Název: A new extension to kernel entropy component analysis for image-based authentication systems
Autoři: Varadharajan, Vijay
Citace zdrojového dokumentu: Journal of WSCG. 2015, vol. 23, no. 1, p. 1-7.
Datum vydání: 2015
Nakladatel: Václav Skala - UNION Agency
Typ dokumentu: článek
article
URI: http://wscg.zcu.cz/WSCG2015/!_2015_Journal_WSCG-No-1.pdf
http://hdl.handle.net/11025/17144
ISSN: 1213–6972 (hardcopy)
1213–6980 (CD-ROM)
1213–6964 (online)
Klíčová slova: FDKECA;KECA;rozpoznávání obrazu;mapování prostoru;PCA
Klíčová slova v dalším jazyce: FDKECA;KECA;image recognition;mapping space;PCA
Abstrakt v dalším jazyce: We introduce Feature Dependent Kernel Entropy Component Analysis (FDKECA) as a new extension to Kernel Entropy Component Analysis (KECA) for data transformation and dimensionality reduction in Image-based recognition systems such as face and finger vein recognition. FDKECA reveals structure related to a new mapping space, where the most optimized feature vectors are obtained and used for feature extraction and dimensionality reduction. Indeed, the proposed method uses a new space, which is feature wisely dependent and related to the input data space, to obtain significant PCA axes. We show that FDKECA produces strikingly different transformed data sets compared to KECA and PCA. Furthermore a new spectral clustering algorithm utilizing FDKECA is developed which has positive results compared to the previously used ones. More precisely, FDKECA clustering algorithm has both more time efficiency and higher accuracy rate than previously used methods. Finally, we compared our method with three well-known data transformation methods, namely Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA), and Kernel Entropy Component Analysis (KECA) confirming that it outperforms all these direct competitors and as a result, it is revealed that FDKECA can be considered a useful alternative for PCA-based recognition algorithms.
Práva: © Václav Skala - UNION Agency
Vyskytuje se v kolekcích:Volume 23, Number 1 (2015)

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Varadharajan.pdfPlný text751,67 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/17144

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.