Title: | Maclaurin series for sin_p with p an Integer greater than 2 |
Authors: | Kotrla, Lukáš |
Citation: | KOTRLA, L. Maclaurin series for sin_p with p an Integer greater than 2. Electronic Journal of Differential Equations, 2018, roč. 135, č. JUL 1 2018, s. 1-11. ISSN: 1072-6691 |
Issue Date: | 2018 |
Publisher: | Texas State University, Department of Mathematics |
Document type: | článek article |
URI: | http://hdl.handle.net/11025/29950 |
ISSN: | 1072-6691 |
Keywords in different language: | p-Laplacian;p-trigonometry;approximation;Maclaurin series;coefficients |
Abstract in different language: | We find an explicit formula for the coefficients $\alpha_n$, $n \in \mathbb{N}$, of the generalized Maclaurin series for $\sin_p$ provided $p > 2$ is an integer. Our method is based on an expression of the $n$-th derivative of $\sin_p$ in the form \[ \sum_{k = 0}^{2^{n - 2} - 1} a_{k,n} \sin_p^{p - 1}(x)\cos_p^{2 - p}(x)\,, \quad x\in \left(0, \frac{\pi_p}{2}\right), \] where $\cos_p$ stands for the first derivative of $\sin_p$. The formula allows us to compute the nonzero coefficients \[ \alpha_n = \frac{\lim_{x \to 0+} \sin_p^{(np + 1)}(x)}{(np + 1)!}\,. \] |
Rights: | Plný text je přístupný v rámci univerzity přihlášeným uživatelům. © Texas State University, Department of Mathematics-CC-BY |
Appears in Collections: | Články / Articles (KMA) OBD |
Files in This Item:
File | Size | Format | |
---|---|---|---|
kotrla.pdf | 238,09 kB | Adobe PDF | View/Open Request a copy |
Please use this identifier to cite or link to this item:
http://hdl.handle.net/11025/29950
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.