Full metadata record
DC pole | Hodnota | Jazyk |
---|---|---|
dc.contributor.author | Bizzarri, Michal | |
dc.contributor.author | Lávička, Miroslav | |
dc.contributor.author | Šír, Zbyněk | |
dc.contributor.author | Vršek, Jan | |
dc.date.accessioned | 2017-06-14T08:53:00Z | |
dc.date.available | 2017-06-14T08:53:00Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | BIZZARRI, Michal, LÁVIČKA, Miroslav, ŠÍR, Zbyněk, VRŠEK, Jan. Hermite interpolation by piecewise polynomial surfaces with polynomial area element. Compter aided geomeric design, 2017, roč. 51, č. February, s. 30-47. ISSN 0167-8396. | en |
dc.identifier.issn | 0167-8396 | |
dc.identifier.uri | http://hdl.handle.net/11025/26124 | |
dc.identifier.uri | http://apps.webofknowledge.com/InboundService.do?mode=FullRecord&customersID=Alerting&IsProductCode=Yes&product=WOS&Init=Yes&Func=Frame&DestFail=http%3A%2F%2Fwww.webofknowledge.com&action=retrieve&SrcApp=Alerting&SrcAuth=Alerting&SID=R1iMvi4A4LgiaMztr4o&UT=WOS%3A000398755900003 | |
dc.identifier.uri | https://www.scopus.com/record/display.uri?origin=resultslist&eid=2-s2.0-85014455183 | |
dc.identifier.uri | 000398755900003 | |
dc.identifier.uri | 2-s2.0-85014455183 | |
dc.format | 18 s. | cs |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.rights | Plný text není přístupný. | cs |
dc.rights | © Elsevier | en |
dc.subject | Hermitova interpolace | cs |
dc.subject | PN povrchy | cs |
dc.subject | MOS povrchy | cs |
dc.subject | polynomický prvek | cs |
dc.title | Hermite interpolation by piecewise polynomial surfaces with polynomial area element | en |
dc.type | preprint | cs |
dc.type | článek | cs |
dc.type | preprint | en |
dc.type | article | en |
dc.rights.access | closedAccess | en |
dc.type.version | publishedVersion | en |
dc.type.version | draft | en |
dc.description.abstract-translated | This paper is devoted to the construction of polynomial 2-surfaces which possess a polynomial area element. In particular we study these surfaces in the Euclidean space R^3 (where they are equivalent to the PN surfaces) and in the Minkowski space R^{3,1} (where they provide the MOS surfaces). We show generally in real vector spaces of any dimension equipped with a symmetric bilinear form that the Gram determinant of a parametric set of subspaces is a perfect square if and only if the Gram determinant of its orthogonal complement is a perfect square. Consequently the polynomial surfaces of a given degree with polynomial area element can be constructed from the prescribed normal fields solving a system of linear equations. The degree of the constructed surface depending on the degree and the properties of the prescribed normal field is investigated and discussed. We use the presented approach to interpolate a network of points and associated normals with piecewise polynomial surfaces with polynomial area element and demonstrate our method on a number of examples (constructions of quadrilateral as well as triangular patches). | en |
dc.subject.translated | Hermite interpolation | en |
dc.subject.translated | PN surfaces | en |
dc.subject.translated | MOS surfaces | en |
dc.subject.translated | Polynomial area element | en |
dc.identifier.doi | 10.1016/j.cagd.2017.02.003 | |
dc.type.status | Peer-reviewed | en |
dc.identifier.obd | 43918133 | |
dc.project.ID | LO1506/PUNTIS - Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost | cs |
Vyskytuje se v kolekcích: | Články / Articles (NTIS) Preprinty / Preprints (KMA) OBD |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
1-s2.0-S0167839616301224-main.pdf | 1,94 MB | Adobe PDF | Zobrazit/otevřít Vyžádat kopii | |
1609.05328.pdf | 2,25 MB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/26124
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.