we will focus on creating an Android application and
on implementation parts, which are generally applicable to other applications.
However, the examples will be applied to the EEG Base for Android, which
is official name for the Android-based client application (on device named
as the EEG Database), which was created for resolving needs mentioned in
Chapter 4.

11.1 Creating Android Application Using Apache
Maven

/
src/
res/
target/
pom.xml
AndroidManifest.xml
project.properties

Figure 11.1: Android project
on-disc file structure

Using Maven for defining a project
provides us many features like
mentioned in Section 6.3, while
the most beneficial ones for us are
clear directory structure, automated
library dependency resolving and
automated deployment of application
itself.
With Maven we need an on-disc file
structure like displayed in Figure
11.1. Such structure can be achieved
either manually or using IDE, which

is recommended.
The next important step is to clarify the following aspects of the current
application:

• Minimal SDK version – a minimal required version of Android SDK
to run is 15, which represents Android 4.0.x,

• Application package, in which are located source classes. This should
not be changed, even more when the application is available on Google

36

Chapter 11. Client side I: Creating a New Project

Play, where the package name serves as an application identifier,

• Required libraries – in our application we will use theRestTemplate
library from the Spring for Android framework, in order to simplify
RESTful web service creation. Also a library for XML marshalling will
be necessary – because Android does not provide JAXB as in Java,
the Simple XML framework is used, since it provides almost identical
behaviour while using annotations like in JAXB (see Appendix B).

11.2 Project’s Maven Settings

Let us set the project using Maven, so it would resolve dependencies, build
and deploy an android application into device. Such settings are defined in
pom.xml file.
A groupId will be identical to aforementioned application package, artifactId
will be application name in lower case with dots as word separators, e.g. eeg.base.
Since we are creating an Android application, the packaging will be an Android
application package apk.
Now we must define framework dependencies. On the Maven repository
website1 we search for required libraries and copy a dependency snippet
between dependencies pair tags. Like this we find and define Spring for
Android RestTemplate and Simple XML framework. Moreover we must define
Android SDK dependency, so Maven would connect the SDK with a compiler.
It is done in a similar way as other dependencies, but this one has parameter
scope which is set to provided and it looks for a system environment variable
of ANDROID_HOME. The ANDROID_HOME variable should be set as
a path to the location of Android SDK installation.
The last step will be setting up Maven build plugins, which will compile
and package our application. For compiling the Java code we use Maven
Compiler Plugin and in order to compile the Android code and package
it into an APK, we must define plugin dependency to Android Maven
Plugin. This plugin also allows project to link other APK files as library
dependencies, which would be impossible without it. The only drawback of
the Android Maven Plugin is that it requires Maven at least in version 3.
With all these items set, we can build our application and deploy it directly
to our connected device with the following command:

1http://mvnrepository.com/

37

Chapter 11. Client side I: Creating a New Project

mvn clean package android:deploy android:run

The clear command clears the workspace from previously compiled files,
the package will create the APK file, the android:deploy installs the application
into a connected device and finally the android:run starts the application in
the device.
A prerequisite to successful application deploy into an Android device is to
have enabled the USB debugging in the Developer Options section of system
settings on device. Also note that Android currently supports only Java 1.6
(which should be set in Maven Compiler Plugin) and that our application
will require SDK at version higher than 15 inclusive (belongs to Android
dependency settings).
As an example may serve POM file of EEG Base for Android, which is on
attached DVD.

11.3 Android Manifest

In the Android Manifest we need to set the package name and application
version as first ones of many parameters. The package name is identical to
package, where the source classes are located in, application version is set as
pleased.
The next important thing is to set SDK reference. The reference is set
through a minimum SDK version value of 15, with possible higher value as
target SDK version. It is generally recommended to set target version up to
the newest version, but it is not mandatory.
Since our application will server as a client for a RESTful web service, we
need a connection to the Internet. In order to provide such connection to our
application, we must define the following user permissions:

• android.permission.INTERNET – provides us internet connection in
general, if it is available,

• android.permission.ACCESS_NETWORK_STATE – allows us to check
current connection state, which is good to know before initiating an web
service request (there is no point in creating a request if there is no
existing network connection).

If we would need other permissions as well, the Android manifest is the place,
where all permissions are defined.

38

Chapter 11. Client side I: Creating a New Project

Another manifest’s block, the application block, describes the application
with its icon, label, global theme and its components. In our application
we use Holo theme, which is a new standard theme since Android 4.0.x
(ICS). Also, since our application does not use content providers, services or
broadcast receivers, only activities will be placed into the application’s block
body.
The application itself must have an entry point – an activity, which is started
as a first component of launching application. It is set using an intent-filter
settings block of an activity. In this block are specified an action (MAIN)
and a category of such intent (LAUNCHER).
While all components inherit a theme and UI options settings from its parent,
i.e. the application block, these settings may be changed in each component.
That is important for components, whose behaviour should be different from
other components. Let us present some examples, which are also used in
the EEG Base for Android:

• android:theme="@android:style/Theme.NoDisplay"
Activity with this parameter will not display any layout. Such behaviour
is desirable in an application entry point, where we check, whether the
user is logged in (so we let him/her further into application) or we
enforce user’s log in.

• android:theme="@android:style/Theme.Holo.NoActionBar"
ActionBar is a new central place for putting application’s controls since
Android ICS. But in some cases it is required to the ActionBar would
not be displayed. This parameter provides such behaviour.

• android:uiOptions="splitActionBarWhenNarrow"
There is a difference between layouts for hand-held devices and tablets.
Even though custom layouts provide most of the customization,
sometimes is desirable that ActionBar’s controls display in separated
menu bar in the bottom of the screen. Such behaviour is achieved using
this parameter.

For further implementation details of manifest used in the EEG Base for
Android head for the manifest file located in project’s directory on attached
DVD.

39

12 | Client side II: Working with
Data

12.1 SharedPreferences: Storing User Data

In many applications, there is a need of storing basic information like username
or password. While such information might be stored in a database, we do
not need a database at all. The Shared Preferences are useful way to store
such information without implementing additional logic, which is required
for working with database.
In our application we use Shared Preferences for aforementioned storing of
credentials and information required to connecting to the server. There
may be multiple Shared Preferences, which are distinguished by a string
identifier/name and can be accessed with different modes of Android context,
through which the Preferences are available.
The obtained SharedPreferences are a decorated Map with own Editor used
for changing its content and with a change listener, used for an automatic
update of dependent components.

12.2 ListView and Complex Data Types

Android provides a basic set of View elements, which can be used. They
can be both created and manipulated in a source code and defined in layout
XML and accessed in a code afterwards [8]. But what happens if default
component’s behaviour does not provide functionality we require? Sometimes
it is needed to write own component, but often there is a simpler way.
A ListView is the most common representative of such components. When
we have data in collection, we would like to display them in a component
meant for such purposes – a list view. A ListView by default displays only
a string per view item, which is not enough for reasonable display of a complex
type record. In order to change the way the ListView displays related data,
we must implement own Adapter.

40

Chapter 12. Client side II: Working with Data

There are multiple provided implementations of Adapters and in our case
we use an ArrayAdapter implementation. We must create a custom class,
which uses the ArrayAdapter as a parent and inside of class implementation
we override desired methods, which affect the Adapters behaviour.
The most likely methods to be overridden are methods getView and
getDropDownView. The first one is used for usual displaying all items into
view elements visible at activity start, like the ListView, the second one
is used in view elements using drop down behaviour, like Spinners. Since
both methods have identical parameters, their behaviour can be covered by
a common method, which initializes view element with requested data and
returns it.
The initializing method reads data from a provided data collection by requested
position, then initializes a new element’s view, sets the data to it and returns
the prepared element view. The common approach for creating an Adapter
is creating a reference to a proper row layout, which is inflated and then set
with data in an initializing method.
Any Adapter in the EEG Base for Android application can serve as an example.
The Adapter classes are located in a package named cz.zcu.kiv.eeg.mobile.base.-
data.adapter. In case we also want our Adapter implementation to be
filterable, we must implement a Filterable interface. This interface is more
usually used over CursorAdapter, which uses DB, but it is possible to use
it over ArrayAdapter too – only it is necessary to override more methods,
keep reference to original data and properly notify about changes. For more
details see ExperimentAdapter in the EEG Base for Android.

12.3 Providing Data Between Activities

Passing a primitive data types to another activity is fairly simple – we
obtain/create a Bundle (a container for data, working like maps), into which
we put the data, set new Intent extras and create the Intent. A new Activity
in its onCreate method extracts the extras Bundle from saved instance Bundle
and uses them. Retrieving data from an ending activity, which was started by
the method startActivityForResult, is similar. There we override the method
onActivityResult, where we retrieve the extra Bundle, which is provided by
the ending activity.
There is a issue with the complex data types – the Bundles are the only
efficient way for passing data, but they do require a Serializable or
a Parcelable interface implemented.

41

Chapter 12. Client side II: Working with Data

Even though the Serializable implementation is more closer to many Java
developers, we will present here an implementation example for the Parcelable
interface. The Parcelable interface was designed specially for Android and
should be more efficient.
In an parcelable class a developer must implement its own serializing, during
which we work with a Parcel instance, which works similar to a Bundle.
The important thing is to keep the same order of reading from a Parcel
instance as it was in case of writing to the Parcel; otherwise the serializing
will not work.
Also, in order to keep Android designs, we must create a public static
Parcelable.Creator, which is used for recreation of the data contained
in other parcelable containers.
An example can be seen in Appendix B.

42

13 | Client Side III: RestTemplate

13.1 Communication Using HTTP/SSL

In order to provide secure connection with server, the HTTPS protocol must
be used with SSL encryption. But once such combination is used, a client
application must be edited, so that it would be capable to communicate with
the server over the secured communication channel.
Our application will discuss the case, when the application will accept all
certificates used for communication. The reason for such implementation
might be various – from creating a functional prototype, to simply not having
an official certificate for communication encryption, while this should be
a temporary solution, like it is in the case of the EEG Base.
While many examples use in RestTemplate for the communication with
the server a CommonsClientHttpRequestFactory class, this class has a huge
drawback – it cannot send a file without buffering it into memory first. In
case of large files it leads to out of memory errors, which makes this class not
usable for our web service client.
Instead we create own HTTP request factory class, which will accept all
SSL certificates and will be also useful for RestTemplate. It will extend
a SimpleClientHttpRequestFactory class from the Spring Framework
http client package1. An instance of this class can disable the content buffering
prior send by setting a false value into setBufferRequestBody method. This
class should be available in project since we have a dependency of the Rest
Template defined in project’s POM file.
In this new class we have to override the method openConnection, which
will decorate the parent’s method by setting the HostnameVerifier instance,
which accepts all hosts (simple interface implementation, which returns true
in its only method), and setting a custom SSL Socket factory to
a HttpUrlConnection instance, which was first casted to a HttpsUrlConnection
instance.
The custom SSL Socket factory is obtained by a getter from a SSLContext
TLS instance, which was initialized with parameters:

1cz.zcu.kiv.eeg.mobile.base.ws.ssl.SSLSimpleClientHttpRequestFactory

43

Chapter 13. Client Side III: RestTemplate

• KeyManager[] – null,

• TrustManager[] – implementation returning a X509TrustManager
instance. The methods of such trust manager are empty, only
the X509Certificate array getter creates a new empty array of such
data type,

• SecureRandom – null.

The RestTemplate using this custom client http request factory will accept
all SSL certificates over HTTPS protocol.

13.2 Direct Usage of RestTemplate

As well as in the EEG Base for Android, we will presume, that the RESTful
web service on the server authorizes requests, which do have set a HTTP
header parameter of HTTP Basic Authentication. It is sufficient in case,
that the server uses Spring Security. Let us present an example of a remote
creation of new user, which will represent the approach for client-server
communication in general – other cases are very similar.
First we need to define a request’s HTTP header. The header is represented
by HttpHeaders instance, and in it we must define the following HTTP
header parameters:

• Authentication: Here we use HTTP Basic Authentication by creating
a HttpBasicAuthentication instance. Into this instance are set
username and password,

• Acceptable response content types: A collection of acceptable response
types belongs here. Since our web service communicates only using XML
messages, we put here a list with only item of APPLICATION_XML
string,

• Request content type: As well as for response we must define of what
content type is our request. In this example we create a new user, which
is represented by XML message. APPLICATION_XML string belongs
here.

Second, we create the whole HTTP message entity. The HttpEntity object
constructor (the object is here typed as a Person instance) consists of a Person
instance itself and previously created HTTP header instance.

44

Chapter 13. Client Side III: RestTemplate

With existing HTTP entity, we only need to create a new RestTemplate
instance and use it for performing a request. A constructor parameter for
the RestTemplate would be our custom client HTTP request factory from
Section 13.1. And in order to RestTemplate marshall a Person instance
into a XML message, we must add a XML message converter – let us use
a SimpleXmlHttpMessageConverter class for this purpose.
The last step is client-server interaction itself. The RestTemplate offers
many HTTP methods – in this case we need a POST method, which is
commonly used for a new record creation. Moreover, we expected except OK
message information about newly created user in response, therefore we use
a postForObject method, which has parameters of URL (where to perform
a request), HTTP entity (with previously set header fields) and a expected
response object class (in our case Person.class).
The whole example looks in code like in the following snippet:

1 //assume initialized instance of Person class named "person"
2 HttpAuthentication authHeader
3 = new HttpBasicAuthentication(username, password);
4 HttpHeaders requestHeaders = new HttpHeaders();
5 requestHeaders.setAuthorization(authHeader);
6 requestHeaders.setAccept(
7 Collections.singletonList(MediaType.APPLICATION_XML));
8 requestHeaders.setContentType(MediaType.APPLICATION_XML);
9

10 SSLSimpleClientHttpRequestFactory factory
11 = new SSLSimpleClientHttpRequestFactory();
12 RestTemplate restTemplate = new RestTemplate(factory);
13 restTemplate.getMessageConverters().add(
14 new SimpleXmlHttpMessageConverter());
15

16 HttpEntity<Person> entity
17 = new HttpEntity<Person>(person, requestHeaders);
18 Person response =
19 restTemplate.postForObject(url, entity, Person.class);

Listing 8: RestTemplate example

45

14 | Client side IV: Navigation

Using a proper navigation is a crucial part of every application. In previous
versions of Android were key navigation elements located in options menu
or they were present as view elements like buttons and hardware keys.
Our application, as well as EEG Base for Android, is built upon Android
SDK newer than Ice Cream Sandwich, so our focus must be targeted on
the ActionBar, which now handles most of navigation within the application.

