Title: Maclaurin series for sin_p with p an Integer greater than 2
Authors: Kotrla, Lukáš
Citation: KOTRLA, L. Maclaurin series for sin_p with p an Integer greater than 2. Electronic Journal of Differential Equations, 2018, roč. 135, č. JUL 1 2018, s. 1-11. ISSN: 1072-6691
Issue Date: 2018
Publisher: Texas State University, Department of Mathematics
Document type: článek
article
URI: http://hdl.handle.net/11025/29950
ISSN: 1072-6691
Keywords in different language: p-Laplacian;p-trigonometry;approximation;Maclaurin series;coefficients
Abstract in different language: We find an explicit formula for the coefficients $\alpha_n$, $n \in \mathbb{N}$, of the generalized Maclaurin series for $\sin_p$ provided $p > 2$ is an integer. Our method is based on an expression of the $n$-th derivative of $\sin_p$ in the form \[ \sum_{k = 0}^{2^{n - 2} - 1} a_{k,n} \sin_p^{p - 1}(x)\cos_p^{2 - p}(x)\,, \quad x\in \left(0, \frac{\pi_p}{2}\right), \] where $\cos_p$ stands for the first derivative of $\sin_p$. The formula allows us to compute the nonzero coefficients \[ \alpha_n = \frac{\lim_{x \to 0+} \sin_p^{(np + 1)}(x)}{(np + 1)!}\,. \]
Rights: Plný text je přístupný v rámci univerzity přihlášeným uživatelům.
© Texas State University, Department of Mathematics-CC-BY
Appears in Collections:Články / Articles (KMA)
OBD

Files in This Item:
File SizeFormat 
kotrla.pdf238,09 kBAdobe PDFView/Open    Request a copy


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/29950

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

search
navigation
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD