Title: Kvalitativní analýza nelineárních rovnic typu reakce-difůze
Other Titles: Qualitative analysis of nonlinear equations of reaction-diffusion type
Authors: Kaisler, Martin
Advisor: Girg Petr, Doc. Ing. Ph.D.
Referee: Tomiczek Petr, RNDr. CSc.
Issue Date: 2018
Publisher: Západočeská univerzita v Plzni
Document type: diplomová práce
URI: http://hdl.handle.net/11025/32035
Keywords: semilineární difuzní rovnice;výbuch v konečném čase;samovznícení;dolní řešení;horní řešení
Keywords in different language: semilinear heat equation;finite time blow--up;self--ignition;lower solution;upper solution
Abstract: Předkládaná práce je zaměřena na kvalitativní analýzu řešení systému semilineárních parabolických rovnic typu \begin{align} \begin{cases} \frac{\partial u_1}{\partial t} -\Delta u_1 = \lambda f_1(u_2) \tab &\text {v } \Omega_T,\\[7pt] \frac{\partial u_2}{\partial t} -\Delta u_2 = \lambda f_2(u_1) \tab &\text {v } \Omega_T,\\[4pt] u_1=u_2=0 \tab &\text{na } \partial \Omega_T,\\ u_1( x,0) = u_1^0 \tab &\text{v } \Omega,\\ u_2( x,0) = u_2^0 \tab &\text{v } \Omega, \end{cases} \end{align} kde $\Omega_T = \Omega \times (0,T),$ $T>0$ a $\Omega$ je omezená oblast v prostoru $\mathbb{R}^n$ s dostatečně hladkou hranicí, $f_1,\ f_2$ jsou superlineární reakční členy, $\lambda$ je reálný parametr a $u_1^0,u_2^0 $ jsou počáteční podmínky. Hlavním cílem práce je studovat lokální řešitelnost uvedené úlohy, zejména s ohledem na tzv. výbuch řešení v konečném čase. K tomuto účelu využíváme metodu horních a dolních řešení. Hlavní přínos práce je uveden v Kapitole 4, kde je odvozena postačující podmínka, při které studovaný jev nastane.
Abstract in different language: The thesis is devoted to the qualitative analysis of a semilinear system of heat equations \begin{align} \begin{cases} \frac{\partial u_1}{\partial t} -\Delta u_1 = \lambda f_1(u_2) \tab &\text {v } \Omega_T,\\[7pt] \frac{\partial u_2}{\partial t} -\Delta u_2 = \lambda f_2(u_1) \tab &\text {v } \Omega_T,\\[4pt] u_1=u_2=0 \tab &\text{na } \partial \Omega_T,\\ u_1( x,0) = u_1^0 \tab &\text{v } \Omega,\\ u_2( x,0) = u_2^0 \tab &\text{v } \Omega, \end{cases} \end{align} where $\Omega_T = \Omega \times (0,T),$ $T>0$ and $\Omega$ is a bounded domain in $\mathbb{R}^n$ with sufficiently smooth boundary, $f_1,\ f_2$ are super--linear reaction terms, $\lambda$ is real parameter and $u_1^0,u_2^0 $ are initial conditions. Mainly, we study the local solvability in classical sense of given problem, especially the so--called blow--up in finite time. The theory of lower and upper solutions is used for this purpose. The main contribution to the topic is included in Chapter 4, where a sufficient condition for such type of behaviour is derived.
Rights: Plný text práce je přístupný bez omezení.
Appears in Collections:Bakalářské práce / Bachelor´s works (KMA)

Files in This Item:
File Description SizeFormat 
DP_Kaisler.pdfPlný text práce2,1 MBAdobe PDFView/Open
PO_Kaisler.pdfPosudek oponenta práce716,36 kBAdobe PDFView/Open
PV_Kaisler.pdfPosudek vedoucího práce57,33 kBAdobe PDFView/Open
P_Kaisler.pdfPrůběh obhajoby práce245,5 kBAdobe PDFView/Open


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/32035

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.