14.1 Option Menus

There are two possible ways to invoke options menu – by a hardware button,
or by clicking on menu icon on the ActionBar. While the menu icon may not
be visible on devices with hardware menu button, on devices without it is
visible every time a menu item is set into options menu.
The options menu can be defined in two ways: directly in a code, or by
creating a menu resource XML file, with menu items defined in it [9]. Both
activities and fragments can present own options menu items, which are
merged into one common menu.
All items are hidden in menu by default. If we want to see them on
the ActionBar, we must set the item’s showAsAction attribute. Possible
values for this attribute are

• always: will be visible under all circumstances, recommended max. for
2 menu items,

• ifRoom: visible on the ActionBar only if there is a free space,

• withText: shows item’s title even if there is an icon set,

• never : item will be always inside the options menu and not in
the ActionBar,

• collapseActionView: when a menu item is clicked on, its view expands
all over the ActionBar. This behaviour is quite useful for implementing
a search text box, like in ListAllExperimentsFragment class in
the EEG Base for Android.

46

Chapter 14. Client side IV: Navigation

Now let us see, how implement option menus in activities and fragments.

14.1.1 Activities

Implementing option menus in activities is fairly simple: the only things need
to do are inflating the menu and handling item selection events.
The menu is being inflated in the method onCreateOptionsMenu. Here we
obtain a MenuInflater instance and inflate proper menu XML resource into
provided menu instance. It is crucial to return true after the job is done,
otherwise activity will ignore our menu settings.

1 @Override
2 public boolean onCreateOptionsMenu(Menu menu) {
3 super.onCreateOptionsMenu(menu);
4 MenuInflater inflater = getMenuInflater();
5 inflater.inflate(R.menu.exp_menu, menu);
6 return true;
7 }

Listing 9: Example of inflating menu resource in ExperimentActivity

Now we have an inflated menu, which has its menu items. Each menu item
has its identifier, which is used in event handling method for event source
recognition. The event handling method is called onOptionsItemSelected. In
order to handle events over our menu resource, we must override it and alter
its behaviour.

1 @Override
2 public boolean onOptionsItemSelected(MenuItem item) {
3 switch (item.getItemId()) {
4 case android.R.id.home:
5 finish();
6 break;
7 //other cases distinguished by identifiers
8 }
9 return super.onOptionsItemSelected(item);

10 }

Listing 10: Example of handling menu items’ events

Note the android.R.id.home identifier. This is an identifier for a special

47

Chapter 14. Client side IV: Navigation

button, a home button, located instead of activity’s icon, which has the icon
as its contents but right next to it is a "<" character. This button is meant for
going up in the logical hierarchy of screens. Imagine the situation, when you
were in a list view of records and you clicked on record. A details activity was
displayed, but you clicked on a button, which took you to "page 2". The back
button would take you to "page 1", but the home button, with a proper
implementation, would take you back to the list view of records.
In order to use home button, you must edit behaviour of the ActionBar in
activity’s onCreate method, as in Listing 11.

1 @Override
2 public void onCreate(Bundle savedInstanceState) {
3 super.onCreate(savedInstanceState);
4 getActionBar().setDisplayHomeAsUpEnabled(true);
5 }
6 }

Listing 11: Turning icon into Home/Up button

14.1.2 Fragments

The situation is a bit different in fragments’ implementation, since an activity
is superior to a fragment. Fragments have no options menu by default,
so we must inform a parent activity, that our fragment provides it. It is
performed in the fragment’s onCreate method, by passing a true value to
setHasOptionsMenu method.
MenuItem events are handled in the same way as in activities, but do not
forget to invoke a super method, since the event must be passed to an activity
if the menu item identifier was not recognized!
Inflating menu is also a bit different from the approach used in activities.
The onCreateOptionsMenu method already provides a menu inflater instance
as well the menu instance itself, so the only thing necessary is to inflate
a menu resource and to invoke the super method.

48

Chapter 14. Client side IV: Navigation

14.2 Tabs Navigation

Tabs are one of the most common navigation elements in Android applications.
They are used to separate content by their categories and to make orientation
easier. The tabs are a part of an ActionBar and are displayed either inside
of it, if the screen is large enough, or right below it.

Figure 14.1: Tabs as a navigation menu in the EEG Base for Android

In order to provide a navigation with tabs, we need to alter ActionBars’
behaviour and create an implementation of an ActionBar.TabListener
interface. The custom TabListener resolves what happens, when a tab
is selected (usually a fragment is changed), unselected (fragment is detached)
or reselected (usually nothing happens)1.
The ActionBar behaviour change is quite straightforward – we only need to
set another navigation mode, create tabs and add them to the ActionBar.

1 @Override
2 public void onCreate(Bundle savedInstanceState) {
3 super.onCreate(savedInstanceState);
4 ActionBar actionBar = getActionBar();
5 actionBar.setNavigationMode(
6 ActionBar.NAVIGATION_MODE_TABS);
7 ActionBar.Tab tab = actionBar.newTab()
8 .setText(R.string.string_identifier)
9 .setTabListener(tabListenerInstance);

10 actionBar.addTab(tab);
11 }
12 }

Listing 12: Single tab example of ActionBar with tabs navigation mode

1see cz.zcu.kiv.eeg.mobile.base.ui.TabListener

49

Chapter 14. Client side IV: Navigation

14.3 Spinner Navigation

Another choice of navigation might be a spinner instead of an activity name.
An implementation of such navigation is a bit more difficult than the tabs
mode, but on the other hand, it is more useful for referencing activities as
well as fragments. Unfortunately, currently there is no straightforward way
to support both spinner and tabs mode in one activity at once.
If we want to have a spinner as a menu in an ActionBar, we must set it to
a list navigation mode. Also we must implement a OnNavigationListener,
so we could handle menu item selection events. The last thing we need to do
is to create a SpinnerAdapter, which we set together with the navigation
listener to the ActionBar.
A working example of such implementation is used in the EEG Base for
Android, specifically in the NavigationActivity2 class. A custom array
adapter called MenuAdapter is created in the NavigationActivity and it
needs a reference to an array of strings, array of icon references and a list
item layout identifier. The result is visible in Figure 14.2.

Figure 14.2: Spinner navigation menu in EEG Base for Android

2cz.zcu.kiv.eeg.mobile.base.ui.NavigationActivity

50

15 | Client Side V: EEG Base
for Android Specifics

Implementation details are too specific to the EEG Base for Android since
this chapter to be described as a generally recommended approach to develop
a RESTful web service client. This chapter is dedicated to implementation
specifics of the EEG Base for Android.
Parts of the final application in relation to their logic and packages will be
presented in following sections.

15.1 Resources

The EEG Base for Android uses default a resource structure as it is discussed
in Section 8.1.

15.1.1 Application Localization

The application supports English and Czech languages. There are two values
directories, one without a language qualifier and the second one with a cs
qualifier. strings.xml files, which contain string values, are in both of them
as well as arrays.xml, which contains string arrays in proper language.

15.1.2 Application Layouts

Tablets and mobile phones have different layouts of different sizes in order to
keep information readable and the user experience intact. As a threshold for
distinguishing where to use mobile or tablet layout a minimal width qualifier
of 600dp was used. It is usually a width of 7" tablets, like Nexus 7.
Portrait and landscape alternatives are provided as well. In the case of large
layouts, like layout for adding a new experiment, layouts were separated into
partial files, which are included into main layout using the include tag in
layout’s XML file. Including sub-layouts benefits us of possibility to present

51

Chapter 15. Client Side V: EEG Base for Android Specifics

different user experience across various devices by creating different sub-layout
per different device, like in mentioned phones or tablets.
Icons of different size for various screen densities are also provided, since it is
a standard in an Android application development. A website tool commonly
recognized among Android Developers — an Android Asset Studio1 —
was used for their creation.

15.2 Archetypes: Project Specifics

In the EEG Base for Androids two main archetypes are used:
CommonActivity and CommonService. These two classes are decorated
Activity and AsyncTask. The CommonService is used for parallel jobs of
CommonActivity and both archetypes were primarily created for easy status
change from a AsyncTask to a related Activity. Also, by the time Activity
gets destroyed (e.g. screen orientation change) existing AsyncTasks may still
be running. AsyncTasks usually have its ProgressDialog, using which is user
informed that the application is currently working. In order to prevent window
leaks, the alert dialog must be destroyed and recreated with a reference to
a new Activity.
The CommonActivity and CommonService resolve this issue by using
the ServiceReference class, which works as a FIFO queue of references to
CommonServices and their messages to ProgressDialog. Each time an instance
of CommonActivity is created, it checks if there is any reference in the FIFO.
If there are any references, all CommonServices in FIFO are set with new
CommonActivity reference for context and a new ProgressDialog is created
with a proper message.
Dismissing a progress dialog is also handled. If a CommonActivity gets
paused, the dialog is dismissed. If CommonService informs the Activity that
the job is done, the reference is removed and the dialog is closed.
The CommonService has in also a methods for simple message passing to
a CommonActivity and a method, for passing an Throwable instance. Such
throwable is analysed, and if it is of known type related to common issues,
only a text message is passed forward. This is used for handling errors during
client-server communication, where exceptions provide only codes or hardly
readable messages.
There is only one limitation to CommonServices – they must be executed

1http://j.mp/androidassetstudio

52

Chapter 15. Client Side V: EEG Base for Android Specifics

serially in order to prevent issues with progress dialog. It is achieved by
executing on an Executor pool with a AsyncTask.SERIAL_EXECUTOR
parameter.
Both CommonActivities and ComonServices decorate their parent classes by
simple access to shared preferences which contain user’s credentials.
The last archetype is a SaveDiscardActivity. This activity inherits from
a CommonActivity and is meant for views, where accepting and storing of
displayed data or dismissing them are the only options available. This activity
and its style are based on Done+Discard Android UI design pattern[16].
The package of archetypes is cz.zcu.kiv.eeg.mobile.base.archetypes.

15.3 Data Layer

All classes which are meant for containing and providing data are placed in the
cz.zcu.kiv.eeg.mobile.base.data package. Only two classes are in the package
root – ServiceState, which holds enumeration of possible CommonService
states, and Values, which serves as a container of various constants and
values, like RESTful web service endpoints, flags and keys for activity results
etc. Other classes are in the following sub-packages.

15.3.1 Container

Simple data containers were created in order to contain available data.
The containers are Parcelable and they can be used for XML marshalling and
unmarshalling in RestTemplate thanks to Simple Framework annotations.
The matter of Parcelable was discussed in Section 12.3 and an example of
such parcelable and marshallable container can be seen in Appendix B. Such
containers are created for all required data types, e.g. artifacts, experiments,
electrode locations, etc.
The mentioned containers are placed into a xml sub-package, since there
is an exception in FileInfo container. This class is a simple decoration of
a Java File class, which provides file’s size string in human readable form,
and it is used in application’s file system browser. The FileInfo class is not
marshallable nor parcelable, since it is limited to local files and the objects
are not passed to Bundles.

53

Chapter 15. Client Side V: EEG Base for Android Specifics

15.3.2 Adapter

Since the EEG Base for Android requires a custom behaviour of spinners,
list views and other similar components, there must be created custom
ArrayAdapters as well. These adapters are located in the adapter data
sub-package and provide view elements in accordance to provided data
containers and related row layouts, as discussed in Section 12.2.

15.4 Web Service Communication

All the knowledge about RestTemplate and SSL connection from Chapter 13
is used in CommonService implementations, which are located in
the cz.zcu.kiv.eeg.mobile.base.ws.asynctask package.
Each CommonService implementation’s name consists of an action prefix,
which tells us what a service does (like create or fetch), and the related data
container. It means, that CreateWeather class serves for creating a new
Weather record on the server, while the FetchArtifacts class retrieves from
the server a list of all existing artifacts.
As every AsyncTask (CommonService is an AsyncTask with decorations),
these classes operate both with the GUI thread and on background without it
(see Section 8.2.2). All the client–server interaction takes place in
the doInBackground method, where we initialize a RestTemplate instance
and perform a required operation, like shown in Listing 8.
Almost all CommonServices are fairly simple to understand to, since they
exchange only one instance of marshallable container at the time. This does
not apply to the CreateScenario and UploadDataFile classes, which must
upload an existing file from device’s file system as well as required meta-data.
Since we use Spring MVC on the server and Spring’s RestTemplate on
the client, the solution is simple as well. On the client we create an instance
of MultiValueMap, into which we set all meta-data under proper keys,
and a single FileSystemResource reference to file in device’s memory with
a "file" map key. With these settings RestTemplate sends file as a MultiPart
object, which is by the key names binded to proper Controller method’s
parameters. An example of sending scenario file is visible in Listing 13.

1 FileSystemResource toBeUploadedFile =
2 new FileSystemResource(scenario.getFilePath());
3

54

Chapter 15. Client Side V: EEG Base for Android Specifics

4 MultiValueMap<String, Object> form =
5 new LinkedMultiValueMap<String, Object>();
6 form.add("scenarioName", scenario.getScenarioName());
7 form.add("researchGroupId",
8 Integer.toString(scenario.getResearchGroupId()));
9 form.add("description", scenario.getDescription());

10 form.add("mimeType", scenario.getMimeType());
11 form.add("private", Boolean.toString(scenario.isPrivate()));
12 form.add("file", toBeUploadedFile);
13

14 HttpEntity<Object> entity =
15 new HttpEntity<Object>(form, requestHeaders);
16 ResponseEntity<Scenario> response =
17 restTemplate.postForEntity(url, entity, Scenario.class);

Listing 13: Example of uploading a Scenario file with its meta-data

Since uploaded files may be large, do not forget to disable file buffering prior
its sending, otherwise the application will run out of memory. It is managed
by setting a false into a request factory method setBufferRequestBody.

15.5 User Interface

The user interface classes are located in cz.zcu.kiv.eeg.mobile.base.ui package
and its sub-packages. The package root contains the NavigationActivity
class and the TabListener class, which was mentioned in Section 14.1.
The main package contains sub-packages with their own classes. These
sub-packages are named either by a data type their classes work with (datafile,
experiment, person, scenario, reservation), or by logic or a phase their classes
belong to (dashboard, filechooser, settings, startup).

55

Chapter 15. Client Side V: EEG Base for Android Specifics

15.5.1 Startup

Obtain credentials SharedPreferences

Are credentials null?

Start WelcomeActivity
No

Start NavigationActivity
Yes

Figure 15.1: Activity diagram of application startup

On start up in StartUpActivity application checks, if there are user’s
credentials stored in shared preferences. If so, a NavigationActivity is
started, otherwise a WelcomeActivity is launched, like in Figure 15.1
In WelcomeActivity (Figure 15.2), user provides and confirms credentials,
which are first offline validated, whether they contain a credentials data or not.
After the validation phase starts a TextCredentials CommonService, which
tries to connect to server and obtain user details. If succeeds, the credentials
are saved and user is let to the NavigationActivity, otherwise he/she is
informed by an error message and must either wait till the server is available
(if there was a connection issue), or must correct the credentials.

UI elements ready for credentials input

Errors

TestCredentials CommonService

OK

Error with veri cation or communication

Start NavigationActivity

OK

Validations

Inflating layout

Figure 15.2: Activity diagram of WelcomeActivity

56

Chapter 15. Client Side V: EEG Base for Android Specifics

15.5.2 NavigationActivity

When the user is in NavigationActivity, all sections of an application are
accessible. Simple sections are resolved as fragments, which are replaced inside
the activity. Other sections, which demand further navigation elements (tabs),
are resolved as activities, which are started from the NavigationActivity (see
Figure 15.3).
The onStop and onRestart actions relate to Activity’s life cycle, when another
Activity takes place on the top of the GUI stack. The onDestroy can be
possibly called only by the garbage collector, when the application is inactive
(i.e. "turned off"). Such behaviour is correct, since the StartUpActivity
creates a new instance during a new application run.

UI ready

In ating layout

stopped

onRestart

Selected navigation item

Starting selected Activity

Activity

onStop

Replacing fragments
FragmentonDestroy

Figure 15.3: Activity diagram of NavigationActivity

Browsing through application sections is resolved using a spinner-like list
menu, as discussed in Section 14.3. This activity on start up fills its body
with an instance of DashboardFragment, which contains only a welcome
message.

15.5.3 Record Browsing

There are three stand-alone sections for browsing data in the EEG Base for
Android .

• Experiments – located in ExperimentActivity,

• Scenarios – located in ScenarioActivity,

57

Chapter 15. Client Side V: EEG Base for Android Specifics

• EEG Lab reservation times – located in ReservationFragment.

While ExperimentActivity and ScenarioActivity are separate activities created
from the NavigationActivity, the ReservationFragment is a fragment, which
replaces NavigationActivity’s content, so its activity diagram is slightly
different from Figure 15.4, since there is no Up button.

UI ready

In ating layout

Replace fragment
Tab

Fetch records

using proper CommonService

Refresh

Start proper create

activity for result

Create record

Add items into list of records

User selects view element

Control element

Display record details
ListView item

ListView changes get visible

Up button

Figure 15.4: Activity diagram of activities with tabs for record browsing

In all three sections you can fetch existing records from the server, create new
ones in a separate dedicated activity (AddRecordActivity for reservations,
ExperimentAddActivity for experiments and ScenarioAddActivity for
scenarios).
There is a need of distinguishing user’s records from all public records in
experiments and scenarios sections, therefore these activities dispose of tabs
in navigation menu. When selecting a tab, related fragment replaces body
of an activity. Each fragment has its own array adapter, so fetched data are
independent across fragments.
When selecting an item from fragment’s list view, details of the specific
record are displayed. Information is displayed either in its fragment (which
applies to tablets), or in a separate activity (phones). This behaviour was
chosen in order to preserve amount of displayed information on screen,
while keeping layout clear and readable. The application chooses which
way to display data upon fragment’s creation, when it retrieves a layout
resource. If there is a details frame in the layout, the data are displayed

58

Chapter 15. Client Side V: EEG Base for Android Specifics

inside this frame, otherwise a details activity is created. Details class naming
convention in this application is <Type>Details<Activity|Fragment>, e.g.
ExperimentDetailsFragment.
The only issue in displaying details is with a collection of records, which we
need to display in scrollable component. In such case we cannot use another
listview or a similar scrollable component, but we must create a frame layout,
into which we programmatically create and inflate row items one by one. Such
solution may be seen in ExperimentDetailLists class. This class contains
methods methods into which we provide only frame layout and a collection
with data – the rest is handled by the class’s methods.

15.5.4 Creating a New Record

In all aforementioned sections (reservations, experiments, scenarios) we can
create new records. In general, there is a SaveDiscardActivity, whose layout
contains all required input fields. When they are filled, user confirms the data,
proper CommonService related to the data type is triggered and the record
is created. These activities also provide created record as a result to previous
activity, in order to add it into its array adapter.
From ExperimentAddActivity or ScenarioAddActivity we can also
create records of data types, which do not have its section for browsing, but
which are available for purposes of a new complex type creation. Such data
types are people, artifacts, digitizations, diseases, electrode fixes, locations
and types and weather types. All data types have its container, which is used
in the name of an activity for creation of such record. The naming convention
for these activities is <Container>AddActivity.
The last creatable record is Reservation, which represents booking time to
the EEG Lab at the University of West Bohemia. The difference against
other data types is, that these records can be removed from the application,
if they are owned by user or the user is an administrator.

15.5.5 Choosing File for Upload

Since EEG researchers gather files, which need to be uploaded, we must
be abble to provide such logic. File upload takes place in two places: in
ScenarioAddActivity class and DataFileUploadFragment class. In case
of scenarios we upload files only when creating a new scenario record. In
case of data files, we can upload them only to existing experiments from

59

Chapter 15. Client Side V: EEG Base for Android Specifics

the NavigationActivity.
In both cases we need to select a file to be uploaded. Because Android
does not provide any file-browsing component, a FileChooserActivity was
created for these purposes. It is a list view, which fills FileInfo instances as
its rows. On an item click event we return to caller activity. The process of
uploading a data file is visible in Figure 15.5.

UI ready

In ating layout

Control selected

Starting

FileChooserActivity

File selection

File selected

Input validations

Upload

Errors?

Displaying

dialog with errors

Yes

Starting upload CommonService

No

Figure 15.5: Activity diagram of DataFileUploadFragment

15.5.6 Settings

Settings are simple custom implementation of SaveDiscardActivity, which
serves for making changes in credentials shared preferences. It provides
means to edit username, password and web service URL. Moreover, there
is a feature that enables to set Monday as a first day of week. It is useful
for choosing a date in DatePicker component on tablets, where a calendar is
displayed, because Sunday as a first day is confusing for some users.

60

Chapter 15. Client Side V: EEG Base for Android Specifics

15.6 Utilities

Utility classes are located in the package cz.zcu.kiv.eeg.mobile.base.utils.
These classes gather useful methods used across the application.

• ConnectionUtils provides the method isOnline, which checks, if there
is an existing network connection.

• FileUtils contains methods for obtaining file’s MIME type and its file
size in a human readable format.

• LimitedTextWatcher is an interface implementation used over EditText
components, which have a maximal text length set. It provides means
to update another TextView component with a message of characters
left till a maximum text length limit is reached.

• ValidationUtils class gathers methods used for various commonly
used validation operations, like checking validity of email string, URL
string or just checking emptiness of a string.

61

16 | Testing

Server side functionality was split into two sections – a service core functionality
and a URL mapping functionality. The service core functionality was verified
using the unit testing framework JUnit 4, while the URL mapping was tested
by the EEG Base for Android client application.
Unit tests are located in cz.zcu.kiv.eegdatabase.webservices.rest test package.
The transactions and dependency injection work similar as in the tested
components, only a special Spring context file is required. This context file
initializes database connection and other vital Spring components (beans,
transaction manager, . . .). The context loading is managed by code shown
in Listing 14, which is placed above the class body.

1 @RunWith(SpringJUnit4ClassRunner.class)
2 @ContextConfiguration(locations = {"classpath:test-context.xml"})

Listing 14: Class annotations for loading Spring context

Creating a new record was tested in unit test methods as well as checking
its presence in the output of getter methods (CR). In case of getter methods
was checked, if content of service core method matches the data available
through DAO objects (R) (Table 16.1).

Data type Test cases Results
Artifact CR OK
Data File CR OK
Digitization CR OK
Disease CR OK
Electrode Location CR OK
Electrode Fix CR OK
Experiment CR, R public records, R user’s records OK, OK, OK
Person R login, R all records OK, OK
Research groups R public records, R user’s records OK, OK
Scenario CR, R public records, R user’s records OK, OK, OK

Table 16.1: Unit tests in accordance to data types and their results

62

Chapter 16. Testing

Table 16.1 represents a brief summary of performed unit tests and their results.
Tests themselves are represented by methods annotated with the @Test
annotation over them.
However, in some test cases a logged user was required. It was resolved by
manual logging in setUp test stage, as shown in Listing 15. Although there is
a security risk in putting user credentials available in a plain text, this is the
only solution, which was found and resolves the issue. A possible solution
might be reading credentials from a properties file, where they would be set
only in case of testing, or to create an account for testing purposes.

1 @Before
2 public void setUp() throws Exception {
3 Person user =
4 personDao.getPerson("petrmiko@students.zcu.cz");
5 List<SimpleGrantedAuthority> authorities =
6 new ArrayList<SimpleGrantedAuthority>();
7 authorities.add(new SimpleGrantedAuthority(
8 user.getAuthority()));
9 Authentication auth =

10 new UsernamePasswordAuthenticationToken(
11 user, "heslo", authorities);
12 SecurityContextHolder.getContext().setAuthentication(auth);
13 }

Listing 15: Manual logging in within Junit 4 test

Client side communication was either tested continuously during development
and during user testing. Following scenarios were created for user testing:

1. Log into application

2. Display details of public scenario

3. Create experiment with a new electrode location

4. Upload file to a newly created experiment

These scenarios were performed by the following users, while their overall
satisfaction marks are noted in Table 16.2. Scaled on range of 1 as the lowest
to 10 as the highest satisfaction with the application.

63

Chapter 16. Testing

Gender Age Errors
found Mark Reason to granted mark

Male 24 1 7/10 Error found,
could not find menu without manual

Male 23 0 8/10 Dark layout,
tabs cannot be changed by swipe gesture

Female 23 0 9/10 Would prefer larger font size

Female 17 0 8/10 Could not find menu without manual,
preference of Windows Phone UI

Table 16.2: User testers and their marks to the application

Only one error was found during user testing. This error was fixed and did
not affect other testers. The first tester was also an EEG researcher. No
further errors were found and all test scenarios were performed successfully.
A 1.19kB large file was uploaded during user testing , but a file of 250MB
size was uploaded in a separate test .

64

17 | Future enhancements

Capabilities of discussed RESTful web service server side and its client side
can be further improved. Following improvements are outside the scope
of needs discussed in this thesis, but user experience would be improved if
the improvements are implemented .

17.1 WADL Support

Currently there are no other files the server side controller classes, where
information about existing endpoints of RESTful web service would be
collected in. Implementing automatic WADL file generation on server start
up, may be a viable solution for developers, who would like to implement
an own client application for EEG Base. This WADL file would be available
at main endpoint URL /rest/ afterwards.

17.2 Changing Tabs by Swipe Gesture

A swipe-driven tab changing is becoming a new navigation standard in
modern applications. However, for providing such feature an Android’s
Support Library would have had to be used, which would require additional
comprehension of the library and its new components.

17.3 File Downloading

In the current state endpoints for downloading user’s data files by an identifier
in GET request1 are prepared. In response to such request a binary file
is returned. A proposed enhancement lies in implementing a Service (not
a CommonService, which is a decorated AsyncTask!) or using an Android
component for background downloading file, if there exists such component.

1getFile methods in DataFileServiceController and ScenarioServiceController

65

Chapter 17. Future enhancements

17.4 Visualizing Data File

An additional step to file downloading might be allowing a user to open them.
In case of a plain text files should be easy to display file’s content, but in case
of EEG data files it would be required to implement a graphic visualization
of data file’s content (signals, epochs, . . .).

66

18 | Conclusion

The main goal of this thesis was to present a solution for gathering EEG/ERP
data using mobile devices. After an analysis of needs and requirements
the Android mobile platform was chosen for mobile application development.
This application can be ran on mobile phones and tablets with Android v4.0.x
and newer.
In order to provide requested data synchronization it was analysed, what
type of data is needed to transfer. As a result was developed a RESTful web
service server side and its client counterpart will be developed. Both allow to
save and read meta-data, since they are needed the most, and to save larger
data files, which are needed only to be stored.
The implementation process of such RESTful web service provided interesting
insight into modern Java frameworks and technologies. Even more it was
interesting that since Android platform is based on Java, many libraries
and frameworks may be used in Android too, like the RestTemplate library.
On the other hand, the Android platform has its specifics in design and
expression possibilities. A lot of energy has to be put into finding solutions
to issues like designing navigation, internal data transfer, screen orientation
change issues, etc. Also, security has a significant role in presented solution.
Therefore a custom implementation of HTTP client factory for RestTemplate
was created. This factory implementation supports all SSL certificates (EEG
Base does not have own certificate yet) and resolves issue with file buffering
into memory, which is present in default implementation.
As a result of effort put into thesis’s solution, a fully functional RESTful web
service was implemented into the EEG Base. An Android client application
EEG Base for Android was created as well. The application uses the web
service for client-server communication and provides required data
synchronization.
While creating an application, the EEG Base for Android, a lot of effort was
focused on simplicity of software project management. Therefore a Apache
Maven was used for clear definition of a directory structure, simplicity of
dependency management and building the client application itself.
Both the client side and the server side can be easily extended for further
logic in future, as suggested in Chapter 17.

67

List of Figures

4.1 EEG Database client application use case diagram 7

5.1 Communication diagram between web service elements [3] . . 9

6.1 Maven Directory Structure . 15

7.1 Android OS versions market share in April 4th, 2013 21

8.1 Resource selection flowchart [12] 23
8.2 Example of strings.xml structure 24

9.1 Deployment diagram . 28

11.1 Android project on-disc file structure 36

14.1 Tabs as a navigation menu in the EEG Base for Android . . . 49
14.2 Spinner navigation menu in EEG Base for Android 50

15.1 Activity diagram of application startup 56
15.2 Activity diagram of WelcomeActivity 56
15.3 Activity diagram of NavigationActivity 57
15.4 Activity diagram of activities with tabs for record browsing . . 58
15.5 Activity diagram of DataFileUploadFragment 60

D.1 Log in screen . 82
D.2 Dashboard screen . 83
D.3 Scenarios section . 84
D.4 Filtering fetched records . 85
D.5 Creating new scenario . 86
D.6 Creating new experiment . 87

68

List of Figures

D.7 Experiment data file upload 88
D.8 Reservations . 89
D.9 Settings . 90

69

List of listings

1 Servlet definition in web.xml 30
2 Enabling MVC annotations in cz.zcu.kiv.eegdatabase.webservices.rest

package . 31
3 Request mapping with an input parameter in a request URL . 32
4 Exception handling in web service controller 32
5 Allowing transactions annotations 33
6 Allowing Spring Security annotations 34
7 Forcing secure channel for RESTful web services in web.xml . 34
8 RestTemplate example . 45
9 Example of inflating menu resource in ExperimentActivity . . 47
10 Example of handling menu items’ events 47
11 Turning icon into Home/Up button 48
12 Single tab example of ActionBar with tabs navigation mode . 49
13 Example of uploading a Scenario file with its meta-data 55
14 Class annotations for loading Spring context 62
15 Manual logging in within Junit 4 test 63
16 ScenarioSimpleData.java . 75
17 Writer.java . 76
18 scenario.xml . 76
19 Reader.java . 77
20 Example for Parcelable data container, which handles XML

marshalling . 80

70

List of Abbreviations

API — Application Programming Interface
APK — Android Application Package
CRUD — Create, Read, Update, Delete
DAO — Data Access Object
DOM — Document Object Model
EEG — Electroencephalogram
ERP — Event Related Potentials
GUI — Graphical User Interface
HTTP — Hypertext Transfer Protocol
IDE — Integrated Development Environment
INCF — International Neuroinformatics Coordinating Facility
IoC — Inversion of Control
ISO — International Organization for Standardization
JAXB — Java Architecture for XML Binding
JDK — Java Development Kit
JSON — JavaScript Object Notation
MVC — Model-View-Control design pattern
ORM — Object-relational Mapping
POM — Project Object Model
REST — Representational State Transfer
RPC — Remote Procedure Call
SAX — Simple API for XML
SDK — Software Development Kit
SOA — Service Oriented Architecture
SOAP — Simple Object Access Protocol
SSL — Secure Sockets Layer
TLS — Transfer Layer Security
UDDI — Universal Description, Discovery and Integration
UI — User Interface
URI — Uniform Resource Identifier
URL — Uniform Resource Locator
UX — User Experience
WADL — Web Application Description Language
WSDL — Web Services Description Language
XAML — Extensible Application Markup Language

71

List of listings

XML — Extensible Markup Language
XSD — XML Schema Definition

72

Bibliography

[1] BlackBerry. Develop with blackberry. http://developer.blackberry.
com/develop/, 2013. [Online; accessed 28-April-2013].

[2] Dieter Bohn. Android device diversity and fragmentation
charted in minute detail. http://www.theverge.com/2012/5/15/
3023119/android-device-diversity-fragmentation-chart, May
2012. [Online; accessed 29-April-2013].

[3] Peter Brittenham. An overview of the web services inspection
language. http://www.ibm.com/developerworks/webservices/
library/ws-wsilover/, June 2002. [Online; accessed 16-April-2013].

[4] Roy Thomas Fielding. Architectural styles and the design of
network-based software architectures. http://www.ics.uci.edu/
~fielding/pubs/dissertation/top.htm, 2000. [Online; accessed
16-April-2013].

[5] The Apache Software Foundation. Apache maven website. http://
maven.apache.org, unknown. [Online; accessed 25-April-2013].

[6] Google. Platform versions. http://developer.android.com/about/
dashboards/index.html, April 2013. [Online; accessed 7-April-2013].

[7] Google. Fragment documentation. http://developer.android.com/
reference/android/app/Fragment.html, unknown. [Online; accessed
27-April-2013].

[8] Google. Layouts. http://developer.android.com/guide/topics/ui/
declaring-layout.html, unknown. [Online; accessed 20-April-2013].

[9] Google. Menus. http://developer.android.com/guide/topics/ui/
menus.html, unknown. [Online; accessed 25-April-2013].

[10] Google. Property animation. http://developer.android.com/guide/
topics/graphics/prop-animation.html, unknown. [Online; accessed
25-April-2013].

73

Bibliography

[11] Google. Providing resources: Grouping resource types.
http://developer.android.com/guide/topics/resources/
providing-resources.html\#ResourceTypes, unknown. [Online;
accessed 16-April-2013].

[12] Google. Providing resources: How android finds the best-matching
resource. http://developer.android.com/guide/topics/resources/
providing-resources.html#BestMatch, unknown. [Online; accessed
7-April-2013].

[13] Google. View animation. http://developer.android.com/guide/
topics/graphics/view-animation.html, unknown. [Online; accessed
25-April-2013].

[14] Apple Inc. Cocoa touch. https://developer.apple.com/
technologies/ios/cocoa-touch.html, unknown. [Online; accessed
28-April-2013].

[15] Microsoft. Xaml overview. http://msdn.microsoft.com/en-US/
library/ms752059.aspx, unknown. [Online; accessed 28-April-2013].

[16] Roman Nurik. Done+discard design pattern. http://www.
androiduipatterns.com/2012/08/roman-nurik-on-done-discard.
html, August 2012. [Online; accessed 26-April-2013].

[17] OASIS. Uddi xml.org. http://uddi.xml.org/uddi-101, 2006. [Online;
accessed 5-April-2013].

[18] Oracle. Establishing a secure connection using ssl. http://docs.oracle.
com/javaee/5/tutorial/doc/bnbxw.html, 2010. [Online; accessed
29-April-2013].

[19] Edward Ort. Java architecture for xml binding (jaxb). http://www.
oracle.com/technetwork/articles/javase/index-140168.html,
March 2003. [Online; accessed 22-April-2013].

[20] Matt Silverman. The rise and fall of rim. http://mashable.com/
2012/06/25/rim-decline-chart/, June 2012. [Online; accessed
20-April-2013].

[21] Craig Walls. Spring in Action. Manning Publications, 2011. ISBN:
1935182358.

74

A | JAXB Annotations Example

First we need to create a data container, which will be annotated by JAXB
annotations. We use a container for simplified scenario information from
the EEG Base as visible in Listing 16. The propOrder parameter in the XmlType
annotation enforces order of elements in result XML file.

1 package data;
2

3 import javax.xml.bind.annotation.XmlElement;
4 import javax.xml.bind.annotation.XmlRootElement;
5 import javax.xml.bind.annotation.XmlType;
6

7 @XmlType(propOrder = {"scenarioId", "scenarioName"})
8 @XmlRootElement(name = "scenario")
9 public class ScenarioSimpleData {

10 @XmlElement
11 public int scenarioId;
12 @XmlElement
13 public String scenarioName;
14 }

Listing 16: ScenarioSimpleData.java

The next step is to create an instance of the ScenarioSimpleData class, fill it
with data and unmarshall it into scenario.xml (Listing 17).

75

Appendix A. JAXB Annotations Example

1 package logic;
2

3 import data.ScenarioSimpleData;
4 import javax.xml.bind.*;
5 import java.io.File;
6

7 public class Writer {
8 public static void main(String[] args) {
9

10 ScenarioSimpleData scenario = new ScenarioSimpleData();
11 scenario.scenarioId = 12;
12 scenario.scenarioName = "Test JAXB scenario";
13

14 try {
15 File file = new File("scenario.xml");
16 JAXBContext context =
17 JAXBContext.newInstance(ScenarioSimpleData.class);
18 Marshaller marshaller = context.createMarshaller();
19 // output pretty printed
20 marshaller.setProperty(
21 Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE);
22 marshaller.marshal(scenario, System.out);
23 marshaller.marshal(scenario, file);
24 } catch (JAXBException e) {
25 e.printStackTrace();
26 }
27 }
28 }

Listing 17: Writer.java

Output stored in scenario.xml is the following:

1 <scenario>
2 <scenarioId>12</scenarioId>
3 <scenarioName>Test JAXB scenario</scenarioName>
4 </scenario>

Listing 18: scenario.xml

76

Appendix A. JAXB Annotations Example

In order to recreate the scenario instance, code from Listing 19 must be run.

1 package logic;
2

3 import data.ScenarioSimpleData;
4 import javax.xml.bind.*;
5 import java.io.File;
6

7 public class Reader {
8 public static void main(String[] args) {
9 try {

10 File file = new File("scenario.xml");
11 JAXBContext context =
12 JAXBContext.newInstance(ScenarioSimpleData.class);
13 Unmarshaller unmarshaller = context.createUnmarshaller();
14 ScenarioSimpleData scenario =
15 (ScenarioSimpleData) unmarshaller.unmarshal(file);
16 System.out.println("Scenario ID: "
17 + scenario.scenarioId);
18 System.out.println("Scenario name: "
19 + scenario.scenarioName);
20 } catch (JAXBException e) {
21 e.printStackTrace();
22 }
23 }
24 }

Listing 19: Reader.java

Standard text output from such code is the following:

Scenario ID: 12
Scenario name: Test JAXB scenario

77

B | Parcelable Data Container

1 import android.os.Parcel;
2 import android.os.Parcelable;
3 import org.simpleframework.xml.Element;
4 import org.simpleframework.xml.Root;
5

6 @Root(name = "owner")
7 public class Owner implements Parcelable {
8 public static final Parcelable.Creator<Owner> CREATOR
9 = new Parcelable.Creator<Owner>() {

10 public Owner createFromParcel(Parcel in) {
11 return new Owner(in);
12 }
13

14 public Owner[] newArray(int size) {
15 return new Owner[size];
16 }
17 };
18 @Element
19 private int id;
20 @Element
21 private String name, surname;
22 @Element(required = false)
23 private String mailUsername, mailDomain;
24

25 public Owner() {
26 }
27

28 public Owner(Parcel in) {
29 id = in.readInt();
30 name = in.readString();
31 surname = in.readString();
32 mailUsername = in.readString();
33 mailDomain = in.readString();
34 }

78

Appendix B. Parcelable Data Container

35

36 public int getId() {
37 return id;
38 }
39

40 public void setId(int id) {
41 this.id = id;
42 }
43

44 public String getName() {
45 return name;
46 }
47

48 public void setName(String name) {
49 this.name = name;
50 }
51

52 public String getSurname() {
53 return surname;
54 }
55

56 public void setSurname(String surname) {
57 this.surname = surname;
58 }
59

60 public String getMailUsername() {
61 return mailUsername;
62 }
63

64 public void setMailUsername(String mailUsername) {
65 this.mailUsername = mailUsername;
66 }
67

68 public String getMailDomain() {
69 return mailDomain;
70 }
71

72 public void setMailDomain(String mailDomain) {
73 this.mailDomain = mailDomain;
74 }
75

79

Appendix B. Parcelable Data Container

76 @Override
77 public int describeContents() {
78 //default value
79 return 0;
80 }
81

82 @Override
83 public void writeToParcel(Parcel dest, int flags) {
84 dest.writeInt(id);
85 dest.writeString(name);
86 dest.writeString(surname);
87 dest.writeString(mailUsername);
88 dest.writeString(mailDomain);
89 }
90 }

Listing 20: Example for Parcelable data container, which handles XML
marshalling

80

C | Installing Android Application

C.1 Maven Build and Install

In order to build and install an application from a source Maven 3 is required.
Open console and enter directory with pom.xml file. Inside of it, build
project.

mvn clean package

If the build finishes successfully, an installation package eeg.base.apk should
be present in the target directory. Now you can either install the application
as described in Section C.2, or the install application using Maven. In order to
install the application using Maven, enable USB debugging in System settings
> Developer options. When set, type and confirm following snippet in console.
It installs the application and starts it once it is installed.

mvn android:deploy android:run

C.2 Install from APK

In order to the install application directly from the APK file we need to
enable the Unknown sources item in System settings > Security. Now there
are two possible ways to install the file. Either copy APK file into device
(MTP protocol, mount phone as USB storage or just send it to yourself by
a mail) and start it, or enable USB debugging and use ADB application from
Android SDK, if you have it on your computer:

adb install eeg.base.apk

81

D | EEG Base for Android: User
Manual

The application is started by clicking on EEG Database icon in device’s main
menu. If the application is started for the first time, a log in activity screen
will be presented to user (Figure D.1).

Figure D.1: Log in screen

When the user successfully logs into the application with own EEG Base

82

Appendix D. EEG Base for Android: User Manual

credentials and proper service URL (testing server — https://147.228.64.
172:8443 — was used during the thesis implementation), the welcome screen
called Dashboard is displayed to the user.

(a) Welcome message (b) Menu in welcome screen

Figure D.2: Dashboard screen

The Dashboard shows a welcome message(Figure D.2a).

83

Appendix D. EEG Base for Android: User Manual

The welcome message contains basic application description and tells the
user that in order to switch into another application section, he/she must
use a menu located in the upper left corner of a display, as it can be seen in
Figure D.2b.
Scenarios andExperiments sections look very similar, except for information
they both provide. They both allow to fetch records from the server and
display detail, filter fetched results, or create new records.
Records can be fetched either by clicking the Refresh button in the action
bar, or by tapping the empty screen body.

(a) No records fetched yet (b) Fetched records with selected record for detail

Figure D.3: Scenarios section

Once records are fetched, any of them can be selected, in order to display
details either in a new screen (mobile phones) or in a details screen section,
like in Figure D.3b. Since records have been fetched, they can be filtered by
title or identifier. It is done by clicking the magnifying glass icon of Search

84

Appendix D. EEG Base for Android: User Manual

button. The filter can be removed by entering blank filter string, otherwise
filtered results will be displayed. An example of filtering results by "rest"
keyword can be seen in Figure D.4.

Figure D.4: Filtering fetched records

The record’s details may contain list of secondary information, like a list of
electrode locations. If there is such a list, any item can be clicked on, in order
to display a dialog window with further information.
Now let us focus on creating new records. Both in scenarios and experiments
section there is a related button in action bar for creating a new record. It
has an icon with plus symbol and it opens a new activity screen. Inside this
new screen we must fill all the required fields, otherwise application will show
dialog with error message describing, what is missing.

85

Appendix D. EEG Base for Android: User Manual

In case of a scenario type, a file from the device’s file system must be selected.
In order to select the file we must click on a button with a directory icon;
a file browser is opened (Figure D.5a). When a file is selected, the file browser
is closed and user may save the record. An example of filled information with
the selected file for upload can be seen in Figure D.5b. The record is saved
by clicking the Save button or discarded by the Discard button.

(a) File browser (b) New scenario creation screen

Figure D.5: Creating new scenario

In case of experiments we must first wait till required data are fetched
from the server. Creating a new experiment is a complex operation, which
requires a lot of additional information (Figure D.6a). When creating a new
experiment, we must fill all the information required as in the case of a new
scenario record.
Some of the supplementary information may be created during experiment
creation, like new subject person, electrode location, etc. It is done using
buttons with the plus icon, which opens a new screen activity and returns
back, when the record is created.
A multi-selection list is specific for this application. It requires, unlike a classic
list menu, a confirmation of selection. This applies to items with possibility
of multiple records like electrode locations (Figure D.6b).

86

Appendix D. EEG Base for Android: User Manual

(a) New experiment screen (b) Multi-selection list

Figure D.6: Creating new experiment

In the case of experiments files are not uploaded during experiment creation
process. File upload from section Upload file must be used, since there may
be a continuous need of file uploading. A proper experiment (Experiment
spinner) and a file (Select file button), using file browser like in Figure D.5a,
must be selected in this section, and then confirmed by Upload file button
(Figure D.7).

87

Appendix D. EEG Base for Android: User Manual

Figure D.7: Experiment data file upload

Another section of the application is a Reservation section. In it user
may select a date using Choose data button and then fetch records to such
date from the server, either by tapping the empty list body, or by clicking
the Refresh button. There are details, which can be displayed by selecting
a specific record, as well as in Experiments or Scenarios and there can be
created a new record in activity under the Create reservation button (Figure
D.8a). Unlike in other sections, reservations can be removed if they belong to
the user, or the user has administrator rights in the EEG Base. Such record
removal is performed by clicking on the X button in the record list item and
the following dialog must be confirmed (Figure D.8b).

88

Appendix D. EEG Base for Android: User Manual

(a) Reservations overview with fetched
removable record (b) Removing reservation record

Figure D.8: Reservations

The last section of the application is Settings (Figure D.9). User can change
the EEG Base credentials or service URL here. Unlike login screen there is
important to keep /rest URL suffix, which was not present in log in. There is
also a possibility to set Monday as a first day of week, which might be useful
for users with tablets (so there would be extended date pick dialog), which
are used to such calendar layout.

89

Appendix D. EEG Base for Android: User Manual

Figure D.9: Settings

90

