
A scripting tool for real-time effect programming
Calle Lejdfors, Lennart Ohlsson

Department of Computer Science
University of Lund

Box 118, SE-221 00 Lund, SWEDEN

{calle.lejdfors, lennart.ohlsson}@cs.lth.se

ABSTRACT

Writing real-time visual effects for graphics hardware is made difficult by the high degree of dependence between
GPU-level shaders and CPU-level orchestration of pipeline settings parameter bindings. This paper presents PyFX,
an effect framework embedded in the programming language Python. Compared to existing existing frameworks
this language embedding gives the effect programmer greater expressive power. These benefits, together with some
imrpoved functional features of the framework, are demonstrated through some illustrative examples.

Keywords
Effect programming, CPU/GPU interaction, embedded languages

1 INTRODUCTION
With the introduction of programmable real-time hard-
ware, procedural techniques previously used for cine-
matic effects have been made available for use in real-
time graphics as well. However, writing real-time ef-
fects is made difficult because the CPU and GPU code is
typically written in separate languages, while still hav-
ing strong inter-dependencies.

One solution to this problem are so calledeffect frame-
workswhich enable the unification of shader programs
with the necessary pipeline states required for correct
operation. Current effects frameworks such as Di-
rectX Effects (DXFX) by Microsoft [2] and CgFX by
NVIDIA [1] provide a number of features which sim-
plify programming real-time visual effects. Both frame-
works rely on effect specifications consisting of param-
eters, shaders, techniques, and passes, which are stored
in text files and loaded at run-time.

However, the format used in current effect frameworks
is lacking all but the most basic forms of abstractions,
data-hiding, or sharing, making effect development un-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Posters proceedings ISBN 80-903100-8-7
WSCG’2005, January 31–February 4, 2005
Plzen, Czech Republic
Copyright UNION Agency – Science Press

necessarily complicated. Also there is lack of inte-
grated support for some functional features such as RTT
(render-to-texture) commonly used in todays graphics
applications.

2 THE PYFX FRAMEWORK
Our effect framework, PyFX, implements a complete
effect programming language embedded in the object-
oriented scripting language Python. The fact that PyFX
is embedded in a fully fledged programming language
enables high-level language features to be used for ex-
pressing effects. By using constructs such as function
definitions, loops, conditionals, and modules to express
and share common parts, an effect description becomes
shorter and more clear. And the choice of a very high
level language like Python makes it possible to achieve
these benefits and still retain the declarative style of ex-
isting frameworks.

The functionality of PyFX includes all the features
found in the DXFX and CgFX frameworks. In addition
it provides:

• Render-to-texture– Render to an off-screen area
which can be used as a texture.

• Image processing support– GPU based image pro-
cessing operations can be applied to any texture or
off-screen area.

• Support for shader interfaces– PyFX enables easy
use of Cg’s interfaces allowing run-time construc-
tion and composition of shader programs.



To accommodate these functional additions the PyFX
language extends the passes of other effect frameworks
to:

• RenderGeometry– the usual passes of other frame-
works. Sets up the appropriate states and then in-
structs the application to submit geometry

• ProcessImage– performs 2D image processing be-
tween any number of images (which may reside
in textures, off-screen areas or the current screen
buffer). It provides support floating point targets
and sources enabling HDR image processing.

PyFX is written in Python and built on top of OpenGL
and Cg. The implementation in Python has made it pos-
sible to build a very flexible interface towards the appli-
cation using the framework. This is described in more
detail in [4].

3 EXAMPLES
As an example of using PyFX we present a glow ef-
fect [3], used to simulate the nimbus due to atmospheric
scattering which appear around brightly lit surfaces.
This effect is implemented by rendering an object to the
screen, rendering the glowing parts of the object to an
off-screen buffer, blurring the off-screen buffer and then
additively blending the result to the screen. This can be
expressed in PyFX by:

def RenderGlowRegions(target):
return RenderGeometry(

Target=target,
VertexShader=glowMask.vs(),
FragmentShader=glowMask.fs())

def GaussianBlur(source):
...

def AdditiveBlend(source, target):
return ProcessImage(Source=source,

Target=target,
SrcBlend = SRCALPHA,
DestBlend = ONE)

The technique which performs blurring can now be writ-
ten simply as

technique = [RenderGeometry(),
RenderGlowRegions(blurBuffer),
GaussianBlur(blurBuffer),
AdditiveBlend(blurBuffer, Screen)]

By making use of PyFX’s language and functional fea-
tures the resulting effect is a readable specification of
what the effect does and how it does it.

Examples of effect is simplified by introducing high-
level languages features are numerous. For instance,
fur typically makes use of multiple layers of decreasing
opacity which are additively blended over the solid ob-
ject [5]. This can easily be expressed in PyFX by using

a function definitions to express the drawing of a single
fur shell:

def RenderFurShell(s):
shell = s/FurThickness
return RenderGeometry(

AlphaBlendEnable = True,
SrcBlend = SRCALPHA,
DestBlend = ONE,
VertexShader = furVS(Shell=shell),
FragmentShader = furFS(Shell=shell))

The entire effect, drawing the solid object followed by a
number of shells, can then be expressed as

technique = [RenderGeometry()] + \
[RenderFurShell(i)

for i in range(1,NumberOfShells)]

again providing a clearly legible description of the op-
eration of the effect.

4 CONCLUSIONS
We have presented an effect framework which improves
on current frameworks in two respects; it enables to use
of high-level language features for effects descriptions
while retaining the declarative style of current effect
frameworks, and, it provides an extended set of inte-
grated functional features making a larger set of effect
possible.

The main purpose of PyFX is to be a tool for inves-
tigating which features and characteristics are useful
and desirable for effect programming. As such it pro-
vided a flexible environment for experimenting with ef-
fect frameworks and effect programming.

References
[1] CgFX 1.2 Overview.

http://developer.nvidia.com/ .

[2] DirectX SDK Documentation.
http://msdn.microsoft.com/ .

[3] Greg James and John O’Rorke.GPU Gems, chapter
Real-Time Glow, page 816. Addison Wesley Pro-
fessional, 1 edition, March 2004.

[4] Calle Lejdfors and Lennart Ohlsson. Pyfx - an
active effect framework. In Stefan Seipel, editor,
SIGRAD 2004, number 13 in Linköping Electronic
Conference Proceedings, 2004.

[5] Jerome Lengyel, Emil Praun, Adam Finkelstein,
and Hugues Hoppe. Real-time fur over arbitrary
surfaces. InProceedings of the 2001 symposium
on Interactive 3D graphics, pages 227–232. ACM
Press, 2001.


	IPC_2005.pdf
	IPC_2005.pdf

	!WSCG2005_POSTER_stamped.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	!WSCG2005_POSTERS_FINAL.pdf
	L13-full.pdf
	L13-full.pdf

	F47-full.pdf
	F83-full.pdf
	I29-full.pdf
	I47-full.pdf



