Title: Comparing the performance and accuracy of algorithms applied to tattoos images identification
Authors: Horta, Agnus Azevedo
Magalhães, Léo Pini
Citation: Journal of WSCG. 2018, vol. 26, no. 1, p. 41-47.
Issue Date: 2018
Publisher: Václav Skala - UNION Agency
Document type: článek
URI: wscg.zcu.cz/WSCG2018/!_2018_Journal_WSCG-No-1.pdf
ISSN: 1213-6972 (print)
1213-6980 (CD-ROM)
1213-6964 (on-line)
Keywords: identifkace tetování;SIFT;ASIFT;BOV;Fisherovy vektory;optimální klasifikátor lesních cest;podpora vektorového stroje;měkká biometrie;načítání obrázků na základě obsahu
Keywords in different language: tattoo identification;SIFT;ASIFT;BOV;Fisher vectors;optimum-path forest classifier;support vector machines;soft biometric;content-based image retrieval
Abstract in different language: This article presents results of the simulation of SIFT based algorithms in the context of the identification of tattoos. The algorithms studied are the SIFT - Scale Invariant Feature Transform, ASIFT - Affine SIFT, BOV - Bag of Visual Words and FV - Fisher Vector. The use of the OPF - Optimum-Path Forest and SVM - Support Vector Machine classifiers is exploited in conjunction with SIFT and ASIFT algorithms as well as BOV and FV. The present study uses the National Institute of Standards and Technology (NIST) Tatt-C dataset in a reduced and complete version. This work uses runtime and accuracy to compare the results of the simulations.
Rights: © Václav Skala - UNION Agency
Appears in Collections:Volume 26, Number 1 (2018)

Files in This Item:
File Description SizeFormat 
Horta.pdfPlný text6,17 MBAdobe PDFView/Open

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/34587

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.