Title: Multi-sensor fault diagnosis of induction motors using random forests and support vector machine
Authors: Saberi, Alireza Nemat
Sandirasegaram, Sarvavignoban
Belahcen, Anouar
Vaimann, Toomas
Šobra, Jan
Citation: SABERI, A.N., SANDIRASEGARAM, S., BELAHCEN, A., VAIMANN, T., ŠOBRA, J. Multi-sensor fault diagnosis of induction motors using random forests and support vector machine. In: Proceedings : 2020 International Conference on Electrical Machines (ICEM 2020). Piscataway: IEEE, 2020. s. 1404-1410. ISBN 978-1-72819-945-0.
Issue Date: 2020
Publisher: IEEE
Document type: konferenční příspěvek
URI: 2-s2.0-85098620675
ISBN: 978-1-72819-945-0
Keywords in different language: fault diagnosis;induction motor;machine learning;multiple signal classification;support vector machine
Abstract in different language: This paper presents a fault diagnosis scheme for induction machines (IMs) using Support Vector Machine (SVM) and Random Forests (RFs). First, a number of timedomain and frequency-domain features are extracted from vibration and current signals in different operating conditions of IM. Then, these features are combined and considered as the input of SVM-based classification model. To avoid overfitting, RF is utilized to determine the most dominant features contributing to accurate classification. It is proved that the proposed method is capable of achieving highly accurate fault diagnosis results for broken rotor bar and eccentricity faults and it can appro
Rights: Plný text je přístupný v rámci univerzity přihlášeným uživatelům.
Appears in Collections:Konferenční příspěvky / Conference Papers (KEV)

Files in This Item:
File SizeFormat 
ICEM2020_Sobra.pdf870,48 kBAdobe PDFView/Open    Request a copy

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/42546

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD