
Fixed-Point Arithmetic Line Clipping

R. Mollá
Technical University of Valencia

Camino de Vera, s/n
Spain 46022, Valencia

rmolla@dsic.upv.es

P. Jorquera
Technical University of Valencia

Camino de Vera, s/n
Spain 46022, Valencia

pedjorhe@inf.upv.es

R. Vivó
Technical University of Valencia

Camino de Vera, s/n
Spain 46022, Valencia

rvivo@dsic.upv.es

ABSTRACT
This algorithm supports line clipping against a rectangular window with edges parallel to the screen. The
algorithm combines different partial solutions given in the bibliography such as implicit area codes, decision
trees, line ends comparison, symmetry or avoiding redundant calculations, mixing them with fixed-point
arithmetic, explicit calculation reusing and dynamic monitoring. It may work in the fractional object space while
still using integer arithmetic (fixed-point). It is faster than traditional algorithms. It provides more precision
without using floating point arithmetic.

Keywords
Line clipping, fixed-point arithmetic.

1. INTRODUCTION
Many portable devices such as videogames consoles,
mobile phones, PDAs, wearable computers, etc., have
introduced graphics capabilities as an added value.
These devices use very slow processors since low
power consumption is mandatory. Neither graphic
processor nor dedicated hardware is used, so efficient
and simple software algorithms are mandatory.
This paper introduces a new straight line-clipping
algorithm for 2D rectangular windows with edges
parallel to the screen suitable for low cost integer
CPUs without floating point units although it
supports object space fractional numbers.

2. PREVIOUS WORKS
Many clipping algorithms are based on line
parametric equations like Cyrus-Beck (CB) [Rog85]
or the more efficient Liang-Barsky (LB) [Lia84].
Cohen-Sutherland (CS) [New79] approach uses
another approach using explicit area codes to typify
lines. This algorithm is more efficient since line ends
are compared initially to every window edge.
Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG POSTERS proceedings
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

This process is able to trivially reject or accept a line
even before doing any clipping calculation. The
algorithms can be accelerated if they operate in the
image space (integer arithmetic) instead of the object
space (floating-point) [Dor90].
Using a convex window preprocess, the clipping cost
may be almost constant [Ska93]. In practice, it can
improve CB between 2.5 and 3 times. This algorithm
may be improved getting down the computational
cost from O(N) to O(lg N) [Ska94] [Bui99], where N
is the amount of edges the clipping window has. If a
good frame pre-process is performed, the clipping
cost may get O(1) [Ska96]. Assuming that all lines
are infinite, that is there are no segments, no line is
trivially accepted simplifying the algorithm
implementation [Ska99].

3. BACKGROUND
The FPC (Fixed Point Clipping) algorithm collects
many good ideas made in the bibliography:
• It uses a decision tree to avoid typical clipping

loop overheads [Nic87] [And91].
• Code reusing so that the line slope is calculated

only once [Duv93].
• Early detection of trivial acceptation or rejection

of segments [And91].
• No explicit area code such as the Cohen-

Sutherland [New79] like algorithms. Thus, no
codification process and no management are
required.

• Successive comparisons take into account the
ones just made before, avoiding calculation
redundancy [Nic87] [And91] [Duv93].

• Code reduction by employing problem symmetry
using vertical and horizontal reflection functions.
[Nic87] [And91].

• Line ends are compared one each other before
comparing them against the clipping window
edges in order to reduce the amount of
comparisons [Duv93].

• Precision increment is increased clipping always
against original line ends instead of the
intermediate clipped points [Dor90] [Duv93].

4. NEW METHODS
The algorithm also includes new ideas to improve
efficiency not used in any previously known clipping
algorithm [Mol01b]:
• Real time dynamic monitoring in order to detect

the actual clipping load and improve trivial
acceptation or rejection.

• Object space line clipping using 16/32 bits fixed-
point arithmetic (12 millionths of a pixel
resolution) without using floating-point
arithmetic.

• Intermediate computations are made only when it
is strictly necessary (line slope, line width or
height). They are used during the clipping phase
and by the line drawing algorithm if no rejection
is made. Thus, the line drawing initialisation
phase is reduced, speeding up the whole process.

• Implicit comparisons are explicitly carried out so
that they are stored in intermediate variables in
order to reuse them later if necessary.

Calculation reuse
Many times, doing a clipping process, typical
statements like the following one come out
if (X<Xmin) then Y0 = Y0 + (X - Xmin)*m;
This statement may be written as
if ((X - Xmin) < 0) then Y0 = Y0 + (X - Xmin)*m;
This calculation redundancy can be avoided if the
following change is included to obtain an implicit
solution
if ((Aux = (X - Xmin)) < 0) then Y0 = Y0 + Aux*m;
Tests showed that typical statements are the fastest
ones if the condition is false. But if the condition is
true, then the typical statement is the slowest one.
This solution presents an intermediate performance.
If the line is trivially rejected, its slope is never
computed. If the line slope has to be calculated in
order to perform a clipping, the slope is stored in
order to reuse it in another clipping or when the line
is drawn on the screen, reducing the line drawing

algorithm initialisation phase by two subtractions and
one division.

Fixed-point arithmetic
For the implementation of this algorithm, we used 32
bits fixed-point arithmetic. 16 bits were used for the
integer part and 16 bits for the decimal part. The
precision of this implementation was 12 millionth of
a pixel. It is enough for today portable game players,
printers o common CRT resolutions.

Monitoring
Line clipping is a process difficult to typify. Clipping
rate depends on several factors: the clipping window
size, its aspect ratio, segments size and position, ...
When using sequential algorithms, the cost of
clipping against a window edge is added to the cost
of clipping previously against other edges.
Consequently, an implicit computational handicap
appears for those cases detected at the end of the
decision tree. Depending on the application clipping
load, it is better to use a given tree or another. The
main clipping challenge is to decide the main tree
trunk to use in order to minimise the clipping cost.
A problem related to traditional algorithms is that
they use rigid decision trees that cannot be altered
during the execution phase. So, they do not need
monitoring mechanisms since it is not possible to
perform any change in the algorithm behaviour.
In this paper, we propose a scheme where a dynamic
monitor checks and apply the corresponding decision
tree that best matches the actual graphic load. This
algorithm is selected by a planning procedure called
at a frequency much lower than the sampling
frequency.
According to process control theory, the monitoring
algorithms have to take into account three aspects:
1. Significant parameters. In order to avoid very

complex accounting, the FPC algorithm reduces
monitoring to 3 possible cases: trivial rejection,
trivial acceptation and clipping.

2. Sampling methods. Monitor overload has to be
as light as possible in order to avoid monitoring
affects the real load. Typically it is a
reject/accept/clip accounting (variable unitary
increment) that is reset every time the planning
algorithm is called. Consequently, we have
reduced the algorithm implementations to four
possibilities: RxRyA, RyRxA, ARxRy and
finally AryRx. For instance, RxRyA priorizes
trivial rejection on X dimension, secondly trivial
rejection on Y dimension and finally acceptation.
We have not implemented, for simplicity,
RxARy and RyARx.

3. Sampling frequency. There are several
possibilities to determine when to call the
planning algorithm or sample: every time a
primitive is drawn, every object or every whole
image. The longer the planning algorithm is
called the lower the planning overhead is and the
more sophisticated it may be.

If a segment has been clipped in a given way, the
segments that belong to the same object will be
“probably” clipped in the same way (spatial locality).
Similarly, the clipping distribution of the i-th image
will be quite similar to the i-th-1 and to the i-th+1
(temporal locality). This effect is emphasized the
faster the graphic processor is. In this paper
implementation, the sampling frequency is the
drawing primitive. This sampling can be set
permanently for all the screens or variable, depending
on the application behaviour. The planning algorithm
is called after a whole image accounting is made.

5. COMPUTATIONAL ANALYSIS
It is not easy to compare clipping algorithms since the
clipping load depends on the window size, ratio,
relative position or the segments to clip (clipping
load). These features are closely related to the
application type and user behaviour.
In order to compare different algorithms, we planned
a laboratory test so that, under the same conditions,
we could analyse real timing for all the algorithms.

Theoretical analysis
The LB algorithm uses lower comparisons than CS,
but in general it performs more additions, products
and divisions. In practice, LB is the slowest
algorithm. CS algorithm is a bit faster. Nycholl-Lee-
Nycholl (NLN) [Nic87] is the fastest one since it
performs the lowest amount of instructions among all
the traditional algorithms analysed. The FPC
algorithm does more comparisons than the NLN, but
it uses lower additions or subtractions. On the other
hand, FPC always uses a lower or equal amount of
products or divisions than NLN does. For this reason,
in practice, the FPC algorithm is faster.

Empirical analysis
The theoretical computational cost showed that the
FPC algorithm was the fastest but, it was not clear
how the different monitoring possibilities could
influence the clipping efficiency. On the other hand,
it was important to verify empirically the theoretical
studies. So, we tested all the algorithms in the
laboratory using a synthetic load. It simulated a real
clipping situation, equal for all of them. The tested
algorithms were CS, a simplified CB version for
rectangular windows and LB. The FPC algorithm was
tested under the following monitoring conditions:

o Never monitoring and always giving priority
to rejection. (FPC Never RA)

o Never monitoring and always giving priority
to acceptation. (FPC Never AR)

o Continuous monitoring at the highest possible
sampling frequency. (FPC Continuous)

o Constant sampling frequency but lower than
the highest one. (FPC Constant)

o Adaptive sampling frequency depending on
the change of sampled parameters. (FPC
Adaptive)

The constant sampling frequency was fixed around
every 5 screens and the adaptive frequency could
change between 1 and 32 screens. It doubled if a
change appeared. It changed to a half if no changes
were observed during two consecutive plannings.

5.1.1 General results
The Table 1 shows the time spent by each algorithm.
Results are in seconds. The known algorithms
confirm the awaited results. So, the Cyrus-Beck
algorithm is the worst one closely followed by Liang-
Barsky. The best is Cohen-Sutherland. It doubles
Liang-Barsky speed. The FPC average value reduces
the best traditional computational cost down to 40%.
That is, 250% speed up.

5.1.2 General comparison between different
monitoring policies
Monitoring overload was a unitary increment after
every line drawing. The planning algorithm was
called after a whole screen drawing. In this sense, it
can be said that the planning overhead computational
cost is not worthwhile compared to the monitoring
overhead. So, the different clipping algorithms
analysis is finally reduced to determine which the
best suitable monitoring frequency is.
The test worked with clipping windows never higher
than 50% the total projection surface. For this reason,
many of the lines were projected on average outside
the clipping window. The tests were based on very
homogeneous line distributions.
Those algorithm implementations that improve
rejection instead of acceptation have a better result. If
no monitoring is made, the result is even better. Thus,
the algorithm FPC Never AR offers worse
performance than FPC Never RA. The more frequent
the monitoring is, the slower the algorithm performs.
For this reason, the continuous monitoring offers
worse timing than the constant one. Constant
monitoring is worse than adaptive and this one is
worse than those algorithms that never use
monitoring. That is, TNRA < TNAR < TAdap < TCte <
TCont

Algorithm Minimum Maximum Average

CS 4.53 7.3 5.47

CB 14.46 18.83 16.05

LB 8.83 18.17 12.32

FPC Never RA 0.98 5.82 2.37

FPC Never AR 1.175 4.28 2.48

FPC Continuous 1.32 5.21 2.65

FPC Constant 1.23 4.83 2.59

FPC Adaptive 1.2 4.78 2.57

Average FPC 1.18 4.98 2.53

Table 1. Clipping timing given by different FPC
implementation and traditional algorithms

Using monitoring does not change the algorithm cost
significantly. Differences are around 8% on average.
The FPC algorithm is based on a change of the
clipping priority taking into account only the previous
result. For this reason, sometimes, erroneous
decisions may be taken, punishing performance.

6. CONCLUSIONS
Tests confirm conclusions seen in the bibliography
respect to the algorithms CS, CB, LB and NLN.
Theoretical analysis shows that the FPC is
computationally more efficient than the other
solutions. Empirical tests verify these results.
The FPC algorithm can clip lines with decimal ends
apart from integer values. Fixed-point clipping is
more precise than the integer one since no decimal
part is lost during the floating to integer conversion
(Clipping in object space vs. image space).
The FPC algorithm reuses calculations so that fixed-
point arithmetic intermediate values can be used
subsequently by line drawing algorithms like the stair
algorithm [Mol01]. 32 bits fixed-point arithmetic has
shown enough precision (12E-6 pixels) to manage
properly the line projected onto the screen.
Dynamic monitoring has proven to be a good idea
that can be exported to any other kind of algorithms
in order to improve efficiency.
This algorithm can be upgraded to use SIMD
instructions in parallel, increasing its speed even
more.

7. ACKNOWLEDGMENTS
Our thanks to TIC-1999-0510-C02-01 project from
Spanish Ministry of Science and Technology and
PPI-UPV program for allowing us to develop this
material.

8. REFERENCES
[And91] Andreev, R. D., Sofianska, E. New

algorithm for two-dimensional line clipping,
Computer & Graphics 15, No. 4, pp. 519-526,
1991

[Bui99] Bui, D. H. and Skala, V. New Fast Line
Clipping Algorithm in E2 With O(lgN)
Complexity, International Conference SCCG'99,
Budmerice, Slovakia, pp. 221-228, 1999

[Dor90] Dörr, M. A new approach to parametric line
clipping, Computer & Graphics 14, No. 3/4 pp.
449-464, 1990

[Duv93] Duvanenko, V. J., Gyurcsik, R. S., Robbins,
W. E. Simple and efficient 2D and 3D span
clipping algorithms, Computer & Graphics 17,
No. 1, pp. 39-54, 1993

[Lia84] Liang , Y-D. and Barsky , B. A. A new
concept and method for line clipping, ACM
Transactions Graphics 3, No. 1. pp. 1-22, 1984

[Mol01] Mollá, R. and Vivó, R. The stair algorithm,
Journal Graphics Tools 6, No. 2. pp.17-25, 2001

[Mol01b] Mollá, R. Applications of the fixed-point
arithmetic to the representation of low level
graphical primitives, ISBN: 0-493-43368-6, 2001.
Ph D. free full text in pdf format in
wwwlib.umi.com/dissertations/fullcit/3030618

[New79] Newman, W. M. and Sproull, R. F.
Principles of Interactive Computer Graphics,
McGraw-Hill International Editions. 2nd Edition.
ISBN 0-07-046338-7, 1979

[Nic87] Nicholl, Tina M., Lee, D.T. and Nicholl, R.
A. An efficient new algorithm for 2-D line
clipping: its development and analysis, Computer
Graphics 21, No. 4,, pp. 253-262, 1987

[Rog85] Rogers, D. F. Procedural elements for
computer graphics, McGraw-Hill, New York,
1985

[Sha92] Sharma, N. C. and Manohar, S. Line clipping
revisited: two efficient algorithms based on
simple geometric observations, Computer &
Graphics 16, No. 1. pp. 51-54, 1992

[Ska93] Skala, V. An efficient algorithm for line
clipping by convex polygon, Computer &
Graphics 17, No. 4. pp. 417-421. 1993

[Ska94] Skala, Václav, O(lgN) Line Clipping
Algorithm in E2, Computer & Graphics 18, No. 4.
pp. 517-524. 1994

[Ska96] Skala, V. Line Clipping in E2 With O(1)
Processing Complexity, Computer & Graphics 20,
No. 4. pp. 523-530. 1996

[Ska99] Skala, V. and Bui, Duc Hui, Two New
Algorithms for Line Clipping in E2 and Their
Comparison, Technical Report TR No. 108/99
University of West Bohemia, Plzen, Czech
Republic

