Title: Semantic Segmentation in the Task of Long-Term Visual Localization
Authors: Bureš, Lukáš
Müller, Luděk
Citation: BUREŠ, L. MÜLLER, L. Semantic Segmentation in the Task of Long-Term Visual Localization. In 6th International Conference, ICR 2021, St. Petersburg, Russia, September 27–30, 2021, Proceedings. Cham: Springer, 2021. s. 27-39. ISBN: 978-3-030-87724-8 , ISSN: 0302-9743
Issue Date: 2021
Publisher: Springer
Document type: konferenční příspěvek
ConferenceObject
URI: 2-s2.0-85116430820
http://hdl.handle.net/11025/47257
ISBN: 978-3-030-87724-8
ISSN: 0302-9743
Keywords in different language: Long-term visual localization;Semantic segmentation;SuperPoint;SuperGlue;HRNet-OCR
Abstract in different language: In this paper, it is discussed the problem of long-term visual localization with a using of the Aachen Day-Night dataset. Our experiments confirmed that carefully fine-tuning parameters of the Hierarchical Localization method can lead to enhance the visual localization accuracy. Next, our experiments show that it is possible to find an image’s area that does not add any valuable information in long-term visual localization and can be removed without losing the localization accuracy. The approach of using the method of semantic segmentation for preprocessing helped to achieve comparable state-of-the-art results in the Aachen Day-Night dataset.
Rights: Plný text je přístupný v rámci univerzity přihlášeným uživatelům.
© Springer
Appears in Collections:Konferenční příspěvky / Conference Papers (KKY)
OBD



Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/47257

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

search
navigation
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD