Title: Innovative Active Head Restraint System in a Car: Safety Assessment with Virtual Human Body Model
Other Titles: Inovativní systém aktivní opěrky hlavy v autě: Hodnocení bezpečnosti s virtuálním modelem lidského těla
Authors: Vychytil, Jan
Hluchá, Jana
Kovář, Ludĕk
Kostíková, Martina
Moravcová, Pavlína
Bucsuhazy, Katerina
Citation: VYCHYTIL, J., HLUCHÁ, J., KOVÁŘ, L., KOSTÍKOVÁ, M., MORAVCOVÁ, P., BUCSUHAZY, K. Innovative Active Head Restraint System in a Car: Safety Assessment with Virtual Human Body Model. In SAE Technical Papers. Detroit: SAE International, 2020. ISSN 0148-7191.
Issue Date: 2020
Publisher: SAE International
Document type: konferenční příspěvek
conferenceObject
URI: 2-s2.0-85083833999
http://hdl.handle.net/11025/39625
ISSN: 0148-7191
Keywords: pasivní bezpečnost;Virthuman;opěrka hlavy
Keywords in different language: passive safety;Virthuman;head restraint
Abstract in different language: The aim of this study is to use numerical simulations for safety assessment of an innovative active head restraint system.This system was developed to protect the head and neck of an occupant in a car without a head airbag during a side impact. Its FE model is created and embedded it in a model of a small car with a side airbag. The dynamics of the head restraint activation are also taken into account. The virtual human body model Virthuman is used to represent occupants. The model is scaled for pre-selected human individuals to cover large numbers of occupants of different sizes. It extends conventional virtual valuation of new safety designs via existing pre-defined mono-purpose side dummies and their FE models. The benefit of the head restraint system is evaluated in side impact scenarios inspired by the pole tests performed by EuroNCAP. Transversal impacts to a pole at 29 and 32 km/h are considered at 90° and 75° angles from driver and the opposite side. Also, the far side impact prescribed with an acceleration pulse according to EuroNCAP is considered. Various initial driver sizes in standard seated positions are tested. To extend the study beyond standard testing protocols, out-of-position of driver is also considered, leading to more than 100 simulations of impact scenarios in total. The effect of the innovative head restraint system is assessed from the point of view of driver injury risk.
Rights: Plný text není přístupný.
© SAE International
Appears in Collections:Články / Articles
OBD

Files in This Item:
File SizeFormat 
Vychytil_2020_SAE.pdf3,19 MBAdobe PDFView/Open    Request a copy


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/39625

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

search
navigation
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD