Název: Texture classification with the PQ kernel
Autoři: Ionescu, Radu Tudor
Popescu, Andreea Lavinia
Popescu, Marius
Citace zdrojového dokumentu: WSCG 2014: communication papers proceedings: 22nd International Conference in Central Europeon Computer Graphics, Visualization and Computer Visionin co-operation with EUROGRAPHICS Association, p. 111-118.
Datum vydání: 2014
Nakladatel: Václav Skala - UNION Agency
Typ dokumentu: konferenční příspěvek
conferenceObject
URI: wscg.zcu.cz/WSCG2014/!!_2014-WSCG-Communication.pdf
http://hdl.handle.net/11025/26405
ISBN: 978-80-86943-71-8
Klíčová slova: jádro;hodnocení korelačního opatření;ordinální opatření;vizuální slova;textony;texturní analýza;texturní klasifikace
Klíčová slova v dalším jazyce: kernel methods;kernel;rank correlation measure;ordinal measure;visual words;textons;texture analysis;texture classification
Abstrakt v dalším jazyce: Computer vision researchers have developed various learning methods based on the bag of words model for image related tasks, including image categorization, image retrieval and texture classification. In this model, images are represented as histograms of visual words (or textons) from a vocabulary that is obtained by clustering local image descriptors. Next, a classifier is trained on the data. Most often, the learning method is a kernel-based one. Various kernels can be plugged in to the kernel method. Popular choices, besides the linear kernel, are the intersection, the Hellinger’s, the c2 and the Jensen-Shannon kernels. Recent object recognition results indicate that the novel PQ kernel seems to improve the accuracy over most of the state of the art kernels. The PQ kernel is inspired from a set of rank correlation statistics specific for ordinal data, that are based on counting concordant and discordant pairs among two variables. In this paper, the PQ kernel is used for the first time for the task of texture classification. The PQ kernel is computed in O(nlogn) time using an efficient algorithm based on merge sort. The algorithm leverages the use of the PQ kernel for large vocabularies. Texture classification experiments are conducted to compare the PQ kernel with other state of the art kernels on two benchmark data sets of texture images. The PQ kernel has the best accuracy on both data sets. In terms of time, the PQ kernel becomes comparable with the state of the art Jensen-Shannon kernel. In conclusion, the PQ kernel can be used to obtain a better pairwise similarity between histograms, which, in turn, improves the texture classification accuracy.
Práva: @ Václav Skala - UNION Agency
Vyskytuje se v kolekcích:WSCG 2014: Communication Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Ionescu.pdfPlný text2,68 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/26405

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.