Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorNovák, Matyáš
dc.contributor.authorVackář, Jiří
dc.contributor.authorCimrman, Robert
dc.contributor.authorŠipr, Ondřej
dc.date.accessioned2023-11-27T11:00:18Z-
dc.date.available2023-11-27T11:00:18Z-
dc.date.issued2023
dc.identifier.citationNOVÁK, M. VACKÁŘ, J. CIMRMAN, R. ŠIPR, O. Adaptive Anderson mixing for electronic structure calculations. COMPUTER PHYSICS COMMUNICATIONS, 2023, roč. 292, č. NOV 2023, s. nestránkováno. ISSN: 0010-4655cs
dc.identifier.issn0010-4655
dc.identifier.uri2-s2.0-85172207621
dc.identifier.urihttp://hdl.handle.net/11025/54849
dc.format
dc.format18 s.cs
dc.format.mimetypeapplication/pdf
dc.language.iso
dc.language.isoenen
dc.publisherElsevieren
dc.relation.ispartofseriesComputer Physics Communicationsen
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelůmcs
dc.rights© Elsevieren
dc.titleAdaptive Anderson mixing for electronic structure calculationsen
dc.typečlánekcs
dc.typearticleen
dc.rights.accessrestrictedAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedConvergence rates of iterative algorithms for solving non-linear fixed-point (or root-finding) problems depend on the quality of the solution guess done in each iteration, which is used as the starting value in the next step. To avoid instabilities and oscillations, that guess is usually constructed (mixed) as a linear combination of the newly calculated value with values from the previous iterations. The mixing algorithm constitutes a crucial component for electronic structure calculation methods based on iterative seeking for a self-consistent state. This paper reviews several mixing algorithms for electronic structure calculations. The most important numerically confirmed finding is that the calculation speed depends more on the choice of the so-called “mixing coefficient” than on the choice of a particular algorithm.Then a new method allowing an automatic adaptation of this coefficient is proposed, implemented, and tested on various solid-state structures within three electronic structure calculation codes. In our testing cases, the newly designed Adaptive Anderson Algorithm exhibits better convergence for a broader range of initial mixing coefficients, and similar or better robustness, in comparison to the standard Anderson method. The Fortran implementation of the new algorithm and its Python wrapper are briefly described in the paper and made available for public use.en
dc.subject.translatednonlinear solveren
dc.subject.translatedadapted mixing coefficienten
dc.subject.translatedAnderson mixingen
dc.subject.translatedelectronic structure calculationsen
dc.subject.translatedself-consistent cyclen
dc.identifier.doi10.1016/j.cpc.2023.108865
dc.type.status
dc.type.statusPeer-revieweden
dc.identifier.document-number1079196200001
dc.identifier.obd43940638
dc.project.IDEF15_003/0000358/Výpočetní a experimentální design pokročilých materiálů s novými funkcionalitamics
Vyskytuje se v kolekcích:Články / Articles (RAM)
Články / Articles
OBD

Soubory připojené k záznamu:
Soubor VelikostFormát 
CIMRMAN_1-s2.0-S0010465523002102-main.pdf1,05 MBAdobe PDFZobrazit/otevřít  Vyžádat kopii


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/54849

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD