Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorBizzarri, Michal
dc.contributor.authorLávička, Miroslav
dc.contributor.authorŠír, Zbyněk
dc.contributor.authorVršek, Jan
dc.date.accessioned2017-06-14T08:53:00Z
dc.date.available2017-06-14T08:53:00Z
dc.date.issued2017
dc.identifier.citationBIZZARRI, Michal, LÁVIČKA, Miroslav, ŠÍR, Zbyněk, VRŠEK, Jan. Hermite interpolation by piecewise polynomial surfaces with polynomial area element. Compter aided geomeric design, 2017, roč. 51, č. February, s. 30-47. ISSN 0167-8396.en
dc.identifier.issn0167-8396
dc.identifier.urihttp://hdl.handle.net/11025/26124
dc.identifier.urihttp://apps.webofknowledge.com/InboundService.do?mode=FullRecord&customersID=Alerting&IsProductCode=Yes&product=WOS&Init=Yes&Func=Frame&DestFail=http%3A%2F%2Fwww.webofknowledge.com&action=retrieve&SrcApp=Alerting&SrcAuth=Alerting&SID=R1iMvi4A4LgiaMztr4o&UT=WOS%3A000398755900003
dc.identifier.urihttps://www.scopus.com/record/display.uri?origin=resultslist&eid=2-s2.0-85014455183
dc.identifier.uri000398755900003
dc.identifier.uri2-s2.0-85014455183
dc.format18 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherElsevieren
dc.rightsPlný text není přístupný.cs
dc.rights© Elsevieren
dc.subjectHermitova interpolacecs
dc.subjectPN povrchycs
dc.subjectMOS povrchycs
dc.subjectpolynomický prvekcs
dc.titleHermite interpolation by piecewise polynomial surfaces with polynomial area elementen
dc.typepreprintcs
dc.typečlánekcs
dc.typepreprinten
dc.typearticleen
dc.rights.accessclosedAccessen
dc.type.versionpublishedVersionen
dc.type.versiondraften
dc.description.abstract-translatedThis paper is devoted to the construction of polynomial 2-surfaces which possess a polynomial area element. In particular we study these surfaces in the Euclidean space R^3 (where they are equivalent to the PN surfaces) and in the Minkowski space R^{3,1} (where they provide the MOS surfaces). We show generally in real vector spaces of any dimension equipped with a symmetric bilinear form that the Gram determinant of a parametric set of subspaces is a perfect square if and only if the Gram determinant of its orthogonal complement is a perfect square. Consequently the polynomial surfaces of a given degree with polynomial area element can be constructed from the prescribed normal fields solving a system of linear equations. The degree of the constructed surface depending on the degree and the properties of the prescribed normal field is investigated and discussed. We use the presented approach to interpolate a network of points and associated normals with piecewise polynomial surfaces with polynomial area element and demonstrate our method on a number of examples (constructions of quadrilateral as well as triangular patches).en
dc.subject.translatedHermite interpolationen
dc.subject.translatedPN surfacesen
dc.subject.translatedMOS surfacesen
dc.subject.translatedPolynomial area elementen
dc.identifier.doi10.1016/j.cagd.2017.02.003
dc.type.statusPeer-revieweden
dc.identifier.obd43918133
dc.project.IDLO1506/PUNTIS - Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnostcs
Vyskytuje se v kolekcích:Články / Articles (NTIS)
Preprinty / Preprints (KMA)
OBD

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
1-s2.0-S0167839616301224-main.pdf1,94 MBAdobe PDFZobrazit/otevřít  Vyžádat kopii
1609.05328.pdf2,25 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/26124

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD