Datum vydání | Název | Autor |
2019 | Comparing the PaGMO Framework to a De-randomized Meta-Differential Evolution on Calculation and Prediction of Glucose Levels | Koutný, Tomáš; Úbl, Martin; Della Cioppa, Antonio; De Falco, Ivanoe; Tarantino, Ernesto; Umberto, Scafuri; Krčma, Michal |
2019 | De–randomized Meta-Differential Evolution for Calculating and Predicting Glucose Levels | Koutný, Tomáš; Della Cioppa, Antonio; De Falco, Ivanoe; Tarantino, Ernesto; Scafuri, Umberto; Krčma, Michal |
2022 | Distributed Assessment of Virtual Insulin-Pump Settings Using SmartCGMS and DMMS.R for Diabetes Treatment | Úbl, Martin; Koutný, Tomáš; Della Cioppa, Antonio; De Falco, Ivanoe; Tarantino, Ernesto; Scafuri, Umberto |
2022 | An Evolution-based Machine Learning Approach for Inducing Glucose Prediction Models | De Falco, Ivanoe; Della Cioppa, Antonio; Koutný, Tomáš; Scafuri, Umberto; Tarantino, Ernesto; Úbl, Martin |
2018 | An evolutionary methodology for estimating blood glucose levels from interstitial glucose measurements and their derivatives | De Falco, Ivanoe; Scafuri, umberto; Tarantino, Ernesto; Della Cioppa, Antonio; Giugliano, Angelo; Koutný, Tomáš; Krčma, Michal |
2023 | A Federated Learning-Inspired Evolutionary Algorithm: Application to Glucose Prediction | De Falco, Ivanoe; Della Cioppa, Antonio; Koutný, Tomáš; Úbl, Martin; Krčma, Michal; Scafuri, Umberto; Tarantino, Ernesto |
2019 | Gaming for diabetes | Úbl, Martin; Koutný, Tomáš |
2019 | A genetic programming-based regression for extrapolating a blood glucose-dynamics model from interstitial glucose measurements and their derivatives | De Falco, Ivanoe; Della Cioppa, Antonio; Giugliano, Angelo; Marcelli, Angelo; Koutný, Tomáš; Krčma, Michal; Scafuri, Umberto; Tarantino, Ernesto |
2021 | Grammatical Evolution-Based Approach for Extracting Interpretable Glucose-Dynamics Models | De Falco, Ivanoe; Della Cioppa, Antonio; Koutný, Tomáš; Scafuri, Umberto; Tarantino, Ernesto; Úbl, Martin |
2020 | Neural Multi-class Classification Approach to Blood Glucose Level Forecasting with Prediction Uncertainty Visualisation | Mayo, Michael; Koutný, Tomáš |
2022 | A Novel Approach to Multi-Compartmental Model Implementation to Achieve Metabolic Model Identifiability on Patient's CGM Data | Úbl, Martin; Koutný, Tomáš |
2018 | Parallel software architecture for the next generation of glucose monitoring | Koutný, Tomáš; Úbl, Martin |
2022 | Physiological reconstruction of blood glucose level using CGMS-signals only | Koutný, Tomáš |
2022 | Predicting glucose level with an adapted branch predictor | Koutný, Tomáš; Mayo, Michael |
2023 | Reducing high-risk glucose forecasting errors by evolving interpretable models for Type 1 diabetes | Della Cioppa, Antonio; De Falco, Ivanoe; Koutný, Tomáš; Scafuri, Umberto; Úbl, Martin; Tarantino, Ernesto |
2020 | SmartCGMS as a Testbed for a Blood-Glucose Level Prediction and/or Control Challenge with (an FDA-Accepted) Diabetic Patient Simulation | Koutný, Tomáš; Úbl, Martin |
2019 | SmartCGMS as an Environment for an Insulin-Pump Development with FDA-Accepted In-Silico Pre-Clinical Trials | Úbl, Martin; Koutný, Tomáš |