Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorRohan, Eduard
dc.contributor.authorTurjanicová, Jana
dc.contributor.authorLukeš, Vladimír
dc.date.accessioned2020-02-10T11:00:19Z-
dc.date.available2020-02-10T11:00:19Z-
dc.date.issued2019
dc.identifier.citationROHAN, E., TURJANICOVÁ, J., LUKEŠ, V. The Biot-Darcy-Brinkman model of flow in deformable double porous media; homogenization and numerical modelling. Computers and Mathematics with Applications, 2019, roč. 78, č. 9, s. 3044-3066. ISSN 0898-1221.en
dc.identifier.issn0898-1221
dc.identifier.uri2-s2.0-85064837836
dc.identifier.urihttp://hdl.handle.net/11025/36436
dc.format23 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherElsevieren
dc.relation.ispartofseriesApcom 2019 - Applied Physics Of Condensed Matteren
dc.rightsPlný text není přístupný.cs
dc.rights© Elsevieren
dc.subjectMultiscale modellingcs
dc.subjectHomogenizationcs
dc.subjectDouble-porosity mediacs
dc.subjectBiot modelcs
dc.subjectDarcy-Brinkman modelcs
dc.subjectHierarchical flowcs
dc.titleThe Biot-Darcy-Brinkman model of flow in deformable double porous mediaen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.rights.accessclosedAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedIn this paper we present the two-level homogenization of the flow in a deformable double-porous structure described at two characteristic scales. The higher level porosity associated with the mesoscopic structure is constituted by channels in a matrix made of a microporous material consisting of elastic skeleton and pores saturated by a viscous fluid. The macroscopic model is derived by the homogenization of the flow in the heterogeneous structure characterized by two small parameters involved in the two- level asymptotic analysis, whereby a scaling ansatz is adopted to respect the pore size differences. The first level upscaling of the fluid–structure interaction problem yields a Biot continuum describing the mesoscopic matrix coupled with the Stokes flow in the channels. The second step of the homogenization leads to a macroscopic model involving three equations for displacements, the mesoscopic flow velocity and the micropore pressure. Due to interactions between the two porosities, the macroscopic flow is governed by a Darcy–Brinkman model comprising two equations which are coupled with the overall equilibrium equation respecting the hierarchical structure of the two- phase medium. Expressions of the effective macroscopic parameters of the homogenized double-porosity continuum are derived, depending on the characteristic responses of the mesoscopic structure. Some symmetry and reciprocity relationships are shown and issues of boundary conditions are discussed. The model has been implemented in the finite element code SfePy which is well-suited for computational homogenization. A numerical example of solving a nonstationary problem using mixed finite element method is included.en
dc.identifier.doi10.1016/j.camwa.2019.04.004
dc.type.statusPeer-revieweden
dc.identifier.document-number491624900014
dc.identifier.obd43927047
dc.project.IDGA16-03823S/Homogenizace a víceškálové výpočetní modelování proudění a nelineárních interakcí v porézních inteligentních prostředíchcs
dc.project.IDGA19-04956S/Dynamika a nelineární chování pokročilých kompozitních struktur, modelování a optimalizacecs
dc.project.IDEF17_048/0007280/Aplikace moderních technologií v medicíně a průmyslucs
dc.project.IDLO1506/PUNTIS - Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnostcs
Vyskytuje se v kolekcích:Postprinty / Postprints (CTM)
Postprinty / Postprints (NTIS)
OBD

Soubory připojené k záznamu:
Soubor VelikostFormát 
1810.03375.pdf1,64 MBAdobe PDFZobrazit/otevřít  Vyžádat kopii


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/36436

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD