Full metadata record
DC FieldValueLanguage
dc.contributor.authorZajíc, Zbyněk
dc.contributor.authorKunešová, Marie
dc.contributor.authorMüller, Luděk
dc.date.accessioned2022-03-28T10:00:28Z-
dc.date.available2022-03-28T10:00:28Z-
dc.date.issued2021
dc.identifier.citationZAJÍC, Z. KUNEŠOVÁ, M. MÜLLER, L. Applying EEND Diarization to Telephone Recordings from a Call Center. In 23rd International Conference, SPECOM 2021, St. Petersburg, Russia, September 27–30, 2021, Proceedings. Cham: Springer, 2021. s. 807-817. ISBN: 978-3-030-87801-6 , ISSN: 0302-9743cs
dc.identifier.isbn978-3-030-87801-6
dc.identifier.issn0302-9743
dc.identifier.uri2-s2.0-85116359179
dc.identifier.urihttp://hdl.handle.net/11025/47255
dc.format11 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherSpringeren
dc.relation.ispartofseries23rd International Conference, SPECOM 2021, St. Petersburg, Russia, September 27–30, 2021, Proceedingsen
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights© Springeren
dc.titleApplying EEND Diarization to Telephone Recordings from a Call Centeren
dc.typekonferenční příspěvekcs
dc.typeConferenceObjecten
dc.rights.accessrestrictedAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedIn this paper, we focus on the issue of speaker diarization of data from a real call center. We have previously proposed a specialized solution to the problem, which employed additional knowledge about the identities of the phone operators (in our case, the language counselors from the Language Consulting Center), thus improving performance over the baseline. But a recent end-to-end diarization method, EEND, has since proven very successful on other data and was shown to surpass the previous state of the art in the field. Thus, we chose to compare this new method with our own previous approach. Using an existing implementation of the EEND method (adapted using a small amount of the target data from the Language Consulting Center), we successfully surpass the performance of our previous approach (17.42% vs. 19.39% DER), without the need for any additional information about speaker identities. The majority of the remaining diarization error of the EEND system is due to incorrect decisions between speech and silence, rather than speaker confusion. For comparison, we also show the results of a more standard diarization approach, represented by the method used in the Kaldi toolkit.en
dc.subject.translatedDiarizationen
dc.subject.translatedEnd-to-enden
dc.subject.translatedX-vectoren
dc.subject.translatedEENDen
dc.identifier.doi10.1007/978-3-030-87802-3_72
dc.type.statusPeer-revieweden
dc.identifier.obd43933458
dc.project.IDLM2018101/LINDAT/CLARIAH-CZ – Digitální výzkumná infrastruktura pro jazykové technologie, umění a humanitní vědycs
dc.project.ID90042/Velká výzkumná infrastruktura povinnost (J) - CESNET IIcs
Appears in Collections:Konferenční příspěvky / Conference Papers (KKY)
OBD

Files in This Item:
File SizeFormat 
Zajíc2021_Chapter_ApplyingEENDDiarizationToTelep.pdf377,54 kBAdobe PDFView/Open    Request a copy


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/47255

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

search
navigation
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD