

Fakulta elektrotechnická Katedra aplikované elektroniky a telekomunikací

BAKALÁŘSKÁ PRÁCE

Porovnání analytického a numerického řešení telegrafních rovnic

Autor práce: Stanislav Bečka Vedoucí práce: Ing. Václav Kotlan, Ph.D.

ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta elektrotechnická Akademický rok: 2012/2013

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	Stanislav BEČKA						
Osobní číslo:	E10B0282P						
Studijní program:	B2612 Elektrotechnika a informatika						
Studijní obor:	Elektronika a telekomunikace						
Název tématu:	Porovnání analytického a numerického řešení telegrafních rovnic						
Zadávající katedra:	Katedra aplikované elektroniky a telekomunikací						

Zásady pro vypracování:

- 1. Proveďte analytický výpočet při harmonickém ustáleném stavu.
- 2. Zvolte vhodnou numerickou metodu pro řešení telegrafních rovnic a stanovte rozložení napětí a proudu.
- 3. Pro vybrané praktické úlohy proveďte výpočet pomocí analytického a numerického řešení.
- 4. Porovnejte dosažené výsledky.

Rozsah grafických prací:podle doporučení vedoucíhoRozsah pracovní zprávy:20 - 30 stranForma zpracování bakalářské práce:tištěná/elektronickáSeznam odborné literatury:

Student si vhodnou literaturu vyhledá v dostupných pramenech podle doporučení vedoucího práce.

Vedoucí bakalářské práce:

Konzultant bakalářské práce:

Ing. Václav Kotlan, Ph.D. Katedra teoretické elektrotechniky Ing. Václav Kotlan, Ph.D. Katedra teoretické elektrotechniky

Datum zadání bakalářské práce:15. října 2012Termín odevzdání bakalářské práce:7. června 2013

L.S.

Doc. Dr. Ing. Vjačeslav Georgiev vedoucí katedry

V Plzni dne 15. října 2012

děkan

Doc. Ing

Jiří Hammerbauer, Ph.D.

Abstrakt

Tato bakalářská práce pojednává o porovnání analytického a numerického řešení telegrafních rovnic a možnostech modelování některých nestandardních jevů na vedení. Pro numerické řešení byla zvolena metoda konečných diferencí založená na Wendroffově diferenční aproximaci. Jako příklady byla vybrána trakční vedení a trojfázové vedení s zemním lanem na stožárech Soudek a Donau. V případě trakčního vedení jsou řešeny dva příklady. Oba tyto případy jsou řešeny analyticky a numericky a následně jsou tyto výsledky porovnávány. Dále jsou zde uvedeny příklady trakčního vedení napájeného zdrojem napětí o vyšší frekvenci pro simulaci odrazů. Poslední část se týká příkladů trojfázového vedení včetně simulace úderu blesku do zemního lana.

Klíčová slova

přenosové vedení, telegrafní rovnice, harmonický ustálený stav, rozprostřené parametry, Wendroffova diferenční aproximace, metoda konečných diferencí

Abstract

Bečka, Stanislav. Analytical and Numerical Comparison of the Telegraph Equation Solution [Porovnání analytického a numerického řešení telegrafních rovnic]. Pilsen, 2013. Bachelor thesis (in Czech). University of West Bohemia. Faculty of Electrical Engineering. Department of Applied Electronics and Telecommunications. Supervisor: Václav Kotlan

This bachelor thesis deals with analytical and numerical comparison of the telegraph equation solution and with some non-standard phenomena on transmission line modeling. For numerical solution, the finite difference method based on Wendroff's differential aproximation was chosen. Traction line and three-phase transmission line with earth wire on tower Soudek and Donau were chosen as examples. In case of traction line two examples are solved. Both examples are solved analytically and numerically and then the results are compared. Next, there are provided the examples of traction line supplied by the voltage source with higher frequency for reflections simulation are given. Last section is concerned with three-phase transmission line examples including the lightning strike.

Keywords

transmission line, telegraph equation, harmonic steady state, spread parameters, Wendroff difference approximation, finite difference method

Prohlášení

Předkládám tímto k posouzení a obhajobě bakalářskou práci, zpracovanou na závěr studia na Fakultě elektrotechnické Západočeské univerzity v Plzni.

Prohlašuji, že jsem svou závěrečnou práci vypracoval samostatně pod vedením vedoucího bakalářské práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce. Jako autor uvedené bakalářské práce dále prohlašuji, že v souvislosti s vytvořením této závěrečné práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení § 270 trestního zákona č. 40/2009 Sb.

Také prohlašuji, že veškerý software, použitý při řešení této bakalářské práce, je legální.

V Plzni dne 7. června 2013

Stanislav Bečka

.....

Podpis

Obsah

Se	eznan	n obrá	zků	vii
Se	znan	n tabu	lek	ix
Se	eznan	n symł	oolů a zkratek	\mathbf{x}
1	Úvo	od		1
2	Elel	ktrické	obvody s rozprostřenými parametry	3
	2.1	Obvod	ly s rozprostřenými parametry	3
	2.2	Telegr	afní rovnice	3
		2.2.1	Odvození pro jednofázové vedení	3
		2.2.2	Analytické řešení v harmonickém ustáleném stavu	5
3	Nu	nerick	é metody řešení parciálních diferenciálních rovnic hyperbolic-	
	kéh	o typu		8
	3.1	Nume	rický výpočet derivace	8
		3.1.1	Základní vzorce	8
		3.1.2	Wendroffova diferenční aproximace	9
4	Nu	nerick	é řešení telegrafních rovnic	11
	4.1	Jednot	fázové homogenní vedení	11
		4.1.1	Spojitý matematický model	11
		4.1.2	Diskrétní matematický model	11
	4.2	Trojfá	zové homogenní vedení	13
		4.2.1	Spojitý matematický model	13
		4.2.2	Diskrétní matematický model	15
5	Ilus	trativi	ní příklady	18
	5.1	Trakčı	ní vedení	18
		5.1.1	Výpočet primárních a sekundárních parametrů	18
		5.1.2	Vedení zakončené odporovou zátěží $Z_{\mathbf{k}}$	19
			5.1.2.1 Analytické řešení v harmonickém ustáleném stavu	19
			5.1.2.2 Numerické řešení	22

			5.1.2.3	Porovnání analytického a numerického řešení	24
		5.1.3	Vedení s	s odporovou zátěží $Z_{\mathbf{k}}$ připojenou na konci vedení a na za-	
			čátku ve	edení $Z_{\rm p}$	25
			5.1.3.1	Analytické řešení v harmonickém ustáleném stavu	25
			5.1.3.2	Numerické řešení	28
			5.1.3.3	Porovnání analytického a numerického řešení $\ . \ . \ .$.	30
		5.1.4	Trakční	vedení napájené zdrojem napětí o frekvenci 125 kHz $\ .$	31
			5.1.4.1	Vedení naprázdno	31
			5.1.4.2	Vedení nakrátko	31
			5.1.4.3	Vedení zakončené vlnovou impedancí 	31
		5.1.5	Trojfázo	wé vedení vn se zemním lanem	34
			5.1.5.1	Stožár Soudek	34
			5.1.5.2	Stožár Donau	35
			5.1.5.3	Porovnání primárních parametrů vedení v případě použití	
				stožárů typu Soudek a Donau	36
			5.1.5.4	Rozložení napětí a proudů na jednotlivých podél vedení se	
				stožáry typu Donau v čase	37
			5.1.5.5	Modelování rušivých jevů	39
6	Záv	ěr			42
R	efere	nce, po	oužitá lit	teratura	44
		<i>,</i> ,			
Pì	ŕílohy	7			
A					45
	Pou	žité sk	cripty, zo	łrojové kódy	$\frac{45}{45}$
	Pou A.1	žité sk Jednoi	cripty, zo fázové vec	1rojové kódy 1ení	45 45 45
	Pou A.1	žité sk Jednot A.1.1	tripty, zo fázové veo vedeni1f	drojové kódy dení	45 45 45 45
	Pou A.1 A.2	žité sk Jednot A.1.1 Trojfá	tripty, zo fázové veo vedeni1f zové vede	drojové kódy lení	45 45 45 45 47
	Pou A.1 A.2	žité sk Jednot A.1.1 Trojfá A.2.1	cripty, zo fázové veo vedeni1f zové vede Soudek.	drojové kódy dení	 45 45 45 47 47
	Pou A.1 A.2	žité sk Jednof A.1.1 Trojfá A.2.1 A.2.2	fázové vec vedeni1f zové vede Soudek.: Donau.r	drojové kódy dení	 45 45 45 47 47 47
	Pou A.1 A.2	žité sk Jednot A.1.1 Trojfá A.2.1 A.2.2 A.2.3	fázové vec fázové vec vedeni1f zové vede Soudek.: Donau.r PocitejC	drojové kódy dení .	 45 45 45 47 47 48
	Pou A.1 A.2	žité sk Jednot A.1.1 Trojfá A.2.1 A.2.2 A.2.3 A.2.4	fázové vec vedeni1f zové vede Soudek.: Donau.r PocitejC PocitejK	drojové kódy dení .	 45 45 45 47 47 48 48
	Pou A.1 A.2	žité sk Jednof A.1.1 Trojfá A.2.1 A.2.2 A.2.3 A.2.4 A.2.5	fázové ved vedeni1f zové vede Soudek. Donau.r PocitejC PocitejI PocitejI	drojové kódy dení	 45 45 45 47 47 48 48 49
	Pou A.1 A.2	žité sk Jednov A.1.1 Trojfá A.2.1 A.2.2 A.2.3 A.2.4 A.2.5 A.2.6	fázové ved vedeni1f zové vede Soudek.: Donau.r PocitejC PocitejI m1.m.	drojové kódy dení	 45 45 45 47 47 48 48 49 49
	Pou A.1 A.2	žité sk Jednof A.1.1 Trojfá A.2.1 A.2.2 A.2.3 A.2.4 A.2.5 A.2.6 A.2.7	fázové vec vedeni1f zové vede Soudek.: Donau.r PocitejC PocitejIf m1.m. m2.m.	drojové kódy dení	 45 45 45 47 47 48 48 49 49 50

Seznam obrázků

2.1	Elementární dvojbran	4
2.2	Vedení napájené zdrojem napětí $m{U}_0$ s připojenou zátěží $m{Z}_{\mathbf{k}}$ na výstupu a	
	${m Z}_{ m p}$ na vstupu	7
3.1	Wendroffovo diferenční schéma	9
4.1	Wendroffova diferenční aproximace, převzato s úpravami z $[2]$ \ldots \ldots \ldots	12
4.2	Element trojvodičového trojfázového vedení se zemním lanem	13
5.1	Časový průběh napětí a proudu v půlce vedení zakončeného odporovou zátěží $Z_k = 499,881 \ \Omega$	20
5.2	Graf rozložení napětí podél vedení zakončeném odporovou zátěží $Z_{\mathbf{k}}$ =	
	$499,881 \ \Omega \dots \dots \dots \dots \dots \dots \dots \dots \dots $	22
5.3	Graf rozložení proudu podél vedení zakončeném odporovou zátěží $Z_{\mathbf{k}}$ =	
	$499,881 \ \Omega \dots \dots \dots \dots \dots \dots \dots \dots \dots $	22
5.4	Časový průběh napětí a proudu v půlce vedení s odporovou zátěží $Z_{\mathbf{k}}=$	
	449,881 Ω připojenou na konci vedení a na začátku vedení $Z_{\rm p}=449,881~\Omega$	26
5.5	Graf rozložení napětí podél vedení s odporovou zátě ží $Z_{\rm k}=449,881~\Omega$	
	připojenou na konci vedení a na začátku vedení $Z_{\rm p}=449,881~\Omega$	28
5.6	Graf rozložení proudu podél vedení s odporovou zátěž í $Z_{\rm k}=449,881~\Omega$	
	připojenou na konci vedení a na začátku vedení $Z_{\rm p}=449,881~\Omega$	28
5.7	Šíření napěťové půlvlny vedením zakončeném naprázdno $\hfill \ldots \ldots \ldots \ldots$	32
5.8	Šíření proudové půlvlny vedením zakončeném naprázdno $\hfill \ldots \ldots \ldots \ldots$	32
5.9	Šíření napěťové půlvlny vedením zakončeném nakrátko $\ .\ .\ .\ .\ .\ .$	32
5.10	Šíření proudové půlvlny vedením zakončeném nakrátko $\ .\ .\ .\ .\ .\ .$	33
5.11	Šíření napěťové půlvlny vedením zakončeném vlnovou impedancí	33
5.12	Šíření proudové půlvlny vedením zakončeném vlnovou impedancí	33
5.13	Uspořádání vodičů na stožáru Soudek	35
5.14	Uspořádání vodičů na stožáru Donau	36
5.15	Rozložení napětí u(x,t) podél vedení na stožáru Soudek v čase - 1. fázový	
	vodič	37
5.16	Rozložení proudu $\mathbf{i}(\mathbf{x}, \mathbf{t})$ podél vedení na stožáru Soudek v čase - 1. fázový	
	vodič	38

5.17	Rozložení napětí u(x,t) podél vedení na stožáru Soudek v čase - 2. fázový	
	vodič	38
5.18	Rozložení proudu $\mathbf{i}(\mathbf{x},\mathbf{t})$ podél vedení na stožáru Soudek v čase - 2. fázový	
	vodič	38
5.19	Rozložení napětí u(x,t) podél vedení na stožáru Soudek v čase - 3. fázový	
	vodič	39
5.20	Rozložení proudu $\mathbf{i}(\mathbf{x},\mathbf{t})$ podél vedení na stožáru Soudek v čase - 3. fázový	
	vodič	39
5.21	Časový průběh rázové vlny proudu $8/20$	40
5.22	Rozložení proudu $\mathbf{i}(\mathbf{x}, \mathbf{t})$ podél vedení v čase při zásahu blesku do zemního	
	lana - zemní lano na stožáru Soudek	40
5.23	Rozložení napětí $\mathbf{u}(\mathbf{x}, \mathbf{t})$ podél vedení v čase při zásahu blesku do zemního	
	lana - zemní lano na stožáru Soudek	40
5.24	Rozložení proudu $\mathbf{i}(\mathbf{x}, \mathbf{t})$ podél vedení v čase při zásahu blesku do zemního	
	lana - 1. fázový vodič na stožáru Soudek	41
5.25	Rozložení napětí $\mathbf{u}(\mathbf{x}, \mathbf{t})$ podél vedení v čase při zásahu blesku do zemního	
	lana - 1. fázový vodič na stožáru Soudek	41

Seznam tabulek

5.1	Okamžité hodnoty napětí na vedení zakončeném odporovou zátěží $Z_{\rm k}=$	
	499,881 Ω - analytické řešení	21
5.2	Okamžité hodnoty proudu vedením zakončeném odporovou zátěží $Z_{\rm k}$ =	
	499,881 Ω - analytické řešení	21
5.3	Okamžité hodnoty napětí na vedení zakončeném odporovou zátěží $Z_{\rm k}$ =	
	499,881 Ω - numerické řešení	23
5.4	Okamžité hodnoty proudu vedením zakončeném odporovou zátěží $Z_{\rm k}$ =	
	499,881 Ω - numerické řešení	23
5.5	Tabulka maximálních absolutních chyb metody výpočtu napětí (a) a proudu $% \mathcal{A}$	
	(b) a jejich odpovídající relativní chyby - vedení zakončené odporovou zá-	
	těží $Z_{\rm k} = 499,881 \ \Omega$	24
5.6	Okamžité hodnoty napětí na vedení s odporovou zátěž í $Z_{\rm k}=449,881~\Omega$	
	připojenou na konci vedení a na začátku vedení $Z_{\rm p}=449,881~\Omega$ - analytické	
	řešení	27
5.7	Okamžité hodnoty proudu vedením s odporovou zátěží $Z_{\rm k}$ = 449,881 Ω	
	připojenou na konci vedení a na začátku vedení $Z_{\rm p}=449,881~\Omega$ - analytické	
	řešení	27
5.8	Okamžité hodnoty napětí na vedení s odporovou zátěž í $Z_{\rm k}=449,881~\Omega$	
	připojenou na konci vedení a na začátku vedení $Z_{\rm p}=449,881~\Omega$ - numerické	
	řešení	29
5.9	Okamžité hodnoty proudu vedením s odporovou zátěží $Z_{\rm k}$ = 449,881 Ω	
	připojenou na konci vedení a na začátku vedení $Z_{\rm p}=449,881~\Omega$ - numerické	
	řešení	29
5.10	Tabulka maximálních absolutních chyb metody výpočtu napětí (\mathbf{a}) a proudu	
	(b) a jejich odpovídající relativní chyby - vedení s odporovou zátěží $Z_{\bf k}=$	
	449,881 Ω připojenou na konci vedení a na začátku vedení $Z_{\rm p}=449,881~\Omega$	30
5.11	Matice indukčností vedení stožáru Soudek v jednotkách $\mu H/m~$	34
5.12	Matice kapacit vedení stožáru Soudek v jednotkách p F/m	34
5.13	Vektor odporů vedení stožáru Soudek v jednotkách Ω/m	34
5.14	Matice indukčností vedení stožáru Donau v jednotkách $\mu {\rm H/m}$ $~$	35
5.15	Matice kapacit vedení stožáru Donau v jednotkách pF/m	36

5.16	Vektor odporů	vedení stožáru	Donau v jednotkách	Ω/m		36
------	---------------	----------------	--------------------	------------	--	----

Seznam symbolů a zkratek

λ	Vlnová délka $[m]$.
<i>v</i>	Rychlost šíření $[m/s]$.
R	Měrný odpor vedení $[\Omega/m]$.
<i>L</i>	Měrná indukčnost vedení $[H/m]$.
<i>C</i>	Měrná kapacita vedení $[F/m]$.
G	Měrný svod vedení $[S/m]$.
$oldsymbol{Z}_0$	Vlnová impedance[Ω].
γ	Konstanta šíření.
α	Měrný útlum $[Np/m]$.
β	Měrný fázový posuv $[rad/m]$.
A, B	Integrační konstanty.
$m{Z}_{ m k}$	Impedance zátěže připojené na výstup vedení $[\Omega].$
$oldsymbol{Z}_{\mathrm{p}}$	Impedance zátěže připojené na vstup vedení [Ω].
$oldsymbol{U}_0$	Napětí zdroje - fázor efektivní hodnoty $[V]$.
$oldsymbol{U}_{\mathrm{p}}$	Napětí na začátku vedení- fázor efektivní hodnoty $\left[V\right].$
$m{U}_{ m k}$	Napětí na konci vedení- fázor efektivní hodnoty $\left[V\right].$
$I_{\rm p}$	Proud na začátku vedení- fázor efektivní hodnoty $\left[A\right] .$
$I_{\rm k}$	Proud na konci vedení- fázor efektivní hodnoty $[A]$.
FDTD	Finite-Diference Time-Domain.
FDFD	Finite-Diference Frequency-Domain.
Δx	Prostorový krok $[m]$.
Δt	Časový krok $[s]$.
<i>l</i>	Délka vedení $[m]$.
<i>R</i>	Poloměr vodiče $[m]$.
h	Výška vodiče nad zemí $[m]$.
<i>S</i>	Průřez vodiče $[m^2]$.
γ	Konduktivita $[S/m]$.
μ_0	Permeabilita vakua $\left(4.\pi \cdot 10^{-7} \left[\frac{H}{m}\right]\right)$.
ε_0	Permitivita vakua $\left(8,85.10^{-12}\left[\frac{F}{m}\right]\right)$.
Δ	Absolutní chyba metody výpočtu.

 δ Relativní chyba metody výpočtu.

1

Úvod

Problematika teorie vedení se v elektrotechnice dotýká mnoha oblastí. Nejedná se jen o problematiku rozvodu elektrické energie v elektroenergetice či vedení ve sdělovací technice, ale poznatky užívané při návrhu elektrické rozvodné sítě lze velmi často uplatnit i při návrhu vysokofrekvenčních spojů na desce plošného spoje. Tato disciplína nepochybně patří mezi náročnější oblasti elektrotechniky a její problematikou se zaobírá teorie elektromagnetického pole.

Každé vedení je charakterizováno svými primárními a sekundárními parametry. Mezi primární parametry vedení patří měrný odpor R, měrná indukčnost L, měrná kapacita C a měrný svod G. Tyto parametry jsou vztaženy na jednotku délky, například v energetice se vztahují na jeden kilometr. Sekundární parametry jsou vlnová impedance vedení a konstanta šíření vedením. Tyto hodnoty jsou obecně komplexní čísla a závisí na frekvenci přenášených signálů.

Vztahy mezi napětím na vedení a proudem vedením popisují telegrafní rovnice. Tyto rovnice musí být při výpočtech či simulacích doplněny o počáteční a okrajové podmínky. V harmonickém ustáleném stavu je řešení těchto rovnic snadné. Napětí a proudy podél vedení se mění s časem podle harmonické funkce a k řešení těchto rovnic lze využít symbolicko-komplexní metodu, tedy vyjádření těchto veličin pomocí fázorů. V obecném případě se jedná o soustavu parciálních diferenciálních rovnic, jejichž analytické řešení je velmi komplikované a složité. Přechodné děje a jiné nestandardní jevy na vedení je tedy nutné řešit numericky.

Numerické řešení ovšem s sebou přináší problémy s konvergencí k řešení skutečnému. Dnes existuje řada numerických metod, které v tomto ohledu dosahují velmi dobrých výsledků. Mezi nejpoužívanější metody patří metoda konečných diferencí a metoda konečných prvků. Výhodou metody konečných diferencí je její jednoduchost a snadná programovatelnost. Metoda konečných prvků je mnohem složitější a více náročná na naprogramování.

Metodu konečných diferencí lze použít v časové (FDTD – Finite-Diference Time-Domain) a ve frekvenční oblasti (FDFD – Finite-Diference Frequency-Domain). Výstupem metody konečných diferencí v časové oblasti je 3D graf, který zobrazuje průběhy napětí a proudu v závislosti na čase a geometrické souřadnici. Simulace za použití této metody umožňuje predikovat různé nestandardní jevy na vedení a přesně určit, v jakém místě a v jakém čase k těmto jevům dojde.

2

Elektrické obvody s rozprostřenými parametry

2.1 Obvody s rozprostřenými parametry

Obvody s rozprostřenými parametry jsou obvody, jimiž lze modelovat elektrické soustavy, u kterých nelze s dostatečnou přesností oddělit elektrickou a magnetickou energii a soustředit je do prostorově malých částí obvodu. U těchto soustav se projevuje konečná rychlost šíření elektromagnetického pole. Napětí a proudy v jednotlivých částech jsou funkcí času a geometrických souřadnic. O tom, zda lze určitou soustavu modelovat obvodem se soustřednými či rozprostřenými parametry, rozhodují geometrické rozměry, rychlost změn elektromagnetického pole (jestliže se mění harmonicky, tak jeho kmitočet) a rychlost šíření vln obvodem. Vlnová délka λ je při harmonicky proměnném elektromagnetickém poli definována jako:

$$\lambda = \frac{v}{f} \tag{2.1}$$

Jsou- li geometrické rozměry soustavy zanedbatelné v porovnání s délkou vlny, lze soustavu modelovat obvodem se soustřednými parametry. V opačném případě je nutné soustavu modelovat obvodem s rozprostřenými parametry [2].

Pro síťovou frekvenci f = 50 Hz vychází vlnová délka $\lambda = 6000$ km. V této práci je jedním z ilustrativních příkladů v kapitole 5.1 trakční vedení délky 2 km, které by sice nemuselo nutně být modelováno obvodem s rozprostřenými parametry, ale pro možnost modelovat poruchy, nehomogenity a nelineární parametry je tak učiněno.

2.2 Telegrafní rovnice

2.2.1 Odvození pro jednofázové vedení

Jednofázové vedení, tvořené dvojicí vodičů, je charakterizováno čtyřmi parametry: odporem R, indukčností L, kapacitou C a svodem G mezi oběma vodiči. Tyto parametry se

nazývají primární parametry vedení a jsou vztaženy na jednotku délky, obvykle na 1 km. Jsou-li tyto parametry konstantní pro celé vedení, nazývá se vedení homogenní.

Pro odvození telegrafních rovnic je vedení nahrazeno kaskádou elementárních dvojbranů, tvořených primárními parametry: odporem R, indukčností L v podélné větvi a kapacitou C, svodem G v příčné větvi. Pro stejné nezávislé proměnné vstupních a výstupních veličin (čas t a vzdálenost x) daného elementárního dvojbranu je nutné výstupní veličiny rozvinout v Taylorovu řadu. Po zanedbání členů obsahujících 2. a vyšší derivace jsou výstupní veličiny charakterizovány následujícími vztahy:

$$u(t, x + \Delta x) \doteq u(t, x) + \frac{\partial u(t, x)}{\partial x} \cdot \Delta x$$
 (2.2)

$$i(t, x + \Delta x) \doteq i(t, x) + \frac{\partial i(t, x)}{\partial x} \cdot \Delta x$$
 (2.3)

Obr. 2.1: Elementární dvojbran

Aplikací Kirchhoffových zákonů pro smyčku s a uzel A lze odvodit následující rovnice:

$$-u(t,x) + R \cdot \Delta x \cdot i(t,x) + L \cdot \Delta x \cdot \frac{\partial i(t,x)}{\partial t} + u(t,x) + \frac{\partial u(t,x)}{\partial x} \cdot \Delta x = 0 \qquad (2.4)$$

$$-i(t,x) + G \cdot \Delta x \cdot u(t,x) + C \cdot \Delta x \cdot \frac{\partial u(t,x)}{\partial t} + i(t,x) + \frac{\partial i(t,x)}{\partial x} \cdot \Delta x = 0 \qquad (2.5)$$

Po jednoduché úpravě lze tyto rovnice upravit do tvaru telegrafních rovnic:

$$-\frac{\partial u(t,x)}{\partial x} = R \cdot i(t,x) + L \cdot \frac{\partial i(t,x)}{\partial t}$$
(2.6)

$$-\frac{\partial i(t,x)}{\partial x} = G \cdot u(t,x) + C \cdot \frac{\partial u(t,x)}{\partial t}$$
(2.7)

Eliminací proudu, resp. napětí se odvodí následující vlnové rovnice:

$$-\frac{\partial^2 u}{\partial x^2} + R \cdot G \cdot u + (L \cdot G + R \cdot C) \cdot \frac{\partial u}{\partial t} + L \cdot C \cdot \frac{\partial^2 u}{\partial t^2} = 0$$
(2.8)

$$-\frac{\partial^2 i}{\partial x^2} + R \cdot G \cdot i + (L \cdot G + R \cdot C) \cdot \frac{\partial i}{\partial t} + L \cdot C \cdot \frac{\partial^2 i}{\partial t^2} = 0$$
(2.9)

Z matematického hlediska se jedná o lineární homogenní parciální diferenciální rovnice 2.řádu, hyperbolického typu.

2.2.2 Analytické řešení v harmonickém ustáleném stavu

V harmonickém ustáleném stavu se napětí a proud v kterémkoliv místě vedení mění s časem podle harmonické funkce. Napětí a proud lze vyjádřit pomocí fázorů a telegrafní rovnice (2.6) a (2.7) lze přepsat do tvaru [4]:

$$-\frac{\mathrm{d}\boldsymbol{U}(x)}{\mathrm{d}x} = (R + \mathrm{j}\,\omega L) \cdot \boldsymbol{I}(x)$$
(2.10)

$$-\frac{\mathrm{d}\,\boldsymbol{I}(x)}{\mathrm{d}\,x} = (G + \mathrm{j}\,\omega C) \cdot \boldsymbol{U}(x) \tag{2.11}$$

Stejným způsobem lze přepsat i vlnové rovnice (2.8) a (2.9) do tvaru:

$$\frac{\mathrm{d}^2 \boldsymbol{U}(x)}{\mathrm{d} x^2} - (R + \mathrm{j} \,\omega L) \cdot (G + \mathrm{j} \,\omega C) \cdot \boldsymbol{U}(x) = 0$$
(2.12)

$$\frac{\mathrm{d}^2 \boldsymbol{I}(x)}{\mathrm{d} x^2} - (R + \mathrm{j}\,\omega L) \cdot (G + \mathrm{j}\,\omega C) \cdot \boldsymbol{I}(x) = 0$$
(2.13)

Řešení rovnice (2.12) je

$$\boldsymbol{U}(x) = \boldsymbol{A} \cdot e^{\boldsymbol{\gamma} x} + \boldsymbol{B} \cdot e^{-\boldsymbol{\gamma} x}, \qquad (2.14)$$

kde A a B jsou integrační konstanty a komplexní konstanta γ se nazývá konstanta šíření.

$$\boldsymbol{\gamma} = \sqrt{(R + j\,\omega L) \cdot (G + j\,\omega C)} \tag{2.15}$$

Konstantu šíření lze také vyjádřit v následujícím tvaru, kd
e α je měrný útlum a β je měrný fázový posuv.

$$\boldsymbol{\gamma} = \alpha + j\beta, \qquad (2.16)$$

Řešení rovnice (2.12), získané vyjádřením proudu z rovnice (2.11) a dosazením napětí z rovnice (2.14), je

$$I(x) = -\frac{A}{Z_0} \cdot e^{\gamma x} + \frac{B}{Z_0} \cdot e^{-\gamma x}, \qquad (2.17)$$

kde komplexní konstanta \mathbf{Z}_0 se nazývá vlnová impedance.

$$\boldsymbol{Z}_{0} = \sqrt{\frac{(R + j\,\omega L)}{(G + j\,\omega C)}} \tag{2.18}$$

Vlnová impedance Z_0 a konstanta šíření charakterizují vlastnosti vedení a nazývají se provozní parametry vedení. Integrační konstanty A a B se určují z okrajových podmínek. Mezi tyto podmínky patří hodnoty napětí a proudu na začátku vedení nebo na konci vedení a hodnota impedance zátěže připojené na konec vedení. Určit integrační konstanty lze např. ze znalosti těchto hodnot:

• napětí na začátku vedení $\boldsymbol{U}_{\rm p}$ a proudu na začátku vedení $\boldsymbol{I}_{\rm p}:$

$$\boldsymbol{U}_{\mathrm{p}} = \boldsymbol{A} + \boldsymbol{B}, \ \boldsymbol{Z}_{0} \cdot \boldsymbol{I}_{\mathrm{p}} = -\boldsymbol{A} + \boldsymbol{B}$$
 (2.19)

$$\boldsymbol{A} = \frac{1}{2} \cdot (\boldsymbol{U}_{p} - \boldsymbol{Z}_{0} \cdot \boldsymbol{I}_{p}), \quad \boldsymbol{B} = \frac{1}{2} \cdot (\boldsymbol{U}_{p} + \boldsymbol{Z}_{0} \cdot \boldsymbol{I}_{p})$$
(2.20)

• napětí na konci vedení $\boldsymbol{U}_{\mathbf{k}}$ a proudu na konci vedení $\boldsymbol{I}_{\mathbf{k}}:$

$$\boldsymbol{U}_{k} = \boldsymbol{A} \cdot e^{\boldsymbol{\gamma} l} + \boldsymbol{B} \cdot e^{-\boldsymbol{\gamma} l}, \quad \boldsymbol{Z}_{0} \cdot \boldsymbol{I}_{k} = -\boldsymbol{A} \cdot e^{\boldsymbol{\gamma} l} + \boldsymbol{B} \cdot e^{-\boldsymbol{\gamma} l} \qquad (2.21)$$

$$\boldsymbol{A} = \frac{1}{2} \cdot (\boldsymbol{U}_{k} - \boldsymbol{Z}_{0} \cdot \boldsymbol{I}_{k}) \cdot e^{-\gamma l}, \quad \boldsymbol{B} = \frac{1}{2} \cdot (\boldsymbol{U}_{k} + \boldsymbol{Z}_{0} \cdot \boldsymbol{I}_{k}) \cdot e^{\gamma l} \quad (2.22)$$

• napětí na začátku vedení $U_{\rm p}$ a impedance zátěže na konci vedení $Z_{\rm k}$:

$$\boldsymbol{U}_{\mathrm{p}} = \boldsymbol{A} + \boldsymbol{B}, \quad \boldsymbol{Z}_{\mathrm{k}} = \frac{\boldsymbol{U}_{\mathrm{k}}}{\boldsymbol{I}_{\mathrm{k}}} = \frac{\boldsymbol{A} \cdot e^{\gamma l} + \boldsymbol{B} \cdot e^{-\gamma l}}{-\frac{\boldsymbol{A}}{\boldsymbol{Z}_{0}} \cdot e^{\gamma l} + \frac{\boldsymbol{B}}{\boldsymbol{Z}_{0}} \cdot e^{-\gamma l}}$$
(2.23)

$$\boldsymbol{A} = \boldsymbol{U}_{p} \cdot \frac{\boldsymbol{Z}_{k} - \boldsymbol{Z}_{0}}{\boldsymbol{Z}_{k} - \boldsymbol{Z}_{0} + (\boldsymbol{Z}_{k} + \boldsymbol{Z}_{0}) \cdot e^{2\gamma l}}, \quad \boldsymbol{B} = \boldsymbol{U}_{p} - \boldsymbol{A}$$
(2.24)

• napětí zdroje U_0 , impedance zátěže na konci vedení Z_k a impedance připojené na vstup vedení Z_p :

$$Z_{p} \cdot I_{p} + U_{p} - U_{0} = 0$$

$$Z_{p} \cdot \left(-\frac{A}{Z_{0}} + \frac{B}{Z_{0}}\right) + A + B - U_{0} = 0$$

$$Z_{k} = \frac{U_{k}}{I_{k}} = \frac{A \cdot e^{\gamma l} + B \cdot e^{-\gamma l}}{-\frac{A}{Z_{0}} \cdot e^{\gamma l} + \frac{B}{Z_{0}} \cdot e^{-\gamma l}}$$
(2.25)

Obr. 2.2: Vedení napájené zdrojem napětí \boldsymbol{U}_0 s připojenou zátěží $\boldsymbol{Z}_{\rm k}$ na výstupu a $\boldsymbol{Z}_{\rm p}$ na vstupu

$$\boldsymbol{A} = \frac{\boldsymbol{U}_{0} \cdot \boldsymbol{Z}_{0} \cdot (\boldsymbol{Z}_{k} - \boldsymbol{Z}_{0})}{(\boldsymbol{Z}_{0} - \boldsymbol{Z}_{p}) \cdot (\boldsymbol{Z}_{k} - \boldsymbol{Z}_{0}) + (\boldsymbol{Z}_{0} + \boldsymbol{Z}_{p}) \cdot (\boldsymbol{Z}_{k} + \boldsymbol{Z}_{0}) \cdot e^{2\gamma l}}$$

$$\boldsymbol{B} = \frac{\boldsymbol{U}_{0} \cdot \boldsymbol{Z}_{0} \cdot (\boldsymbol{Z}_{k} + \boldsymbol{Z}_{0}) \cdot e^{2\gamma l}}{(\boldsymbol{Z}_{0} - \boldsymbol{Z}_{p}) \cdot (\boldsymbol{Z}_{k} - \boldsymbol{Z}_{0}) + (\boldsymbol{Z}_{0} + \boldsymbol{Z}_{p}) \cdot (\boldsymbol{Z}_{k} + \boldsymbol{Z}_{0}) \cdot e^{2\gamma l}}$$

$$(2.26)$$

Po vypočtení integračních konstant a jejich dosazením do rovnic pro fázory napětí a proudu lze tyto fázory vyjádřit v exponenciálním tvaru a přiřadit těmto fázorům komplexory.

$$\boldsymbol{U}(x) \cdot e^{j\,\omega t} = U(x) \cdot e^{j\,\varphi(x)} \cdot e^{j\,\omega t} \tag{2.27}$$

$$\mathbf{I}(x) \cdot e^{j\omega t} = I(x) \cdot e^{j\varphi(x)} \cdot e^{j\omega t}$$
(2.28)

Pro okamžité časové průběhy napětí u(t, x) a proudu i(t, x) platí následující vztahy:

$$u(t,x) = \sqrt{2} \cdot U(x) \cdot \sin(\omega t + \varphi(x)) \tag{2.29}$$

$$i(t,x) = \sqrt{2} \cdot I(x) \cdot \sin(\omega t + \varphi(x))$$
(2.30)

3

Numerické metody řešení parciálních diferenciálních rovnic hyperbolického typu

Metod pro řešení parciálních diferenciálních rovnic hyperbolického typu a soustav těchto rovnic existuje celá řada. Jednou ze snadno pochopitelných a snadno programovatelných metod je metoda sítí neboli metoda konečných diferencí. Tato metoda je použitelná jak ve frekvenční oblasti (FDFD – Finite-Diference Frequency-Domain), tak v časové oblasti (FDTD – Finite-Diference Time-Domain). Mezi další používané metody patří metoda konečných prvků, která je ovšem mnohem náročnější na pochopení a programování. Ve své práci jsem použil metodu konečných diferencí v časové oblasti.

3.1 Numerický výpočet derivace

3.1.1 Základní vzorce

Vzorce používané pro výpočet hodnoty numerické derivace v bodě f(x) lze odvodit pomocí Taylorova rozvoje funkce v okolních bodech vzdálených o ekvidistantní krok Δx : $f(x + \Delta x)$, popřípadě $f(x - \Delta x)$. Zanedbáním členů obsahujících vyšší derivace (dopuštěním se chyby, kterou lze při dostatečně malém kroku zanedbat) než derivaci, která je odvozována, vzniknou následující vzorce pro numerický výpočet první derivace:

$$f'(x) = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
(3.1)

$$f'(x) = \frac{f(x) - f(x - \Delta x)}{\Delta x}$$
(3.2)

$$f'(x) = \frac{f(x + \Delta x) - f(x - \Delta x)}{2 \cdot \Delta x}$$
(3.3)

Stejným způsobem lze nalézt vzorec pro výpočet druhé derivace:

$$f''(x) = \frac{f(x + \Delta x) - 2 \cdot f(x) + f(x - \Delta x)}{\Delta x^2}$$
(3.4)

3.1.2 Wendroffova diferenční aproximace

Wendroffova diferenční aproximace se používá při numerickému výpočtu hodnot parciálních derivací funkcí v uzlech při použití metody sítí.

Princip metody sítí spočívá ve vytvoření konečné množiny bodů označovaných jako uzly sítě v oblasti hledaného řešení. Derivace hledaných funkcí, které se vyskytují v daných diferenciálních rovnicích, se nahradí diferenčními podíly (tj. lineárními kombinacemi funkčních hodnot hledaných funkcí v okolních bodech, které je aproximují). Při zanedbání chyb, které vznikly těmito diferenčními aproximacemi, se řešení původního problému převede na řešení soustavy konečně mnoha rovnic. Řešením této soustavy rovnic jsou hodnoty hledaných funkcí v uzlech sítě.

Při použití Wendroffovy diferenční aproximace se hledané funkce a derivace těchto funkcí nahradí aproximacemi ze čtyř okolních uzlů rovnoměrné sítě. Použití více uzlů má za následek mnohem přesnější výsledek.

Obr. 3.1: Wendroffovo diferenční schéma

Síť je tvořena uzly, které vznikly diskretizací spojité definiční oblasti daných rovnic v čase a v prostoru. Prostorová souřadnice x je tvořena N elementy ohraničenými N + 1uzly. Uzly jsou od sebe vzdáleny o ekvivalentní prostorový krok $\Delta x = x_{k+1} - x_k$, kde koznačuje, o který uzel se jedná k = 1, 2, ..., N. Časová souřadnice t je nahrazena soustavou diskrétních časových hladin t_l od sebe vzdálených o ekvidistantní časový krok $\Delta t = t_{l+1} - t_l$, kde l označuje, o jakou časovou hladinu se jedná l = 1, 2, ...

Hodnota parciální derivace funkce podle prostorové souřadnice x v uzlu o souřadnicích [k, l] se vypočítá dle následující diferenční aproximace:

$$\frac{\partial v(x,t)}{\partial x}\Big|_{k}^{l} = \frac{1}{2} \cdot \left(\frac{v_{k+1}^{l+1} - v_{k}^{l+1}}{\Delta x} + \frac{v_{k+1}^{l} - v_{k}^{l}}{\Delta x}\right)$$
(3.5)

Hodnota parciální derivace funkce podle časové souřadnice t v uzlu o souřadnicích [k, l] se vypočítá dle následující diferenční aproximace:

$$\frac{\partial v(x,t)}{\partial t}\Big|_{k}^{l} = \frac{1}{2} \cdot \left(\frac{v_{k}^{l+1} - v_{k}^{l}}{\Delta t} + \frac{v_{k+1}^{l+1} - v_{k+1}^{l}}{\Delta x}\right)$$
(3.6)

Funkční hodnota v uzlu o souřadnicíc
h $\left[k,l\right]$ je vypočítána jako průměrná hodnota ze 4 okolních uzlů:

$$v(x,t)\Big|_{k}^{l} = \frac{1}{4} \cdot \left(v_{k}^{l+1} + v_{k+1}^{l+1} + v_{k}^{l} + v_{k+1}^{l}\right)$$
(3.7)

4

Numerické řešení telegrafních rovnic

4.1 Jednofázové homogenní vedení

4.1.1 Spojitý matematický model

$$-\frac{\partial u(t,x)}{\partial x} = R \cdot i(t,x) + L \cdot \frac{\partial i(t,x)}{\partial t}$$
(4.1)

$$-\frac{\partial i(t,x)}{\partial x} = G \cdot u(t,x) + C \cdot \frac{\partial u(t,x)}{\partial t}$$
(4.2)

Na definiční oblasti Ω platí pro napětí u a proud vedením i o délce l výše telegrafní rovnice pro t > 0 a 0 < x < l. Tyto rovnice je nutné doplnit o okrajové a počáteční podmínky.

- Okrajové podmínky: Napětí na vstupu vedení je u(0,t) = u₀(t). Na konci vedení (x = l) platí vztah mezi napětím u a proudem i : F(u, i, t) = 0. Pokud je vedení zakončeno odporovou zátěží, jedná se o algebraickou rovnici. V obecném případě se jedná o soustavu obyčejných diferenciálních rovnic [2].
- Počáteční podmínky byly uvažovány nulové: u(x, 0) = 0, i(x, 0) = 0.

4.1.2 Diskrétní matematický model

K získání diskrétního matematického modelu jsem použil implicitní Wendroffovu diferenční aproximaci popsanou v kapitole 3.1.2. Postup byl následující:

Spojitá definiční oblast Ω telegrafních rovnic (4.1), (4.2) se proloží rovnoměrnou časoprostorovou sítí o krocích Δx a Δt. Vedení o délce l se diskretizuje s ekvivalentním krokem Δx. Prostorová souřadnice se tedy nahradí jednorozměrnou geometrickou sítí složenou z N elementů a N + 1 uzlů, kde N = l/Δx. Časová osa t se diskretizuje s ekvidistantním krokem Δt. Časová souřadnice se tedy nahradí systémem diskrétních časových hladin t_l = l · Δt, kde l = 0, 1, 2...

• Pro libovolný k-tý element diferenční sítě lze zapsat Wendroffovu diferenční aproximaci rovnic (4.1),(4.2) dle diferenčních schémat uvedených na obr. 4.1:

Obr. 4.1: Wendroffova diferenční aproximace, převzato s úpravami z [2]

$$-\left[\frac{1}{2} \cdot \left(\frac{u_{k+1}^{l+1} - u_{k}^{l+1}}{\Delta x} + \frac{u_{k+1}^{l} - u_{k}^{l}}{\Delta x}\right)\right] = \frac{R}{4} \cdot \left(i_{k}^{l+1} + i_{k+1}^{l+1} + i_{k}^{l} + i_{k+1}^{l}\right) + \frac{L}{2} \cdot \left(\frac{i_{k}^{l+1} - i_{k}^{l}}{\Delta t} + \frac{i_{k+1}^{l+1} - i_{k+1}^{l}}{\Delta t}\right)$$
(4.3)

$$-\left[\frac{1}{2} \cdot \left(\frac{i_{k+1}^{l+1} - i_{k}^{l+1}}{\Delta x} + \frac{i_{k+1}^{l} - i_{k}^{l}}{\Delta x}\right)\right] = \frac{G}{4} \cdot \left(u_{k}^{l+1} + u_{k+1}^{l+1} + u_{k}^{l} + u_{k+1}^{l}\right) + \frac{C}{2} \cdot \left(\frac{u_{k}^{l+1} - u_{k}^{l}}{\Delta t} + \frac{u_{k+1}^{l+1} - u_{k+1}^{l}}{\Delta t}\right)$$
(4.4)

• Po úpravě vzniknou následující rovnice,

$$u_{k}^{l+1} \cdot \left(-\frac{1}{2 \cdot \Delta x}\right) + u_{k+1}^{l+1} \cdot \left(\frac{1}{2 \cdot \Delta x}\right) + i_{k}^{l+1} \cdot \left(\frac{R}{4} + \frac{L}{2 \cdot \Delta t}\right) + i_{k+1}^{l+1} \cdot \left(\frac{R}{4} + \frac{L}{2 \cdot \Delta t}\right) = u_{k}^{l} \cdot \left(\frac{1}{2 \cdot \Delta x}\right) + u_{k+1}^{l} \cdot \left(-\frac{1}{2 \cdot \Delta x}\right) + i_{k}^{l} \cdot \left(-\frac{R}{4} + \frac{L}{2 \cdot \Delta t}\right) + i_{k+1}^{l} \cdot \left(-\frac{R}{4} + \frac{L}{2 \cdot \Delta t}\right)$$

$$(4.5)$$

$$u_{k}^{l+1} \cdot \left(\frac{G}{4} + \frac{C}{2 \cdot \Delta t}\right) + u_{k+1}^{l+1} \cdot \left(\frac{G}{4} + \frac{C}{2 \cdot \Delta t}\right) + i_{k}^{l+1} \cdot \left(-\frac{1}{2 \cdot \Delta x}\right) + i_{k+1}^{l+1} \cdot \left(\frac{1}{2 \cdot \Delta x}\right) = u_{k}^{l} \cdot \left(-\frac{G}{4} + \frac{C}{2 \cdot \Delta t}\right) + u_{k+1}^{l} \cdot \left(-\frac{G}{4} + \frac{C}{2 \cdot \Delta t}\right) + i_{k}^{l} \cdot \left(\frac{1}{2 \cdot \Delta x}\right) + i_{k+1}^{l} \cdot \left(-\frac{1}{2 \cdot \Delta x}\right)$$

$$(4.6)$$

které je potřeba zapsat pro všech k elementů diferenční sítě. Vznikne soustava $2 \cdot N$ rovnic, kterou je nutné doplnit o okrajové podmínky na začátku a na konci vedení. Výsledkem je soustava $2 \cdot (N+1)$ lineárních algebraických rovnic ve tvaru:

$$\mathbf{A} \cdot \mathbf{x}^{l+1} = \mathbf{B} \cdot \mathbf{x}^l + \mathbf{D}, \qquad (4.7)$$

kde vektor \mathbf{x}^{l+1} obsahuje prvk
y u_k^{l+1}, i_k^{l+1} a vektor \mathbf{x}^l obsahuje prvk
y u_k^l, i_k^l prok=N+1.

• Řešením rovnice jsou hledané hodnoty u_k^{l+1}, i_k^{l+1} v časové hladině l+1, vypočtené ze znalosti hodnot u_k^l, i_k^l z předcházející časové hladiny l.

4.2 Trojfázové homogenní vedení

Stejný postup jako pro jednofázové dvouvodičové vedení lze aplikovat na trojfázové vedení se třemi fázovými vodiči a zemním lanem.

Obr. 4.2: Element trojvodičového trojfázového vedení se zemním lanem

4.2.1 Spojitý matematický model

Na definiční oblasti Ω platí pro napětí u_0 , u_1 , u_2 , u_3 a proudy vedením i_0 , i_1 , i_2 , i_3 o délce l následující telegrafní rovnice pro t > 0 a 0 < x < l. Tyto rovnice je nutné doplnit o okrajové a počáteční podmínky [2].

$$-\frac{\partial u_0(t,x)}{\partial x} = R_0 \cdot i_0(t,x) + L_{00} \cdot \frac{\partial i_0(t,x)}{\partial t} + L_{01} \cdot \frac{\partial i_1(t,x)}{\partial t} + L_{02} \cdot \frac{\partial i_2(t,x)}{\partial t} + L_{03} \cdot \frac{\partial i_3(t,x)}{\partial t}$$
(4.8)

$$-\frac{\partial u_1(t,x)}{\partial x} = R_1 \cdot i_1(t,x) + L_{01} \cdot \frac{\partial i_0(t,x)}{\partial t} + L_{11} \cdot \frac{\partial i_1(t,x)}{\partial t} + L_{12} \cdot \frac{\partial i_2(t,x)}{\partial t} + L_{13} \cdot \frac{\partial i_3(t,x)}{\partial t}$$

$$(4.9)$$

$$-\frac{\partial u_2(t,x)}{\partial x} = R_2 \cdot i_2(t,x) + L_{02} \cdot \frac{\partial i_0(t,x)}{\partial t} + L_{12} \cdot \frac{\partial i_1(t,x)}{\partial t} + L_{22} \cdot \frac{\partial i_2(t,x)}{\partial t} + L_{23} \cdot \frac{\partial i_3(t,x)}{\partial t}$$
(4.10)

$$-\frac{\partial u_3(t,x)}{\partial x} = R_3 \cdot i_3(t,x) + L_{03} \cdot \frac{\partial i_0(t,x)}{\partial t} + L_{13} \cdot \frac{\partial i_1(t,x)}{\partial t} + L_{23} \cdot \frac{\partial i_2(t,x)}{\partial t} + L_{33} \cdot \frac{\partial i_3(t,x)}{\partial t}$$
(4.11)

$$-\frac{\partial i_0(t,x)}{\partial x} = (G_{00} + G_{01} + G_{02} + G_{03}) \cdot u_0(t,x) + (C_{00} + C_{01} + C_{02} + C_{03}) \cdot \frac{\partial u_0(t,x)}{\partial t} - G_{01} \cdot u_1(t,x) - C_{01} \cdot \frac{\partial u_1(t,x)}{\partial t} - G_{02} \cdot u_2(t,x) - C_{02} \cdot \frac{\partial u_2(t,x)}{\partial t} - G_{03} \cdot u_3(t,x) - C_{03} \cdot \frac{\partial u_3(t,x)}{\partial t} (4.12)$$

$$-\frac{\partial i_{1}(t,x)}{\partial x} = -G_{01} \cdot u_{0}(t,x) - C_{01} \cdot \frac{\partial u_{0}(t,x)}{\partial t} + (G_{01} + G_{11} + G_{12} + G_{13}) \cdot u_{1}(t,x) + (C_{01} + C_{11} + C_{12} + C_{13}) \cdot \frac{\partial u_{1}(t,x)}{\partial t} - G_{12} \cdot u_{2}(t,x) - C_{12} \cdot \frac{\partial u_{2}(t,x)}{\partial t} - G_{13} \cdot u_{3}(t,x) - C_{13} \cdot \frac{\partial u_{3}(t,x)}{\partial t}$$

$$(4.13)$$

$$-\frac{\partial i_2(t,x)}{\partial x} = -G_{02} \cdot u_0(t,x) - C_{02} \cdot \frac{\partial u_0(t,x)}{\partial t} - G_{12} \cdot u_1(t,x) - C_{12} \cdot \frac{\partial u_1(t,x)}{\partial t} + (G_{02} + G_{12} + G_{22} + G_{23}) \cdot u_2(t,x) + (C_{02} + C_{12} + C_{22} + C_{23}) \cdot \frac{\partial u_2(t,x)}{\partial t} - G_{23} \cdot u_3(t,x) - C_{23} \cdot \frac{\partial u_3(t,x)}{\partial t} (4.14)$$

$$-\frac{\partial i_3(t,x)}{\partial x} = -G_{03} \cdot u_0(t,x) - C_{03} \cdot \frac{\partial u_0(t,x)}{\partial t} - G_{13} \cdot u_1(t,x) - C_{13} \cdot \frac{\partial u_1(t,x)}{\partial t} - G_{23} \cdot u_2(t,x) - C_{23} \cdot \frac{\partial u_2(t,x)}{\partial t} + (G_{03} + G_{13} + G_{23} + G_{33}) \cdot u_3(t,x) + (C_{03} + C_{13} + C_{23} + C_{33}) \cdot \frac{\partial u_3(t,x)}{\partial t} (4.15)$$

- Okrajové podmínky: Napětí na vstupu vedení jsou $u_0(0,t) = u_{00}(t), u_1(0,t) = u_{01}(t), u_2(0,t) = u_{02}(t), u_3(0,t) = u_{03}(t)$. Na konci vedení (x = l) platí vztahy mezi napětími jednotlivých vodičů a proudy jednotlivými vodiči $F(u_0, i_0, t) = 0, F(u_1, i_1, t) = 0, F(u_2, i_2, t) = 0, F(u_3, i_3, t) = 0$. V případě zakončení vedení pouze odporovou zátěží se jedná o algebraické rovnice.
- Počáteční podmínky byly uvažovány nulové: $u_0(x,0) = 0$, $u_1(x,0) = 0$, $u_2(x,0) = 0$, $u_3(x,0) = 0$, $i_0(x,0) = 0$, $i_1(x,0) = 0$, $i_2(x,0) = 0$, $i_3(x,0) = 0$.

4.2.2 Diskrétní matematický model

K získání diskrétního matematického modelu jsem použil implicitní Wendroffovu diferenční aproximaci. Postupoval jsem stejně jako u jednofázového vedení. Jako příklad zde uvádím diferenční aproximaci rovnic (4.9) a (4.13), zbylé rovnice se aproximují stejným způsobem.

• Diferenční aproximace rovnice (4.9) a její následná úprava do vhodného tvaru:

$$-\left[\frac{1}{2} \cdot \left(\frac{u_{1k+1}^{l+1} - u_{1k}^{l+1}}{\Delta x} + \frac{u_{1k+1}^{l} - u_{1k}^{l}}{\Delta x}\right)\right] = \frac{R_{1}}{4} \cdot \left(i_{1k}^{l+1} + i_{1k+1}^{l+1} + i_{1k}^{l} + i_{1k+1}^{l}\right)$$
$$+ \frac{L_{01}}{2} \cdot \left(\frac{i_{0k}^{l+1} - i_{0k}^{l}}{\Delta t} + \frac{i_{0k+1}^{l+1} - i_{0k+1}^{l}}{\Delta t}\right) + \frac{L_{11}}{2} \cdot \left(\frac{i_{1k}^{l+1} - i_{1k}^{l}}{\Delta t} + \frac{i_{1k+1}^{l+1} - i_{1k+1}^{l}}{\Delta t}\right)$$
$$+ \frac{L_{12}}{2} \cdot \left(\frac{i_{2k}^{l+1} - i_{2k}^{l}}{\Delta t} + \frac{i_{2k+1}^{l+1} - i_{2k+1}^{l}}{\Delta t}\right) + \frac{L_{13}}{2} \cdot \left(\frac{i_{3k}^{l+1} - i_{3k}^{l}}{\Delta t} + \frac{i_{3k+1}^{l+1} - i_{3k+1}^{l}}{\Delta t}\right)$$
$$(4.16)$$

$$\begin{aligned} u_{1k}^{l+1} \cdot \left(-\frac{1}{2 \cdot \Delta x} \right) + u_{1k+1}^{l+1} \cdot \left(\frac{1}{2 \cdot \Delta x} \right) + i_{0k}^{l+1} \cdot \left(\frac{L_{01}}{2 \cdot \Delta t} \right) + i_{0k+1}^{l+1} \cdot \left(\frac{L_{01}}{2 \cdot \Delta t} \right) \\ + i_{1k}^{l+1} \cdot \left(\frac{R_{1}}{4} + \frac{L_{11}}{2 \cdot \Delta t} \right) + i_{1k+1}^{l+1} \cdot \left(\frac{R_{1}}{4} + \frac{L_{11}}{2 \cdot \Delta t} \right) + i_{2k}^{l+1} \cdot \left(\frac{L_{12}}{2 \cdot \Delta t} \right) + i_{2k+1}^{l+1} \cdot \left(\frac{L_{12}}{2 \cdot \Delta t} \right) \\ + i_{3k}^{l+1} \cdot \left(\frac{L_{13}}{2 \cdot \Delta t} \right) + i_{3k+1}^{l+1} \cdot \left(\frac{L_{13}}{2 \cdot \Delta t} \right) = u_{1k}^{l} \cdot \left(\frac{1}{2 \cdot \Delta x} \right) + u_{1k+1}^{l} \cdot \left(-\frac{1}{2 \cdot \Delta x} \right) \\ + i_{0k}^{l} \cdot \left(\frac{L_{01}}{2 \cdot \Delta t} \right) + i_{0k+1}^{l} \cdot \left(\frac{L_{01}}{2 \cdot \Delta t} \right) + i_{1k}^{l} \cdot \left(-\frac{R_{1}}{4} + \frac{L_{11}}{2 \cdot \Delta t} \right) + i_{1k+1}^{l} \cdot \left(-\frac{R_{1}}{4} + \frac{L_{11}}{2 \cdot \Delta t} \right) \\ + i_{2k}^{l} \cdot \left(\frac{L_{12}}{2 \cdot \Delta t} \right) + i_{2k+1}^{l} \cdot \left(\frac{L_{12}}{2 \cdot \Delta t} \right) + i_{3k}^{l} \cdot \left(\frac{L_{13}}{2 \cdot \Delta t} \right) + i_{3k+1}^{l} \cdot \left(\frac{L_{13}}{2 \cdot \Delta t} \right) \\ \end{aligned}$$

$$(4.17)$$

• Diferenční aproximace rovnice (4.13) a její následná úprava do vhodného tvaru:

$$\begin{split} &-\left[\frac{1}{2}\cdot\left(\frac{i_{1k+1}^{l+1}-i_{1k}^{l+1}}{\Delta x}+\frac{i_{1k+1}^{l}-i_{1k}^{l}}{\Delta x}\right)\right] = \\ &-\frac{G_{01}}{4}\cdot\left(u_{0k}^{l+1}+u_{0k+1}^{l+1}+u_{0k}^{l}+u_{0k+1}^{l}\right) - \frac{C_{01}}{2}\cdot\left(\frac{u_{0k}^{l+1}-u_{0k}^{l}}{\Delta t}+\frac{u_{0k+1}^{l+1}-u_{0k+1}^{l}}{\Delta t}\right) \\ &+\frac{G_{01}+G_{11}+G_{12}+G_{13}}{4}\cdot\left(u_{1k}^{l+1}+u_{1k+1}^{l+1}+u_{1k}^{l}+u_{1k+1}^{l}\right) \\ &+\frac{C_{01}+C_{11}+C_{12}+C_{13}}{2}\cdot\left(\frac{u_{1k}^{l+1}-u_{1k}^{l}}{\Delta t}+\frac{u_{1k+1}^{l+1}-u_{1k+1}^{l}}{\Delta t}\right) \\ &-\frac{G_{12}}{4}\cdot\left(u_{2k}^{l+1}+u_{2k+1}^{l+1}+u_{2k}^{l}+u_{2k+1}^{l}\right) - \frac{C_{12}}{2}\cdot\left(\frac{u_{2k}^{l+1}-u_{2k}^{l}}{\Delta t}+\frac{u_{2k+1}^{l+1}-u_{2k+1}^{l}}{\Delta t}\right) \\ &-\frac{G_{13}}{4}\cdot\left(u_{3k}^{l+1}+u_{3k+1}^{l+1}+u_{3k}^{l}+u_{3k+1}^{l}\right) - \frac{C_{13}}{2}\cdot\left(\frac{u_{3k}^{l+1}-u_{3k}^{l}}{\Delta t}+\frac{u_{3k+1}^{l+1}-u_{3k+1}^{l}}{\Delta t}\right) \end{split}$$

$$(4.18)$$

$$\begin{split} i_{1k}^{l+1} \cdot \left(-\frac{1}{2 \cdot \Delta x}\right) + i_{1k+1}^{l+1} \cdot \left(\frac{1}{2 \cdot \Delta x}\right) + u_{0k}^{l+1} \cdot \left(-\frac{G_{01}}{4} - \frac{C_{01}}{2 \cdot \Delta t}\right) & (4.19) \\ + u_{0k+1}^{l+1} \cdot \left(-\frac{G_{01}}{4} - \frac{C_{01}}{2 \cdot \Delta t}\right) + u_{1k}^{l+1} \cdot \left(\frac{G_{01} + G_{11} + G_{12} + G_{13}}{4} + \frac{C_{01} + C_{11} + C_{12} + C_{13}}{2 \cdot \Delta t}\right) \\ + u_{1k+1}^{l+1} \cdot \left(\frac{G_{01} + G_{11} + G_{12} + G_{13}}{4} + \frac{C_{01} + C_{11} + C_{12} + C_{13}}{2 \cdot \Delta t}\right) + u_{2k}^{l+1} \cdot \left(-\frac{G_{12}}{4} - \frac{C_{12}}{2 \cdot \Delta t}\right) \\ + u_{2k+1}^{l+1} \cdot \left(-\frac{G_{12}}{4} - \frac{C_{12}}{2 \cdot \Delta t}\right) + u_{3k}^{l+1} \cdot \left(-\frac{G_{13}}{4} - \frac{C_{13}}{2 \cdot \Delta t}\right) + u_{3k+1}^{l+1} \cdot \left(-\frac{G_{13}}{4} - \frac{C_{13}}{2 \cdot \Delta t}\right) \\ = i_{1k}^{l} \cdot \left(\frac{1}{2 \cdot \Delta x}\right) + i_{1k+1}^{l} \cdot \left(-\frac{1}{2 \cdot \Delta x}\right) + u_{0k}^{l} \cdot \left(\frac{G_{01}}{4} - \frac{C_{01}}{2 \cdot \Delta t}\right) + u_{0k+1}^{l} \cdot \left(\frac{G_{01}}{4} - \frac{C_{01}}{2 \cdot \Delta t}\right) \\ + u_{1k}^{l} \cdot \left(-\frac{G_{01} + G_{11} + G_{12} + G_{13}}{4} + \frac{C_{01} + C_{11} + C_{12} + C_{13}}{2 \cdot \Delta t}\right) \\ + u_{1k+1}^{l} \cdot \left(-\frac{G_{01} + G_{11} + G_{12} + G_{13}}{4} + \frac{C_{01} + C_{11} + C_{12} + C_{13}}{2 \cdot \Delta t}\right) \\ + u_{2k+1}^{l} \cdot \left(\frac{G_{12}}{4} - \frac{C_{12}}{2 \cdot \Delta t}\right) + u_{3k}^{l} \cdot \left(\frac{G_{13}}{4} - \frac{C_{13}}{2 \cdot \Delta t}\right) + u_{3k+1}^{l} \cdot \left(\frac{G_{13}}{4} - \frac{C_{13}}{2 \cdot \Delta t}\right) \\ \end{split}$$

Aproximované rovnice je potřeba zapsat pro všech k elementů diferenční sítě. Vznikne soustava $8 \cdot N$ rovnic, kterou je nutné doplnit o okrajové podmínky na začátku a na konci vedení. Výsledkem je soustava $8 \cdot (N+1)$ lineárních algebraických rovnic ve tvaru:

$$\mathbf{A} \cdot \mathbf{x}^{l+1} = \mathbf{B} \cdot \mathbf{x}^l + \mathbf{D} \,. \tag{4.20}$$

Řešením rovnice jsou hledané hodnoty u_{0k}^{l+1} , u_{1k}^{l+1} , u_{2k}^{l+1} , u_{3k}^{l+1} , i_{0k}^{l+1} , i_{1k}^{l+1} , i_{2k}^{l+1} , i_{3k}^{l+1} v časové hladině l + 1, vypočtené ze znalosti hodnot u_{0k}^{l} , u_{1k}^{l} , u_{2k}^{l} , u_{3k}^{l} , i_{0k}^{l} , i_{1k}^{l} , i_{2k}^{l} , i_{3k}^{l} z předcházející časové hladiny l. $\mathbf{5}$

Ilustrativní příklady

V této kapitole jsou řešeny následující modely vedení: trakční vedení a trojfázové vedení vn na stožárech Soudek a Donau. U trakčního vedení jsou zde simulovány situace vedení zakončeného odporovou zátěží $Z_{\rm k} = 449,881 \,\Omega$ pouze na konci vedení a taktéž situace, kde je odporová zátěž připojena na konec $Z_{\rm k} = 449,881 \,\Omega$ i na začátek vedení $Z_{\rm p} = 449,881 \,\Omega$. Rozložení napětí a proudu podél tohoto vedení je řešeno analyticky v harmonickém ustáleném stavu a následně i numericky. Obě tato řešení jsou porovnávána.

5.1 Trakční vedení

Model trakčního vedení tvoří jeden měděný vodič o poloměru R = 6 mm umístěný ve výšce h = 5,5 m o délce l = 2 km. Vedení je napájeno ze zdroje o efektivní hodnotě napětí $U_0 = 26500$ V.

5.1.1 Výpočet primárních a sekundárních parametrů

• Výpočet primárních parametrů vedení

$$R = \frac{l}{\gamma \cdot S} = \frac{1}{5, 7 \cdot 10^7 \cdot \pi \cdot 0, 006^2} = 1,551 \cdot 10^{-4} \qquad [\Omega/m] \qquad (5.1)$$

$$L = \frac{\mu_0}{2 \cdot \pi} \cdot \left(\frac{1}{4} + \ln\frac{R_0}{R}\right) = \frac{4 \cdot \pi \cdot 10^{-7}}{2 \cdot \pi} \cdot \left(\frac{1}{4} + \ln\frac{5,5}{0,006}\right) = 1,414 \cdot 10^{-6} \qquad [H/m]$$
(5.2)

$$G = 0 \qquad [S/m] \tag{5.3}$$

$$C = \frac{2 \cdot \pi \cdot \varepsilon_0 \cdot l}{ln \frac{2 \cdot h}{R}} = \frac{2 \cdot \pi \cdot 8,85 \cdot 10^{-12} \cdot 1}{ln \frac{2 \cdot 5,5}{0,006}} = 7,400 \cdot 10^{-12} \qquad [F/m] (5.4)$$

• Výpočet provozních parametrů vedení

$$\boldsymbol{Z}_{0} = \sqrt{\frac{(R + j\omega L)}{(G + j\omega C)}} = \sqrt{\frac{(1,551 \cdot 10^{-4} + j2 \cdot \pi \cdot 50 \cdot 1,414 \cdot 10^{-6})}{(0 + j2 \cdot \pi \cdot 50 \cdot 7,400 \cdot 10^{-12})}} \qquad (5.5)$$

$$= 449,881 \cdot e^{j-9,623^{\circ}} \qquad [\Omega]$$

$$\gamma = \sqrt{(R + j\omega L) \cdot (G + j\omega C)}$$

= $\sqrt{(1,551 \cdot 10^{-4} + j2 \cdot \pi \cdot 50 \cdot 1,414 \cdot 10^{-6}) \cdot (0 + j2 \cdot \pi \cdot 50 \cdot 7,400 \cdot 10^{-12})}$
= 1,748 \cdot 10^{-7} + j1,031 \cdot 10^{-6} (5.6)

$$\alpha = 1,748 \cdot 10^{-7} \qquad [Np/m] \tag{5.7}$$

$$\beta = 1,031 \cdot 10^{-6} \qquad [rad/m] \tag{5.8}$$

5.1.2 Vedení zakončené odporovou zátěží Z_k

5.1.2.1 Analytické řešení v harmonickém ustáleném stavu

• Výpočet integračních konstant A a B dle vztahů (2.24):

$$\begin{aligned} \boldsymbol{A} &= \boldsymbol{U}_{p} \cdot \frac{\boldsymbol{Z}_{k} - \boldsymbol{Z}_{0}}{\boldsymbol{Z}_{k} - \boldsymbol{Z}_{0} + (\boldsymbol{Z}_{k} + \boldsymbol{Z}_{0}) \cdot e^{2\gamma l}} \tag{5.9} \\ &= \frac{26500 \cdot (449, 881 - 449, 881 \cdot e^{j-9,623^{o}})}{449, 881 - 449, 881 \cdot e^{j-9,623^{o}}) \cdot e^{2 \cdot (1,748 \cdot 10^{-7} + j\,1,031 \cdot 10^{-6}) \cdot 2000}} \\ &= 2220, 63e^{j84,97^{o}} \end{aligned}$$

$$\boldsymbol{B} = \boldsymbol{U}_{p} - \boldsymbol{A} = 26500 - 2220, 63 \cdot e^{j\,84,97^{o}} = 26398 \cdot e^{j\,-4,81^{o}} \quad (5.10)$$

• Dosazení integračních konstant do rovnic (2.14) a (2.17) pro výpočet U(x) a I(x):

$$U(x) = \mathbf{A} \cdot e^{\gamma x} + \mathbf{B} \cdot e^{-\gamma x} =$$
2220, 63 \cdot e^{j 84,97^{o}} \cdot e^{(1,748 \cdot 10^{-7} + j 1,031 \cdot 10^{-6}) \cdot x} + 26398 \cdot e^{j - 4,81^{o}} \cdot e^{-(1,748 \cdot 10^{-7} + j 1,031 \cdot 10^{-6}) \cdot x}
(5.11)

$$I(x) = -\frac{A}{Z_0} \cdot e^{\gamma x} + \frac{B}{Z_0} \cdot e^{-\gamma x} = -\frac{2220, 63 \cdot e^{j \, 84,97^o}}{449, 881 \cdot e^{j - 9,623^o}} \cdot e^{(1,748 \cdot 10^{-7} + j \, 1,031 \cdot 10^{-6}) \cdot x} + \frac{26398 \cdot e^{j - 4,81^o}}{449, 881 \cdot e^{j - 9,623^o}} \cdot e^{-(1,748 \cdot 10^{-7} + j \, 1,031 \cdot 10^{-6}) \cdot x}$$
(5.12)

• Výpočet fázorů napětí a proudu v půlce vedení, tj. prox = 1000 m:

$$U(1000) = 2221, 02 \cdot e^{j\,85,02^{o}} + 26393, 3 \cdot e^{j-4,87^{o}} = 26491 - j\,26, 15 = 26491 \cdot e^{j-0,06^{o}} [V]$$
(5.13)

$$\boldsymbol{I}(1000) = 4,94 \cdot e^{j - 85,35^{o}} + 58,67 \cdot e^{j 4,76^{o}} = 58,86 - j - 0,05 = 58,86 \cdot e^{j - 0,05^{o}} [A]$$
(5.14)

• Časové průběhy napětí a proudu v půlce vedení:

$$u(t) = 37463, 7 \cdot \sin(314, 16 \cdot t - 0, 06^{\circ}) \qquad [V] \tag{5.15}$$

$$i(t) = 83,25 \cdot \sin(314,16 \cdot t - 0,05^{\circ}) \qquad [A] \tag{5.16}$$

Na následujících grafech jsou uvedeny časové průběhy napětí u(t) a proudu i(t)v půlce vedení s vyznačenými body v časech $t = \frac{T}{16}, \frac{T}{8}, \frac{3T}{16}, \frac{T}{4}, \frac{5T}{16}, \frac{3T}{8}$ a $\frac{7T}{16}$, které jsou použity dále.

Obr. 5.1: Časový průběh napětí a proudu v půlce vedení zakončeného odporovou zátěží $Z_k = 499,881 \ \Omega$

V následujících tabulkách (5.1), (5.2) jsou okamžité hodnoty napětí a proudu podél vedení pro x v rozsahu od x = 0 m do x = 2000 m po 200 m a v časech $t = \frac{T}{16}, \frac{T}{8}, \frac{3T}{16}, \frac{T}{4}, \frac{5T}{16}, \frac{3T}{8}$ a $\frac{7T}{16}$. Perioda T pro síťovou frekvenci f = 50 Hz je 20 ms.

$u(x,t) { m [V]}$ - analytické řešení									
$x \left[\mathrm{m} ight] / t \left[\mathrm{ms} ight]$	1,25	2,5	3,75	5	$6,\!25$	$7,\!5$	8,75		
0	14341,7	26500,0	34623,9	37476,7	34623,9	26500,0	14341,7		
200	14333,9	26492,9	34618,7	37474,1	34624,4	26503,4	14347,5		
400	14326,1	26485,9	$34613,\!5$	37471,5	34624,8	26506, 8	$14353,\!4$		
600	14318,2	26478,8	34608,3	37468,9	34625,2	26510,2	14359,2		
800	14310,4	26471,8	34603,0	37466,3	34625,7	$26513,\!6$	14365,1		
1000	14302,6	26464,7	$34597,\!8$	37463,7	34626,1	26517,0	$14370,\!9$		
1200	14294,8	26457,7	$34592,\!6$	37461,1	34626,6	26520,4	14376,8		
1400	14286,9	$26450,\!6$	$34587,\!4$	37458,5	34627,0	$26523,\!8$	14382,6		
1600	14279,1	26443,5	34582,2	37456,0	$34627,\!4$	26527,2	14388,4		
1800	14271,3	26436,5	34576,9	37453,4	34627,9	26530,6	14394,3		
2000	14263,5	26429,4	34571,7	37450,8	34628,3	26534,0	14400,1		

Tab. 5.1: Okamžité hodnoty napětí na vedení zakončeném odporovou zátěží $Z_{\rm k}=499,881~\Omega$ - analytické řešení

$i(x,t) [{ m A}]$ - analytické řešení									
$x \mathrm{[m]} \ / \ t \mathrm{[ms]}$	1,25	$2,\!5$	3,75	5	$6,\!25$	$7,\!5$	8,75		
0	31,8660	58,8708	76,9131	83,2461	76,9056	58,8569	31,8478		
200	31,8499	58,8585	76,9065	83,2461	76,9123	58,8692	31,8639		
400	31,8338	58,8462	76,8998	83,2461	76,9189	58,8816	31,8800		
600	31,8177	58,8339	76,8931	83,2461	76,9256	58,8939	31,8961		
800	31,8016	58,8215	76,8864	83,2461	76,9323	58,9062	31,9122		
1000	31,7855	58,8092	76,8798	83,2461	76,9389	58,9185	31,9283		
1200	31,7694	58,7969	76,8731	83,2460	76,9456	58,9308	31,9444		
1400	31,7533	58,7846	76,8664	83,2460	76,9522	58,9431	$31,\!9605$		
1600	31,7372	58,7722	76,8597	83,2460	76,9588	58,9554	$31,\!9765$		
1800	31,7211	58,7599	76,8530	83,2460	76,9655	58,9677	31,9926		
2000	31,7050	58,7475	76,8463	83,2459	76,9721	58,9800	32,0087		

Tab. 5.2: Okamžité hodnoty proudu vedením zakončeném odporovou zátěží $Z_{\rm k}=499,881~\Omega$ - analytické řešení

5.1.2.2 Numerické řešení

Pro numerické řešení byla použita Wendroffova diferenční aproximace popsaná v kapitole (4.1.2) na sítí o prostorovém kroku $\Delta x = 20$ m a časovém kroku $\Delta t = 6, 25 \cdot 10^{-5}$ s. Parametry použité sítě byly zvoleny záměrně kvůli konvergenci numerického řešení k očekávanému řešení. Při použití těchto parametrů sítě numerické řešení konvergovalo velmi přesně, proto nebylo potřeba zjemnit síť a více zatěžovat výpočetní systém. Soustava rovnic (4.7) byla vyřešena v programu napsaném v jazyce Octave uvedeném v příloze (A.1.1). Výstupem tohoto programu jsou 3D grafy rozložení napětí (obr. 5.2) a proudu (obr. 5.3) podél vedení v čase. Z matic NAPETI a PROUD byly vybrány okamžité hodnoty napětí a proudu podél vedení pro x v rozsahu od x = 0 m do x = 2000m po 200 m a v časech $t = \frac{T}{16}, \frac{T}{8}, \frac{3T}{16}, \frac{T}{4}, \frac{5T}{16}, \frac{3T}{8}, a \frac{7T}{16}$ ve čtvrté periodě T. Tyto hodnoty jsou uvedený v tabulkách tab. 5.3 a tab. 5.4.

Obr. 5.2: Graf rozložení napětí podél vedení zakončeném odporovou zátěží $Z_{\rm k}=499,881~\Omega$

Obr. 5.3: Graf rozložení proudu podél vedení zakončeném odporovou zátěží $Z_{\rm k}=499,881~\Omega$

$u(x,t) [{ m V}]$ - numerické řešení									
$x \left[\mathrm{m} ight] / t \left[\mathrm{ms} ight]$	61,25	$62,\!5$	63,75	65	66,25	$67,\!5$	68,75		
0	14341,7	26500,0	34623,9	37476,7	34623,9	26500,0	14341,7		
200	14333,7	$26492,\!8$	34618,5	37474,0	34624,3	26503,4	14347,5		
400	14325,7	$26485,\!6$	34613,2	37471,2	34624,5	$26506,\!6$	$14353,\!2$		
600	14318,5	26479,0	34608,4	37469,0	34625,2	26510,1	14359,1		
800	14310,2	26471,7	34603,0	37466,4	34625, 9	26513,8	$14365,\!4$		
1000	14302,8	26464, 8	34597,8	37463,6	34626,0	26516, 8	$14370,\!6$		
1200	14294,4	$26457,\!4$	$34592,\!4$	37461,1	34626,6	$26520,\!6$	14377,0		
1400	14287,4	26451,0	34587,8	37458,8	34627,2	$26523,\!8$	14382,5		
1600	14278,9	26443,2	34581,7	37455,5	34627,1	26526,9	14388,3		
1800	14271,1	26436,5	34577,1	37453,7	34628,3	26531,0	14394,7		
2000	14263,9	26429,8	34571,9	37450,8	34628,2	26533,7	14399,7		

Tab. 5.3: Okamžité hodnoty napětí na vedení zakončeném odporovou zátěží $Z_{\rm k}=499,881~\Omega$ - numerické řešení

$i(x,t) \; [{ m A}]$ - numerické řešení									
$x \mathrm{[m]} \ / \ t \mathrm{[ms]}$	61,25	62,5	63,75	65	66, 25	67,5	68,75		
0	31,8660	58,8708	76,9131	83,2461	76,9056	58,8569	31,8478		
200	31,8494	58,8581	76,9061	83,2458	76,9121	58,8691	31,8639		
400	31,8331	58,8455	76,8991	83,2455	76,9184	58,8811	31,8796		
600	31,8183	58,8343	76,8934	83,2462	76,9256	58,8937	31,8958		
800	31,8012	58,8213	76,8864	83,2462	76,9326	58,9067	31,9128		
1000	31,7861	58,8095	76,8798	83,2459	76,9385	58,9179	31,9276		
1200	31,7685	58,7962	76,8727	83,2459	76,9457	58,9312	31,9450		
1400	31,7543	58,7855	76,8672	83,2466	76,9526	58,9432	31,9602		
1600	31,7366	58,7714	76,8587	83,2450	76,9580	58,9547	$31,\!9761$		
1800	31,7208	58,7600	76,8535	83,2467	76,9664	58,9687	31,9935		
2000	31,7060	58,7484	76,8469	83,2461	76,9719	58,9794	32,0079		

Tab. 5.4: Okamžité hodnoty proudu vedením zakončeném odporovou zátěží $Z_{\rm k}=499,881~\Omega$ numerické řešení

5.1.2.3 Porovnání analytického a numerického řešení

Z porovnání okamžitých hodnot napětí u(x,t) podél vedení zakončené odporovou zátěží $Z_K = 499,881 \ \Omega$ shrnutých v tabulkách 5.1 a 5.3 a okamžitých hodnot proudu i(x,t) uvedených v tabulkách 5.2 a 5.4 je patrné, že se tyto hodnoty velmi shodují. Největší absolutní chyba metody výpočtu napětí Δu dosahovala 0,5 V a největší absolutní chyba metody výpočtu proudu Δi dosahovala 1 mA. Tyto chyby a souřadnice v jakém místě na vedení a v jakém čase se vyskytly shrnuje tabulka 5.5.

(a)						
$x [\mathrm{m}]$	$t \; [{ m ms}]$	$\Delta u \; [\mathrm{V}]$	$\delta u ~[\%]$			
1400	61,25	0,5	0,0035			
1600	63,25	$0,\!5$	0,0014			
1600	65	$0,\!5$	0,0013			

(b)					
$x [\mathrm{m}]$	$t \; [{ m ms}]$	$\Delta i \; [{ m mA}]$	$\delta i \ [\%]$		
1400	61,25	1	0,0032		
1600	$63,\!25$	1	0,0013		
1600	65	1	0,0012		

Tab. 5.5: Tabulka maximálních absolutních chyb
 metody výpočtu napětí (a) a proudu (b) a jejich odpovídající relativní chyby - vedení zakončené odpor
ovou zátěží $Z_{\rm k}=499,881~\Omega$

• Příklad výpočtu absolutní chyby metody Δu a relativní chyby metody δu pro x = 1400 m a t = 61, 25 ms:

$$\Delta u = |u_{\rm N} - u_{\rm A}| = |14287, 4 - 14286, 9| = 0, 5 V$$
(5.17)

$$\delta u = \frac{\Delta u}{u_{\rm A}} \cdot 100 = \frac{0,5}{14286,9} \cdot 100 = 0,0035 \ \% \tag{5.18}$$

Hodnota označená jako $u_{\rm N}$ je získána numerickým výpočtem a hodnota označená jako $u_{\rm A}$ je získána analytickým výpočtem.

Z relativních chyb metody výpočtu napětí δu a proudu δi vyplývá, že se hodnoty získané numerickým řešením lišily od hodnot získaných analytickým řešením maximálně o 0,0035 % v případě napětí a o 0,0032 % v případě proudu.

5.1.3 Vedení s odporovou zátěží $Z_{\rm k}$ připojenou na konci vedení a na začátku vedení $Z_{\rm p}$

5.1.3.1 Analytické řešení v harmonickém ustáleném stavu

• Výpočet integračních konstant A a B dle vztahů (2.26):

$$\boldsymbol{Z}_{k} - \boldsymbol{Z}_{0} = 449,881 - 449,881 \cdot e^{j-9,623^{\circ}} = 6,32 + j75,21 = 75,48 \cdot e^{j85,20^{\circ}} \qquad [\Omega]$$
(5.19)

$$\boldsymbol{Z}_{0} - \boldsymbol{Z}_{p} = 449,881 \cdot e^{j-9,623^{o}} - 449,881 = -6,32 - j75,21 = 75,48 \cdot e^{j-94,80^{o}}$$
(5.20)

$$\begin{aligned} \boldsymbol{Z}_{0} + \boldsymbol{Z}_{p} &= \boldsymbol{Z}_{k} + \boldsymbol{Z}_{0} = 449,881 \cdot e^{j - 9,623^{o}} + 449,881 = 893,44 - j\,75,21 = (5.21) \\ 896,60 \cdot e^{j - 4,81^{o}} & [\Omega] \end{aligned}$$

$$\begin{split} \boldsymbol{A} &= \frac{\boldsymbol{U}_{0} \cdot \boldsymbol{Z}_{0} \cdot (\boldsymbol{Z}_{k} - \boldsymbol{Z}_{0})}{(\boldsymbol{Z}_{0} - \boldsymbol{Z}_{p}) \cdot (\boldsymbol{Z}_{k} - \boldsymbol{Z}_{0}) + (\boldsymbol{Z}_{0} + \boldsymbol{Z}_{p}) \cdot (\boldsymbol{Z}_{k} + \boldsymbol{Z}_{0}) \cdot e^{2\gamma l}} \tag{5.22} \\ &= \frac{26500 \cdot 449,881 \cdot e^{j - 9,623^{o}} \cdot 75,48 \cdot e^{j 85,20^{o}}}{75,48 \cdot e^{j - 94,80^{o}} \cdot 75,48 \cdot e^{j 85,20^{o}} + (896,60 \cdot e^{j - 4,81^{o}} \cdot 896,60 \cdot e^{j - 4,81^{o}}) \cdot e^{2 \cdot (1,748 \cdot 10^{-7} + j \, 1,031 \cdot 10^{-6}) \cdot 2000} \\ &= 1110,7 \cdot e^{j 84,96^{o}} \end{split}$$

$$B = \frac{U_0 \cdot Z_0 \cdot (Z_k + Z_0) \cdot e^{2\gamma l}}{(Z_0 - Z_p) \cdot (Z_k - Z_0) + (Z_0 + Z_p) \cdot (Z_k + Z_0) \cdot e^{2\gamma l}}$$
(5.23)
=
$$\frac{26500 \cdot 449,881 \cdot e^{j - 9,623^{\circ}} \cdot 896,60 \cdot e^{j - 4,81^{\circ}} \cdot e^{2 \cdot (1,748 \cdot 10^{-7} + j1,031 \cdot 10^{-6}) \cdot 2000}}{75,48 \cdot e^{j - 94,80^{\circ}} \cdot 75,48 \cdot e^{j 85,20^{\circ}} + (896,60 \cdot e^{j - 4,81^{\circ}} \cdot 896,60 \cdot e^{j - 4,81^{\circ}}) \cdot e^{2 \cdot (1,748 \cdot 10^{-7} + j1,031 \cdot 10^{-6}) \cdot 2000}}$$
= 13203, 5 \cdot e^{j - 4,81^{\circ}}

• Dosazení integračních konstant do rovnic (2.14) a (2.17) pro výpočet U(x) a I(x):

$$U(x) = \mathbf{A} \cdot e^{\gamma x} + \mathbf{B} \cdot e^{-\gamma x} =$$
1110, 7 \cdot e^{j^{84,96^o}} \cdot e^{(1,748 \cdot 10^{-7} + j^{1,031 \cdot 10^{-6}) \cdot x}} + 13203, 5 \cdot e^{j^{-4,81^o}} \cdot e^{-(1,748 \cdot 10^{-7} + j^{1,031 \cdot 10^{-6}) \cdot x}}
(5.24)

$$I(x) = -\frac{A}{Z_0} \cdot e^{\gamma x} + \frac{B}{Z_0} \cdot e^{-\gamma x} = -\frac{1110, 7 \cdot e^{j\,84,96^o}}{449,881 \cdot e^{j-9,623^o}} \cdot e^{(1,748 \cdot 10^{-7} + j\,1,031 \cdot 10^{-6}) \cdot x} + \frac{13203, 5 \cdot e^{j-4,81^o}}{449,881 \cdot e^{j-9,623^o}} \cdot e^{-(1,748 \cdot 10^{-7} + j\,1,031 \cdot 10^{-6}) \cdot x}$$

$$(5.25)$$

• Výpočet fázorů napětí a proudu v půlce vedení, tj. prox = 1000 m:

$$U(1000) = 1110, 89 \cdot e^{j\,85,02^{o}} + 13201, 2 \cdot e^{j\,-4,87^{o}} = 13250 - j\,13, 86 = 13250 \cdot e^{j\,-0,06^{o}} [V]$$
(5.26)

$$\boldsymbol{I}(1000) = 2,47 \cdot e^{j-85,36^{\circ}} + 29,34 \cdot e^{j\,4,75^{\circ}} = 29,44 - j\,0,03 = 29,44 \cdot e^{j\,-0,06^{\circ}} \left[A\right]$$
(5.27)

• Časové průběhy napětí a proudu v půlce vedení:

$$u(t) = 18738, 3 \cdot \sin(314, 16 \cdot t - 0, 06^{\circ}) \qquad [V] \tag{5.28}$$

$$i(t) = 41, 64 \cdot \sin(314, 16 \cdot t - 0, 06^{\circ})$$
 [A] (5.29)

Na následujících grafech jsou uvedeny časové průběhy napětí u(t) a proudu i(t)v půlce vedení s vyznačenými body v časech $t = \frac{T}{16}, \frac{T}{8}, \frac{3T}{16}, \frac{T}{4}, \frac{5T}{16}, \frac{3T}{8}$ a $\frac{7T}{16}$, které jsou použity dále.

Obr. 5.4: Časový průběh napětí a proudu v půlce vedení s odporovou zátěží $Z_{\rm k}=449,881~\Omega$ připojenou na konci vedení a na začátku vedení $Z_{\rm p}=449,881~\Omega$

V následujících tabulkách (5.6), (5.7) jsou okamžité hodnoty napětí a proudu podél vedení pro x v rozsahu od x = 0 m do x = 2000 m po 200 m a v časech $t = \frac{T}{16}, \frac{T}{8}, \frac{3T}{16}, \frac{T}{4}, \frac{5T}{16}, \frac{3T}{8}$ a $\frac{7T}{16}$. Perioda T pro síťovou frekvenci f = 50 Hz je 20 ms.

$u(x,t) [{ m V}]$ - analytické řešení								
$x \mathrm{[m]} / t \mathrm{[ms]}$	1,25	2,5	3,75	5	$6,\!25$	7,5	8,75	
0	7172,30	13253,80	17317,50	18744,80	17318,30	13255,30	7174,34	
200	7168,38	13250,30	17314,90	18743,50	17318,60	13257,10	7177,27	
400	7164,47	13246,70	17312,30	18742,20	17318,80	13258,80	7180,19	
600	7160,56	13243,20	17309,70	18740,90	17319,00	$13260,\!50$	7183,11	
800	7156,65	13239,70	17307,10	18739,60	17319,20	13262,20	7186,03	
1000	7152,73	$13236,\!10$	17304,40	18738,30	$17319{,}50$	13263,90	7188,95	
1200	7148,82	13232,60	17301,80	18737,00	17319,70	$13265,\!60$	7191,88	
1400	7144,91	13229,10	17299,20	18735,70	17319,90	13267,30	7194,80	
1600	7141,00	$13225,\!50$	17296,60	18734,40	17320,10	13268,90	7197,72	
1800	7137,08	13222,00	17294,00	18733,10	17320,30	13270,60	7200,63	
2000	7133,17	13218,50	17291,40	18731,80	17320,50	13272,30	7203,55	

Tab. 5.6: Okamžité hodnoty napětí na vedení s odporovou zátěží $Z_{\rm k}=449,881~\Omega$ připojenou na konci vedení a na začátku vedení $Z_{\rm p}=449,881~\Omega$ - analytické řešení

$i(x,t) [{ m A}]$ - analytické řešení								
$x \mathrm{[m]} \ / \ t \mathrm{[ms]}$	1,25	$2,\!5$	3,75	5	$6,\!25$	$7,\!5$	8,75	
0	15,9362	29,4438	38,4689	41,6374	38,4670	29,4403	15,9317	
200	15,9282	$29,\!4377$	38,4655	41,6374	38,4703	29,4465	$15,\!9397$	
400	15,9201	29,4315	38,4622	41,6374	38,4737	29,4527	$15,\!9478$	
600	15,9121	$29,\!4253$	38,4589	41,6374	38,4770	29,4588	$15,\!9558$	
800	15,9040	29,4192	$38,\!4555$	41,6374	38,4803	29,4650	$15,\!9639$	
1000	$15,\!8960$	29,4130	38,4522	41,6374	38,4836	29,4711	$15,\!9719$	
1200	15,8879	29,4068	38,4488	41,6374	38,4870	29,4773	15,9800	
1400	$15,\!8798$	29,4007	38,4455	41,6373	38,4903	29,4834	15,9880	
1600	15,8718	29,3945	38,4421	41,6373	38,4936	29,4896	$15,\!9960$	
1800	15,8637	29,3883	38,4388	41,6373	38,4969	29,4957	16,0041	
2000	15,8557	29,3822	38,4355	41,6373	38,5003	29,5019	16,0121	

Tab. 5.7: Okamžité hodnoty proudu vedením s odporovou zátěží $Z_{\rm k}=449,881~\Omega$ připojenou na konci vedení a na začátku vedení $Z_{\rm p}=449,881~\Omega$ - analytické řešení

5.1.3.2 Numerické řešení

Pro numerické řešení byla použita Wendroffova diferenční aproximace popsaná v kapitole (4.1.2) na sítí o prostorovém kroku $\Delta x = 20$ m a časovém kroku $\Delta t = 6, 25 \cdot 10^{-5}$ s. Parametry použité sítě byly zvoleny záměrně kvůli konvergenci numerického řešení k očekávanému řešení. Při použití těchto parametrů sítě numerické řešení konvergovalo velmi přesně, proto nebylo potřeba zjemnit síť a více zatěžovat výpočetní systém. Soustava rovnic (4.7) byla vyřešena v programu napsaném v jazyce Octave uvedeném v příloze (A.1.1). Výstupem tohoto programu jsou 3D grafy rozložení napětí (obr. 5.5) a proudu (obr. 5.6) podél vedení v čase. Z matic NAPETI a PROUD byly vybrány okamžité hodnoty napětí a proudu podél vedení pro x v rozsahu od x = 0 m do x = 2000 m po 200 m a v časech $t = \frac{T}{16}, \frac{T}{8}, \frac{3T}{16}, \frac{T}{4}, \frac{5T}{16}, \frac{3T}{8}, a \frac{7T}{16}$ ve čtvrté periodě T. Tyto hodnoty jsou uvedený v tabulkách tab. 5.8 a tab. 5.9.

Obr. 5.5: Graf rozložení napětí podél vedení s odporovou zátěží $Z_{\rm k}=449,881~\Omega$ připojenou na konci vedení a na začátku vedení $Z_{\rm p}=449,881~\Omega$

Obr. 5.6: Graf rozložení proudu podél vedení s odporovou zátěží $Z_k = 449,881 \ \Omega$ připojenou na konci vedení a na začátku vedení $Z_p = 449,881 \ \Omega$

$u(x,t) [{ m V}]$ - numerické řešení								
$x \left[\mathrm{m} ight] / t \left[\mathrm{ms} ight]$	61,25	62,5	63,75	65	66,25	$67,\!5$	68,75	
0	7172,29	13253,80	17317,50	18744,80	17318,40	$13255,\!40$	7174,34	
200	7168,28	13250,20	17314,80	18743,40	17318,50	13257,00	7177,26	
400	7164,32	13246,60	17312,10	18742,10	17318,70	$13258,\!60$	7180,09	
600	7160,69	13243,30	17309,70	18740,90	17319,00	13260,40	7183,04	
800	7156,55	13239,60	17307,10	18739,70	17319,30	13262,30	7186, 18	
1000	7152,85	13236,20	$17304,\!50$	18738,30	17319,40	13263,70	$7188,\!80$	
1200	7148,64	$13232,\!50$	17301,70	18737,00	17319,70	$13265,\!60$	$7192,\!01$	
1400	7145,12	13229,30	17299,40	18735,90	17320,00	13267,30	$7194,\!74$	
1600	7140,86	13225,40	17296,40	18734,20	17319,90	13268,80	7197,64	
1800	7137,01	13222,00	17294,10	18733,30	17320,50	13270,90	7200,83	
2000	7133,40	13218,70	17291,50	18731,90	17320,50	13272,20	7203,37	

Tab. 5.8: Okamžité hodnoty napětí na vedení s odporovou zátěží $Z_{\rm k}=449,881~\Omega$ připojenou na konci vedení a na začátku vedení $Z_{\rm p}=449,881~\Omega$ - numerické řešení

i(x,t) [A] - numerické řešení								
$x \mathrm{[m]} \ / \ t \mathrm{[ms]}$	61,25	$62,\!5$	63,75	65	66,25	67,5	68,75	
0	15,9362	29,4438	38,4689	41,6374	38,4670	29,4403	15,9317	
200	15,9279	$29,\!4375$	38,4654	41,6373	38,4702	29,4464	$15,\!9397$	
400	$15,\!9198$	29,4311	38,4619	41,6371	38,4734	29,4524	15,9476	
600	15,9123	$29,\!4255$	38,4590	41,6374	38,4770	29,4587	$15,\!9557$	
800	15,9038	29,4190	38,4555	41,6375	38,4805	29,4652	15,9642	
1000	15,8962	29,4132	38,4522	41,6373	38,4835	29,4708	15,9716	
1200	15,8875	29,4065	38,4486	41,6373	38,4871	29,4775	$15,\!9803$	
1400	15,8803	29,4011	38,4459	41,6376	38,4905	29,4835	15,9879	
1600	15,8715	29,3941	38,4417	41,6368	38,4932	29,4893	$15,\!9959$	
1800	15,8636	29,3884	38,4390	41,6377	38,4974	29,4962	16,0045	
2000	15,8562	29,3826	38,4357	41,6374	38,5002	29,5016	16,0117	

Tab. 5.9: Okamžité hodnoty proudu vedením s odporovou zátěží $Z_{\rm k}=449,881~\Omega$ připojenou na konci vedení a na začátku vedení $Z_{\rm p}=449,881~\Omega$ - numerické řešení

5.1.3.3 Porovnání analytického a numerického řešení

Z porovnání okamžitých hodnot napětí u(x,t) podél vedení s odporovou zátěží $Z_k = 449,881 \ \Omega$ připojenou na konci vedení a na začátku vedení $Z_p = 449,881 \ \Omega$ shrnutých v tabulkách 5.6 a 5.8 a okamžitých hodnot proudu i(x,t) uvedených v tabulkách 5.7 a 5.9 je zřejmé, že se tyto hodnoty velmi shodují. Největší absolutní chyba metody výpočtu napětí Δu dosahovala 0,3 V a největší absolutní chyba metody výpočtu proudu Δi dosahovala 0,5 mA. Tyto chyby a souřadnice v jakém místě na vedení a v jakém čase se vyskytly shrnuje tabulka 5.10.

(a)					
$x [\mathrm{m}]$	$t \; [{ m ms}]$	$\Delta u \; [\mathrm{V}]$	$\delta u \ [\%]$		
1800	67,5	0,3	0,0023		

(b)						
$x [\mathrm{m}]$	$t \; [{ m ms}]$	$\Delta i \; [{ m mA}]$	$\delta i \ [\%]$			
1400	61,25	0,5	0,0032			
2000	61,25	$0,\!5$	0,0032			
1600	65	0,5	0,0012			
1800	66,25	0,5	0,0013			
1800	$67,\!55$	0,5	0,0017			

Tab. 5.10: Tabulka maximálních absolutních chyb
 metody výpočtu napětí (a) a proudu (b) a jejich odpovídající relativní chyby - vedení s odporovou zátěž
í $Z_{\rm k}=449,881~\Omega$ připojenou na konci vedení a na začátku vedení
 $Z_{\rm p}=449,881~\Omega$

• Příklad výpočtu absolutní chyby metody Δi a relativní chyby metody δi pro x = 1400 m a t = 61, 25 ms:

$$\Delta i = |i_{\rm N} - i_{\rm A}| = |15,8803 - 15,8798| = 0,5 \text{ mA}$$
(5.30)

$$\delta i = \frac{\Delta i}{i_{\rm A}} \cdot 100 = \frac{0, 5}{15,8798} \cdot 100 = 0,0032 \%$$
 (5.31)

Hodnota označená jako $i_{\rm N}$ je získána numerickým výpočtem a hodnota označená jako $i_{\rm A}$ je získána analytickým výpočtem.

Z relativních chyb metody výpočtu napětí δu a proudu δi plyne, že se hodnoty získané numerickým řešením lišily od hodnot získaných analytickým řešením maximálně o 0,0023 % v případě proudu.

5.1.4 Trakční vedení napájené zdrojem napětí o frekvenci 125 kHz

Pro ilustraci odrazů na vedení, které se při délce vedení l = 2 km a frekvenci zdroje 50 Hz neprojevily, je model trakčního vedení napájen zdrojem napětí o frekvenci 125 kHz. V tomto případě vychází vlnová délka $\lambda = 2$ 400 m, proto je tedy nutné modelovat vedení dlouhé 2 km obvodem s rozprostřenými parametry.

Jsou zde modelovány 3 situace: vedení naprázdno, nakrátko a zatížené vlnovou impedancí na výstupu. Na vstup vedení je přiveden signál ve tvaru půlvlny sinusového signálu o frekvenci 125 kHz a amplitudě 37 477 V. Pro všechny tyto situace je vstup vedení zatížen vlnovou impedancí, tedy je impedančně přizpůsoben.

5.1.4.1 Vedení naprázdno

V případě zakončení vedení naprázdno dochází na konci vedení k odrazu napěťové vlny se stejnou amplitudou i fází a k odrazu proudové vlny se stejnou amplitudou, ale s opačnou fází. Výsledkem odrazu napěťové vlny je vznik napětí na konci vedení o dvojnásobné velikosti v porovnání s velikostí napětí postupné vlny. Proud je vlivem vzájemného fázového posuvu mezi postupnou a odraženou proudovou vlnou nulový. Na vstupu vedení už k odrazům nedochází, protože vstup je impedančně přizpůsobený. Tyto situace ilustrují obr. 5.7 a obr. 5.8.

5.1.4.2 Vedení nakrátko

Je-li vedení zakončeno nakrátko, dochází na jeho konci k odrazu proudové vlny se stejnou amplitudou i fází a k odrazu napěťové vlny se stejnou amplitudou, ale s opačnou fází. Velikost proudu na konci vedení je vlivem odrazu proudové vlny zvýšena na dvojnásobek velikosti proudu postupné vlny. Napětí na konci vedení je vlivem vzájemného fázového posuvu postupné a odražené napěťové vlny nulové. Na vstupu vedení už k odrazům nedochází, protože vstup je impedančně přizpůsobený. Tyto situace ilustrují obr. 5.9 a obr. 5.10.

5.1.4.3 Vedení zakončené vlnovou impedancí

V případě zakončení vedení vlnovou impedancí nevznikají na jeho konci odrazy. Je-li na vstup vedení rovněž připojena vlnová impedance, lze toto vedení nazvat impedančně přizpůsobeným. Tyto situace ilustrují obr. 5.11 a obr. 5.12.

Obr. 5.7: Šíření napěťové půlvlny vedením zakončeném naprázdno

Obr. 5.8: Šíření proudové půlvlny vedením zakončeném naprázdno

Obr. 5.9: Šíření napěťové půl
vlny vedením zakončeném nakrátko

Obr. 5.10: Šíření proudové půlvlny vedením zakončeném nakrátko

Obr. 5.11: Šíření napěťové půlvlny vedením zakončeném vlnovou impedancí

Obr. 5.12: Šíření proudové půlvlny vedením zakončeném vlnovou impedancí

5.1.5 Trojfázové vedení vn se zemním lanem

5.1.5.1 Stožár Soudek

U tohoto typu stožáru byly při výpočtu uvažovány jako fázové vodiče AlFe lana o průřezu 450 mm². V případě zemního lana byl uvažován průřez 125 mm². Při určování primárních parametrů vedení s tímto typem stožárů byla použita funkce A.2.1, v níž jsou s využitím vhodného souřadného systému namodelovány vzájemné polohy vodičů. Program je uveden v příloze A.2.1. Schématické znázornění uspořádání vodičů u tohoto typu stožáru je na obr. 5.13. V následujících tabulkách jsou uvedeny vypočítané primární parametry vedení se stožáry Soudek. K jejich výpočtu slouží funkce PocitejOdpory.m (příloha A.2.3), PocitejKapacity.m (příloha A.2.4) a PocitejIndukcnosti.m (příloha A.2.5). Pro výpočet byly využity vztahy z [2].

vodič	0	1	2	3
0	1,853	0,495	0,392	0,324
1	0,495	1,764	$0,\!561$	0,423
2	0,392	0,561	1,764	0,561
3	0,324	0,423	0,561	1,764

Tab. 5.11: Matice indukčností vedení stožáru Soudek v jednotkách $\mu \mathrm{H}/\mathrm{m}$

vodič	0	1	2	3
0	3,832	$1,\!574$	$0,\!850$	0,594
1	1,574	3,482	1,822	0,935
2	0,850	1,822	3,502	1,845
3	$0,\!594$	0,935	$1,\!845$	4,360

Tab. 5.12: Matice kapacit vedení stožáru Soudek v jednotkách pF/m

vodič	R
0	0,159
1	0,065
2	0,065
3	0,065

Tab. 5.13: Vektor odporů vedení stožáru Soudek v jednotkách Ω/m

Obr. 5.13: Uspořádání vodičů na stožáru Soudek

5.1.5.2 Stožár Donau

Při výpočtu primární parametrů vedení se stožáry Donau byly uvažovány měděné fázové vodiče o průřezu 450 mm². V případě zemního lana byl uvažován průřez 125 mm². Vzájemné polohy vodičů u tohoto typu stožáru byly dle obr. 5.14 namodelovány s využitím vhodného souřadného systému ve funkci A.2.2. Schématické znázornění uspořádání vodičů u tohoto typu stožáru je na obr. 5.14. Primární parametry vedení se stožáry Donau jsou uvedeny v tabulkách níže. K jejich výpočtu byly použity stejné funkce jako v případě 5.1.5.1, avšak pracující s parametry tohoto stožáru.

vodič	0	1	2	3
0	1,903	0,386	0,260	$0,\!252$
1	0,386	1,814	$0,\!395$	0,395
2	0,260	$0,\!395$	1,814	0,463
3	$0,\!252$	$0,\!395$	0,463	1,814

Tab. 5.14: Matice indukčností vedení stožáru Donau v jednotkách $\mu\mathrm{H}/\mathrm{m}$

vodič	0	1	2	3
0	4,236	$1,\!165$	$0,\!477$	0,444
1	$1,\!165$	4,054	0,950	0,956
2	$0,\!477$	0,950	4,766	1,195
3	0,444	0,956	1,195	4,788

Tab. 5.15: Matice kapacit vedení stožáru Donau v jednotkách p
F/m

vodič	R
0	0,095
1	0,039
2	0,039
3	0,039

Tab. 5.16: Vektor odporů vedení stožáru Donau v jednotkách Ω/m

Obr. 5.14: Uspořádání vodičů na stožáru Donau

5.1.5.3 Porovnání primárních parametrů vedení v případě použití stožárů typu Soudek a Donau

Vlivem rozdílné geometrie obou typů stožárů se liší i primární parametry vedení s těmito stožáry.

Vlastní indukčnosti vodičů se v případě obou vedení liší v řádu desítek nH. U vzá-

jemných indukčností mezi jednotlivými vodiči je rozdíl vyšší. Liší se v řádu stovek nH. U stožáru typu Donau vyšly vyšší hodnoty vlastních indukčností. Z porovnání vzájemných indukčností jednotlivých vodičů je patrné, že vyšších hodnot je dosaženo u vedení se stožáry typu Soudek.

Vzájemné kapacity jednotlivých vodičů a jejich kapacity proti zemi se liší v řádu desítek pF. Kapacity vodičů proti zemi u vedení se stožáry typu Donau dosahují vyšších hodnot, než v případě vedení se stožáry typu Soudek. V případě vzájemných kapacit mezi jednotlivými vodiči je však situace opačná. U vedení se stožáry typu Soudek vyšli ve všech případech vyšší hodnoty vzájemných kapacit.

Z tabulek je patrné 5.16 a 5.13, že se odpory jednotlivých fázových vodičů a zemního lana u obou vedení liší v desítkách $\mu\Omega$.

5.1.5.4 Rozložení napětí a proudů na jednotlivých podél vedení se stožáry typu Donau v čase

Na následující obrázcích jsou zobrazeny průběhy napětí a proudů na jednotlivých fázích u vedení se stožáry typu Donau. Pro napájení vedení byl uvažován souměrný zdroj napětí 110 kV o frekvenci 50 Hz. Jednotlivé fázové vodiče jsou na výstupu impedančně přizpůsobeny. Průběhy napětí a proudů u vedení se stožáry typu Soudek nejsou zobrazeny, jelikož byly jejich průběhy téměř shodné s průběhy napětí u vedení se stožáry typu Donau.

Obr. 5.15: Rozložení napětí u(x,t) podél vedení na stožáru Soudek v čase - 1. fázový vodič

Obr. 5.16: Rozložení proudu i(x,t) podél vedení na stožáru Soudek v čase - 1. fázový vodič

Obr. 5.17: Rozložení napětí u(x,t) podél vedení na stožáru Soudek v čase - 2. fázový vodič

Obr. 5.18: Rozložení proudu i(x,t) podél vedení na stožáru Soudek v čase - 2. fázový vodič

Obr. 5.19: Rozložení napětí u(x,t) podél vedení na stožáru Soudek v čase - 3. fázový vodič

Obr. 5.20: Rozložení proudu i(x,t) podél vedení na stožáru Soudek v čase - 3. fázový vodič

5.1.5.5 Modelování rušivých jevů

K účelu ochrany vedení proti úderu blesku se používá zemní lano. Vzhledem k jeho umístění je pravděpodobnost zásahu bleskem při atmosférických výbojích mnohem vyšší, než pravděpodobnost zásahu jednotlivých fázových vodičů. Vlivem vzájemných vazeb mezi jednotlivými vodiči však dochází k prudkému nárůstu proudů a napětí na těchto vodičích. Pro modelování úderů blesku se používají normalizované rázové vlny, například 1,2/50 nebo 8/20, kde první údaj značí dobu trvání čela této vlny a druhý údaj dobu půltýlu, tzn. časový interval mezi počátkem vlny a okamžikem, kdy vlna poklesne na polovinu své maximální hodnoty. Oba tyto údaje jsou uváděny v μ s. V tomto příkladě byla použita rázová vlna 8/20 o maximální hodnotě 31,3 kA uvedená na obrázku 5.21 pro simulaci úderu blesku do zemních lan vedení na stožárech Soudek. Na následujících grafech jsou zobrazeny časové průběhy napětí a proudu podél vedení na tomto stožáru při zásahu blesku do zemního lana, konkrétně napětí a proud na zemním laně a na prvním fázovém vodiči.

Obr. 5.21: Časový průběh rázové vlny proudu8/20

Obr. 5.22: Rozložení proudu i(x,t) podél vedení v čase při zásahu blesku do zemního lana - zemní lano na stožáru Soudek

Obr. 5.23: Rozložení napětí u(x,t) podél vedení v čase při zásahu blesku do zemního lana - zemní lano na stožáru Soudek

Obr. 5.24: Rozložení proudu i(x,t) podél vedení v čase při zásahu blesku do zemního lana - 1. fázový vodič na stožáru Soudek

Obr. 5.25: Rozložení napětí u(x,t) podél vedení v čase při zásahu blesku do zemního lana - 1. fázový vodič na stožáru Soudek

6

Závěr

Cílem této bakalářské práce bylo porovnání analytického a numerického řešení telegrafních rovnic. Pro numerický výpočet byla zvolena metoda konečných diferencí založená na Wendroffově diferenční aproximaci.

Prvním ilustrativním příkladem byl model trakčního vedení. Trakční vedení bylo nejprve zatíženo impedancí \mathbf{Z}_k o velikosti 449,881 Ω připojenou na konec vedení. Pro tento případ bylo rozložení napětí a proudu nejprve řešeny analyticky v harmonickém ustáleném stavu a poté numericky. Obě tato řešení byla porovnávána. Absolutní chyba metody výpočtu dosáhla maximálně hodnoty 0,5 V u napětí a 1 mA v případě proudu. Relativní chyby metody výpočtu napětí δu a proudu δi vyšly velice nízké. Hodnoty získané numerickým řešením se lišily od hodnot získaných řešením analytickým maximálně o 0,0035 % v případě proudu.

Dále bylo trakční vedení zatíženo impedancí 449,881 Ω na začátku i na konci vedení. V tomto případě dosahovala maximální absolutní chyba u výpočtu napětí hodnoty 0,3 V, u výpočtu proudu 0,5 mA. V tomto případě opět vyšly relativní chyby metody výpočtu napětí δu a proudu δi velice nízké. Hodnoty získané numerickým řešením lišily od hodnot získaných řešením analytickým maximálně o 0,0023 % v případě napětí a o 0,0032 % v případě proudu.

Pro demonstraci odrazů na vedení bylo v dalším příkladě trakční vedení napájeno zdrojem napětí o frekvenci 125 kHz. Byly zde řešeny případy tohoto vedení nakrátko, naprázdno a vedení zatíženého vlnovou impedancí. Ve všech případech byla na impedančně přizpůsobený vstup přivedena půlvlna sinusového průběhu napětí s amplitudou 37 477 V.

Další část se zabývala trojfázovým vedení VN se zemním lanem na stožárech Soudek a Donau. Byly uvedeny vypočtené primární parametry vedení na obou typech stožárů. Rozdíly ve velikostech vlastních a vzájemných indukčností i rozdíly ve velikostech kapacit jednotlivých vodičů proti zemi a vzájemných kapacit přisuzuji rozdílnému geometrickému uspořádání obou typů stožárů. Hodnoty vzájemných indukčností a vzájemných kapacit mezi jednotlivými vodiči vyšly menší v případě stožáru typu Donau než u stožáru typu Soudek. Tento výsledek přisuzuji větší vzdálenosti jednotlivých fázových vodičů a zemního lana v případě stožáru typu Donau. U stožáru typu Donau jsou jednotlivé vodiče umístěny ve větší výšce než u stožáru typu Soudek. Tomuto faktu odpovídají nižší kapacity vodičů proti zemi. Vyšší hodnoty odporu v případě všech fázových vodičů a zemního lana vyšly u stožáru typu Soudek. U tohoto stožáru byla uvažována jako vodiče AlFe lana. Konduktivita hliníku je $3,4\cdot10^7$ S/m. Konduktivita mědi je $5,7\cdot10^7$ S/m. Z toho vyplývá, že menší hodnoty odporu by měly vyjít u stožáru typu Donau, kde byla měď uvažována jako materiál pro jednotlivé vodiče. Této úvaze odpovídají výsledné hodnoty odporů (viz 5.13 a 5.16). Průřezy jednotlivých vodičů byly v obou případech uvažovány stejné.

V poslední části (5.1.5.5) byl nasimulován úder blesku do zemního lana pomocí proudové rázové vlny 8/20. Z grafů uvedených v této kapitole je patrné, že v takovémto případě se do vodičů indukují napětí v řádech MV a proudy v řádech kA. Zobrazeny zde byly průběhy pouze na vodiči nacházejícím se nejblíže zemnímu lanu, u něhož byly hodnoty indukovaných napětí a proudů nejvyšší.

Při řešení všech příkladů byly uvažovány vodiče vedené rovnoběžně se zemí. V praxi jsou vodiče prohnuty a modelování je mnohem složitější. Také námraza a jiné teplotní rozdíly mají vliv na parametry těchto vedení.

Literatura

- [1] Mayer, Daniel. Úvod do teorie elektrických obvodů Praha: SNTL, 1981.
- [2] Mayer, Daniel. Elektrodynamika v energetice. Praha: BEN technická literatura, 2005. ISBN 80-7300-164-0.
- [3] Vitásek, Emil. Numerické metody. Praha: SNTL, 1987.
- [4] Karban, Pavel. Homogenní vedení s rozprostřenými parametry. 2005 [vid. 2012-11-20]. Dostupné z: http://home.zcu.cz/~karban/teaching/te1/vlnynavedeni/vlnynavedeni.pdf
- [5] Pěsta, Jan. Simulace přechodných jevů v mikrovlnných obvodech. Plzeň, 2011. Diplomová práce (Ing.). Západočeská univerzita v Plzni, Fakulta elektrotechnická. Vedoucí práce Antonín Předota.

Příloha A

Použité skripty, zdrojové kódy

A.1 Jednofázové vedení

A.1.1 vedeni1fnum.m

```
1 %Zadané parametry a potřebné konstanty
\mathbf{2}
           gamma = 5.7e7; %S/m
3
           r = 0.006; \%m
 4
           r0 = 5.5; %m
5
 6
           h = 5.5; %m
           eps0 = 8.85e-12; %F/m
 7
           mi0 = pi*4e-7; %H/m
8
           U0 = 26500; %V - efektivní hodnota
9
           f = 50; %Hz
10
11
12 %Výpočet primárních parametrů vedení
13
           R = 1/(gamma*(pi*(r*r))); %ohm/m
14
15
           L = (mi0/(2*pi))*(0.25 + log(r0/r)); %H/m
           C = (2*pi*eps0)/(log(2*h/r)); %F/m
16
           G = 0; %S/m
17
18
19 %Výpočet vlnové impedance
20
           Z0 = sqrt((R+j*2*pi*f*L)/(G+j*2*pi*f*C)); %ohm
21
22
23 %Odpor Rv připojený na vstup vedení a odpor Rz připojený na konec vedení
24
           Rv = 0; %ohm
25
           Rz = abs(ZO); \%ohm
26
27
28 %Parametry pro simulaci
29
           konecny_cas =4*(1/f); %s
30
31
           delka = 2000; %m
           casove_kroky = 1280;
32
           k = 100; %prostorové dělení
33
           dx = delka/k; %m
34
           dt = konecny_cas/casove_kroky; %s
35
36
37 %Vytvoření potřebných matic
38
39
           A = zeros(2*(k+1), 2*(k+1));
           B = zeros(2*(k+1), 2*(k+1));
40
           D = zeros(2*(k+1),1);
41
42
           X = zeros(2*(k+1),1);
           XX = zeros(2*(k+1), casove_kroky);
43
44
           NAPETI = zeros(k+1,casove_kroky);
           PROUD = zeros(k+1,casove_kroky);
45
46
```

```
47
             for i = 1:1:k
                                     = (-1)/(2*dx); % u
 48
                     A(i,i)
                     A(i,i+1)
                                    = 1/(2*dx); % u
 49
                     A(i+k+1,i)
                                     = G/4 + C/(2*dt); % i
 50
                                    = G/4 + C/(2*dt); % i
                     A(i+k+1,i+1)
51
52
                     A(i,i+k+1)
                                    = R/4 + L/(2*dt); % u
53
                     A(i,i+k+2)
                                    = R/4 + L/(2*dt); % u
54
                     A(i+k+1,i+k+1) = (-1)/(2*dx); \% i
 55
                     A(i+k+1,i+k+2) = 1/(2*dx); \% i
56
 57
                     B(i,i)
                                     = 1/(2*dx); % u
 58
                     B(i,i+1)
                                    = (-1)/(2*dx); % u
59
                     B(i+k+1,i)
                                     = (-G)/4 + C/(2*dt); \% i
 60
                     B(i+k+1,i+1) = (-G)/4 + C/(2*dt); % i
 61
62
 63
                     B(i,i+k+1)
                                     = (-R)/4 + L/(2*dt); % u
                     B(i,i+k+2)
                                    = (-R)/4 + L/(2*dt); % u
 64
                     B(i+k+1,i+k+1) = 1/(2*dx); \% i
 65
                     B(i+k+1,i+k+2) = (-1)/(2*dx); \% i
 66
 67
 68
             end
 69
70 %Okrajové podmínky
71
72 %UO = Rv*Ip + Up
73
 74
             A(k+1,1) = 1;
             A(k+1,k+2) = Rv;
 75
76
 77 %Uk - Rz*Ik = 0
78
             A(2*(k+1),k+1) = 1;
 79
 80
             A(2*(k+1), 2*(k+1)) = (-Rz);
 81
 82 %Řešení soustavy rovnic Ax = Bx + D
 83
             pom = 0;
 84
             for a = 1:1:casove_kroky
 85
 86
 87
                     pom=pom+1;
                     D(k+1,1)=U0*sqrt(2)*sin(2*pi*f*a*dt); %U0
 88
                     X=A \setminus (B*X+D);
 89
 90
                     for b= 1:1:2*(k+1)
91
                     XX(b,pom)=X(b);
 92
 93
                     end
             end
94
95
 96 %Naplnění matic NAPETI a PROUD hodnotami vypočtenými výše
97
 98
             NAPETI(1:k+1,:) = XX(1:k+1,:);
99
             PROUD(1:k+1,:) = XX(k+2:2*(k+1),:);
100
101
    %Grafy
102
    %Graf rozložení napětí podél vedení v čase
103
104
105
             figure
106
             surf(dt:dt:konecny_cas,0:dx:delka,NAPETI)
             title ('Rozložení napětí u(x,t) podél vedení v čase', 'FontSize',20);
107
             xlabel ('t [s]','FontSize',20);
ylabel ('x [m]','FontSize',20);
108
109
             zlabel ('u [V]', 'FontSize',20);
110
111
112 %Graf rozložení proudu podél vedení v čase
113
114
             figure
             surf(dt:dt:konecny_cas,0:dx:delka,PROUD)
115
             title ('Rozložení proudu i(x,t) podél vedení v čase', 'FontSize',20);
116
117
             xlabel ('t [s]','FontSize',20);
            ylabel ('x [m]','FontSize',20);
zlabel ('i [A]','FontSize',20);
118
119
```

A.2 Trojfázové vedení

A.2.1 Soudek.m

```
1 %Funkce obsahující geometrické rozměry stožáru Soudek
             0 ..... zemní lano
 2 %
             1-3 ... fázové vodiče
3 %
 4
5 function [h,d,r,gamma,l] = Soudek()
 6
           h0 = 31.85; %m
 7
           h1 = 27.3; \%m
8
           h2 = 23.5; %m
9
           h3 = 19.7; %m
10
11
            d0 = 0; \%m
12
            d1 = 2.7; %m
13
            d2 = 3.0; %m
14
            d3 = 2.7; \%m
15
16
           r0 = 0.00767; %m; S =1.85e-4 m^2 = 185 mm^2
17
18
            r1 = 0.01197; %m; S = 4.5e-4 m^2 = 450 mm^2
           r2 = 0.01197; %m; S = 4.5e-4 m^2 = 450 mm^2
19
20
            r3 = 0.01197; %m; S=4.5e-4 m^2 = 450 mm^2
21
            gamma0 = 3.4e7; %S/m
22
            gamma1 = 3.4e7; %S/m
23
            gamma2 = 3.4e7; %S/m
gamma3 = 3.4e7; %S/m
24
25
26
            l = 1; %m
27
^{28}
           h=[h0,h1,h2,h3];
            d=[d0, d1, d2, d3];
29
            r=[r0,r1,r2,r3];
30
31
            gamma=[gamma0,gamma1,gamma2,gamma3];
32
33 endfunction
```

A.2.2 Donau.m

```
1 %Funkce obsahující geometrické rozměry stožáru Donau
2 %
             0 ..... zemní lano
3 %
             1-3 ... fázové vodiče
4
5 function [h,d,r,gamma,l] = Donau()
 6
           h0 = 40.3; \%m
7
           h1 = 28.8;%m
8
           h2 = 18.3; %m
9
           h3 = 18.3; %m
10
11
            d0 = 10.2; \%m
12
            d1 = 12.7; \%m
13
            d2 = 8.7; %m
14
            d3 = 16.7; %m
15
16
            r0 = 0.00767; %m; S =1.85e-4 m^2 = 185 mm^2
17
            r1 = 0.01197; %m; S = 4.5e-4 m<sup>2</sup> = 450 mm<sup>2</sup>
18
            r2 = 0.01197; %m; S = 4.5e-4 m^2 = 450 mm^2
19
            r3 = 0.01197; %m; S=4.5e-4 m^2 = 450 mm^2
20
^{21}
            gamma0 = 5.7e7; %S/m
22
            gamma1 = 5.7e7; %S/m
23
            gamma2 = 5.7e7; %S/m
^{24}
            gamma3 = 5.7e7; %S/m
25
26
            l = 1; %m
27
           h=[h0,h1,h2,h3];
28
            d=[d0,d1,d2,d3];
29
           r=[r0,r1,r2,r3];
30
```

```
31 gamma=[gamma0,gamma1,gamma2,gamma3];
32
33 endfunction
```

A.2.3 PocitejOdpory.m

```
1 %Funkce pro výpočet odporů vedení
 2
3 function R = PocitejOdpory(TypStozaru)
4
5 if TypStozaru == 'S'
6
           [h,d,r,gamma] = Soudek();
7 elseif TypStozaru == 'D'
           [h,d,r,gamma] = Donau();
 8
9 else
           error('Typ stozaru neodpovida!')
10
11 end
12
           R = zeros(1,4);
13
14
           for i=1:1:4
15
16
           R(i)=1/(gamma(i)*(pi*(r(i)*r(i))));
17
18
19
           end
20
21 endfunction
```

A.2.4 PocitejKapacity.m

```
1 %Funkce pro výpočet kapacit vedení
 2
3 function [beta,C] = PocitejKapacity(TypStozaru)
4
5 if TypStozaru == 'S'
           [h,d,r,gamma] = Soudek();
6
7 elseif TypStozaru == 'D'
           [h,d,r,gamma] = Donau();
8
9 else
10
           error('Typ stozaru neodpovida!')
11 end
12
13 eps0 = 8.85e-12; %F/m
14
15 alfa = zeros(4);
16 beta= zeros(4);
17 C = zeros(4);
18
19 for i = 1:1:4
           for j = 1:1:4
20
^{21}
                   if i == j
                   alfa(i,j) = (1/(2*pi*eps0))*log(2*h(i)/r(i));
22
23
                    else
^{24}
                    alfa(i,j) =
                   (1/(2*pi*eps0))*log( sqrt((h(i)+h(j))^2+(d(i)-d(j))^2)/(sqrt((h(i)-h(j))^2+(d(i)-d(j))^2)));
25
26
                    end
27
           end
28 end
29
30 beta = inv(alfa);
31
32 sum = zeros(4,1);
33
34 for i = 1:1:4
           for j = 1:1:4
35
           sum(i) = sum(i)+beta(i,j);
36
           C(i,i) = sum(i);
37
38
                   if i!=j
                   C(i,j) = (-1)*beta(i,j);
39
40
                    end
```

```
41 end
42 end
43
44 endfunction
```

A.2.5 PocitejIndukcnosti.m

```
1 %Funkce pro výpočet indukčností vedení
 2
3 function L = PocitejIndukcnosti(TypStozaru)
4
5 if TypStozaru == 'S'
           [h,d,r,gamma] = Soudek();
6
7
           r0 = 63;%m
8 elseif TypStozaru == 'D'
           [h,d,r,gamma] = Donau();
9
10
           r0 = 81;%m
11 else
           error('Typ stozaru neodpovida!')
12
13 end
14
15 L = zeros(4);
16
17 miO = pi*4e-7; %H/m
18
19 for i = 1:1:4
           for j = 1:1:4
20
^{21}
                   if i == j
                   L(i,j) = (mi0/(2*pi))*(0.25 + log (r0/r(i))) ;
22
23
                    else
^{24}
                   L(i,j) = (mi0/(2*pi))*log(r0/ sqrt((h(i)-h(j))^2 + (d(i)-d(j))^2));
25
                    end
26
           end
27 end
28
29 endfunction
```

A.2.6 m1.m

```
1 %Pomocná funkce pro vytvoření matic A a B
 2
3 function [A,B]=m1(dx,dt,k,R,L,G,C)
 4
5 A = zeros(2*(k+1),2*(k+1));
6 B = zeros(2*(k+1),2*(k+1));
 7
8 for p = 1:1:k
           A(p,p) = (-1)/(2*dx);
9
           A(p,p+1) = 1/(2*dx);
10
           A(p+k+1,p) = C/(2*dt) + G/4;
11
12
           A(p+k+1,p+1) = C/(2*dt) + G/4;
13
           A(p,p+k+1) = R/4 + L/(2*dt);
14
           A(p, p+(k+1)+1) = R/4 + L/(2*dt);
15
           A(p+k+1,p+k+1) = (-1)/(2*dx);
16
           A(p+k+1,p+(k+1)+1) = 1/(2*dx);
17
18
           B(p,p) = 1/(2*dx);
19
20
           B(p,p+1) = (-1)/(2*dx);
           B(p+k+1,p) = C/(2*dt) - G/4;
^{21}
           B(p+k+1,p+1) = C/(2*dt) - G/4;
22
23
           B(p,p+k+1) = (-R/4) + L/(2*dt);
24
           B(p, p+(k+1)+1) = (-R/4) + L/(2*dt);
25
           B(p+k+1,p+k+1) = 1/(2*dx);
26
           B(p+k+1,p+(k+1)+1) = (-1)/(2*dx);
27
28
   end
29
30 endfunction
```

A.2.7 m2.m

```
1 %Pomocná funkce pro vytvoření matic A a B
 2
3 function [A,B]=m2(dt,k,L,G,C)
 4
5 A = zeros(2*(k+1), 2*(k+1));
6 B = zeros(2*(k+1),2*(k+1));
7
8 for p = 1:1:k
           A(p+k+1,p) = C/(2*dt) + G/4;
9
           A(p+k+1,p+1) = C/(2*dt) + G/4;
10
11
^{12}
           A(p,p+k+1) = L/(2*dt);
           A(p,p+(k+1)+1) = L/(2*dt);
13
14
           B(p+k+1,p) = C/(2*dt) - G/4;
15
           B(p+k+1,p+1) = C/(2*dt) - G/4;
16
17
           B(p,p+k+1) = L/(2*dt);
18
           B(p,p+(k+1)+1) = L/(2*dt);
19
20 end
21
22 endfunction
```

A.2.8 vedeni3fnum.m

```
1 close all
2 clear all
3
4 %Výpočet primárních parametrů vedení
5
6
           R = PocitejOdpory('D');
           [beta,C] = PocitejKapacity('D');
\overline{7}
           L = PocitejIndukcnosti('D');
 8
           G = zeros(4,4);
9
10
11 %Zadané parametry
12
           UO_0 = 0; %V
13
           U0_1 =110000; %V
14
           U0_2 =110000; %V
15
16
           U0_3 =110000; %V
           f = 50; %Hz
17
18
19 %Odpor Rv připojený na vstup vedení a odpor Rz připojený na konec vedení
20
            Z01 = sqrt((R(2)+j*2*pi*f*L(2,2))/(G(2,2)+j*2*pi*f*C(2,2))); %ohm
^{21}
22
            Z02 = sqrt((R(3)+j*2*pi*f*L(3,3))/(G(3,3)+j*2*pi*f*C(3,3)));
                                                                            %ohm
           Z03 = sqrt((R(4)+j*2*pi*f*L(4,4))/(G(4,4)+j*2*pi*f*C(4,4))); %ohm
23
24
           Rv_0 = 5; %ohm
25
           Rv_1 = 0; %ohm
26
           Rv_2 = 0; \%ohm
27
           Rv_3 = 0; \%ohm
28
29
           Rz_0 = 5; %ohm
30
31
           Rz_1 = abs(Z01);
                              %ohm
           Rz_2 = abs(Z02);
                              %ohm
32
           Rz_3 = abs(Z03);
33
                              %ohm
34
35 %Parametry pro simulaci
36
37
           konecny_cas = 4*(1/f); %s
           delka = 2000; %m
38
           casove_kroky= 400;
39
           k = 100; %prostorové dělení
40
           dx = delka/k; %s
41
           dt = konecny_cas/casove_kroky; %m
42
43
44 %Vytvoření potřebných matic
45
```

```
46
             [A1,B1]=m1(dx,dt,k,R(1),L(1,1),G(1,1),beta(1,1));
             [A2,B2]=m1(dx,dt,k,R(2),L(2,2),G(2,2),beta(2,2));
47
             [A3,B3]=m1(dx,dt,k,R(3),L(3,3),G(3,3),beta(3,3));
48
 49
             [A4,B4]=m1(dx,dt,k,R(4),L(4,4),G(4,4),beta(4,4));
50
             [A12,B12]=m2(dt,k,L(1,2),G(1,2),beta(1,2));
51
             [A13,B13]=m2(dt,k,L(1,3),G(1,3),beta(1,3));
52
             [A14,B14]=m2(dt,k,L(1,4),G(1,4),beta(1,4));
53
54
             [A23,B23]=m2(dt,k,L(2,3),G(2,3),beta(2,3));
             [A24,B24] = m2(dt,k,L(2,4),G(2,4),beta(2,4));
55
             [A34,B34]=m2(dt,k,L(3,4),G(3,4),beta(3,4));
56
57
             A=[A1,A12,A13,A14;A12,A2,A23,A24;A13,A23,A3,A34;A14,A24,A34,A4];
58
            B=[B1,B12,B13,B14;B12,B2,B23,B24;B13,B23,B3,B34;B14,B24,B34,B4];
59
60
            D = zeros(8*(k+1), 1);
61
            X = zeros(8*(k+1),1);
62
            XX = zeros(8*(k+1), casove_kroky);
63
64
65
            NAPETI_0 = zeros(k+1,casove_kroky);
            PROUD_0 = zeros(k+1, casove_kroky);
66
            NAPETI_1 = zeros(k+1, casove_kroky);
67
            PROUD_1 = zeros(k+1,casove_kroky);
68
            NAPETI_2 = zeros(k+1, casove_kroky);
69
70
            PROUD_2 = zeros(k+1,casove_kroky);
            NAPETI_3 = zeros(k+1, casove_kroky);
71
            PROUD_3 = zeros(k+1,casove_kroky);
72
73
74 %Okrajové podmínky
75
76 \ \%U0_0 = Rv_0 * Ip_0 + Up_0
77
78
            A(k+1,1)=1;
79
             A(k+1,(k+1)+1)=Rv_0;
80
    %Uk_0 - Rz_0 * Ik_0 = 0
81
82
             A(2*(k+1),k+1)=1;
83
             A(2*(k+1), 2*(k+1)) = -Rz_0;
^{84}
85
86 \ \%U0_1 = Rv_1*Ip_1 + Up_1
87
            A(3*(k+1),2*(k+1)+1)=1;
88
89
            A(3*(k+1),3*(k+1)+1)=Rv_1;
90
91 %Uk_1 - Rz_1*Ik_1 = 0
^{92}
            A(4*(k+1), 3*(k+1))=1;
93
94
            A(4*(k+1), 4*(k+1)) = -Rz_1;;
95
96 \ \text{WO}_2 = \text{Rv}_2 + \text{Up}_2
97
98
            A(5*(k+1),4*(k+1)+1)=1;
             A(5*(k+1),5*(k+1)+1)=Rv_2;
99
100
    %Uk_2 - Rz_2 * Ik_2 = 0
101
102
            A(6*(k+1), 5*(k+1))=1;
103
             A(6*(k+1),6*(k+1))=-Rz_2;
104
105
106
    U0_3 = Rv_3 + Up_3
107
108
            A(7*(k+1), 6*(k+1)+1)=1;
            A(7*(k+1), 7*(k+1)+1)=Rv_3;
109
110
    %Uk_3 - Rz_3 * Ik_3 = 0
111
112
113
            A(8*(k+1),7*(k+1))=1;
            A(8*(k+1),8*(k+1))=-Rz_3;
114
115
116 %Řešení soustavy rovnic Ax = Bx + D
117
118
            pom=0;
```

119

```
120
            for a = 1:1:casove_kroky
121
122
                     pom=pom+1;
                     D(k+1,1)=U0_0;
123
                     D(3*(k+1),1)=U0_1*sqrt(2)*sin(2*pi*f*a*dt);
124
                     D(5*(k+1),1)=U0_2*sqrt(2)*sin(2*pi*f*a*dt+(2*pi)/3);
125
                     D(7*(k+1),1)=U0_3*sqrt(2)*sin(2*pi*f*a*dt-(2*pi)/3);
126
127
                     X=A \setminus (B*X+D);
128
                     for b= 1:1:8*(k+1)
129
                     XX(b,pom)=X(b);
130
                     end
131
132
            end
133
134 %Naplnění matic NAPETI a PROUD hodnotami vypočtenými výše
135
            NAPETI_0(1:k+1,:) = XX(1:k+1,:);
136
            PROUD_0(1:k+1,:) = XX(k+2:2*(k+1),:);
137
138
            NAPETI_1(1:k+1,:) = XX(2*(k+1)+1:3*(k+1),:);
139
            PROUD_1(1:k+1,:) = XX(3*(k+1)+1:4*(k+1),:);
140
141
            NAPETI_2(1:k+1,:) = XX(4*(k+1)+1:5*(k+1),:);
142
143
            PROUD_2(1:k+1,:) = XX(5*(k+1)+1:6*(k+1),:);
144
            NAPETI_3(1:k+1,:) = XX(6*(k+1)+1:7*(k+1).:);
145
146
            PROUD_3(1:k+1,:) = XX(7*(k+1)+1:8*(k+1),:);
147
148 %Grafy
149
    %Graf rozložení napětí podél vedení v čase - zemní lano
150
151
152
            figure
            surf(dt:dt:konecny_cas,0:dx:delka,NAPETI_0)
153
            title ('Rozložení napětí u(x,t) podél vedení v čase - zemní lano', 'FontSize',20);
154
            xlabel ('t [s]','FontSize',20);
155
            ylabel ('x [m]', 'FontSize', 20);
156
            zlabel ('u [V]','FontSize',20);
157
158
159 %Graf rozložení proudu podél vedení v čase - zemní lano
160
161
            figure
            surf(dt:dt:konecny_cas,0:dx:delka,PROUD_0)
162
            title ('Rozložení proudu i(x,t) podél vedení v čase- zemní lano','FontSize',20);
163
            xlabel ('t [s]','FontSize',20);
164
165
            ylabel ('x [m]', 'FontSize',20);
            zlabel ('i [A]', 'FontSize', 20);
166
167
    %Graf rozložení napětí podél vedení v čase - fázový vodič č. 1
168
169
170
            figure
171
            surf(dt:dt:konecny_cas,0:dx:delka,NAPETI_1.*1e-3)
            title ('Rozložení napětí u(x,t) podél vedení v čase - fázový vodič č. 1 ','FontSize',20);
172
            xlabel ('t [s]','FontSize',20);
173
            ylabel ('x [m]','FontSize',20);
174
            zlabel ('u [kV]','FontSize',20);
175
176
177 %Graf rozložení proudu podél vedení v čase - fázový vodič č. 1
178
            figure
179
180
            surf(dt:dt:konecny_cas,0:dx:delka,PROUD_1)
181
            title ('Rozložení proudu i(x,t) podél vedení v čase - fázový vodič č. 1 ','FontSize',20);
            xlabel ('t [s]','FontSize',20);
182
            ylabel ('x [m]','FontSize',20);
183
            zlabel ('i [A]','FontSize',20);
184
185
186
    %Graf rozložení napětí podél vedení v čase - fázový vodič č. 2
187
188
            figure
189
            surf(dt:dt:konecny_cas,0:dx:delka,NAPETI_2.*1e-3)
            title ('Rozložení napětí u(x,t) podél vedení v čase - fázový vodič č. 2 ','FontSize',20);
190
            xlabel ('t [s]', 'FontSize',20);
191
```

```
ylabel ('x [m]','FontSize',20);
zlabel ('u [kV]','FontSize',20);
192
193
194
195
    %Graf rozložení proudu podél vedení v čase - fázový vodič č. 2
196
197
            figure
            surf(dt:dt:konecny_cas,0:dx:delka,PROUD_2)
198
            title ('Rozložení proudu i(x,t) podél vedení v čase - fázový vodič č. 2 ','FontSize',20);
199
            xlabel ('t [s]','FontSize',20);
200
            ylabel ('x [m]', 'FontSize',20);
201
            zlabel ('i [A]','FontSize',20);
202
203
204 %Graf rozložení napětí podél vedení v čase - fázový vodič č. 3
205
206
            figure
            surf(dt:dt:konecny_cas,0:dx:delka,NAPETI_3.*1e-3)
207
            title ('Rozložení napětí u(x,t) podél vedení v čase - fázový vodič č. 3 ','FontSize',20);
208
            xlabel ('t [s]','FontSize',20);
209
            ylabel ('x [m]', 'FontSize', 20);
210
            zlabel ('u [kV]','FontSize',20);
211
212
213 %Graf rozložení proudu podél vedení v čase - fázový vodič č. 3
214
215
            figure
            surf(dt:dt:konecny_cas,0:dx:delka,PROUD_3)
216
            title ('Rozložení proudu i(x,t) podél vedení v čase - fázový vodič č. 3 ','FontSize',20);
217
            xlabel ('t [s]','FontSize',20);
218
            ylabel ('x [m]','FontSize',20);
219
            zlabel ('i [A]', 'FontSize',20);
220
```