Název: | Using images rendered by PBRT to train faster R-CNN for UAV detection |
Autoři: | Peng, Junkai Zheng, Changwen Lv, Pin Cui, Tianyu Cheng, Ye Lingyu, Si |
Citace zdrojového dokumentu: | WSCG '2018: short communications proceedings: The 26th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2016 in co-operation with EUROGRAPHICS: University of West Bohemia, Plzen, Czech Republic May 28 - June 1 2018, p. 13-18. |
Datum vydání: | 2018 |
Nakladatel: | Václav Skala - UNION Agency |
Typ dokumentu: | konferenční příspěvek conferenceObject |
URI: | wscg.zcu.cz/WSCG2018/!!_CSRN-2802.pdf http://hdl.handle.net/11025/34647 |
ISBN: | 978-80-86943-41-1 |
ISSN: | 2464-4617 |
Klíčová slova: | detekce objektů;hluboké učení;Faster R-CNN;PBRT;UAV |
Klíčová slova v dalším jazyce: | object detection;deep learning;faster R-CNN;PBRT;UAV |
Abstrakt: | Deep neural networks, such as Faster R-CNN, have been widely used in object detection. However, deep neural networks usually require a large-scale dataset to achieve desirable performance. For the specific application, UAV detection, training data is extremely limited in practice. Since annotating plenty of UAV images manually can be very resource intensive and time consuming, instead, we use PBRT to render a large number of photorealistic UAV images of high variation within a reasonable time. Using PBRT ensures the realism of rendered images, which means they are indistinguishable from real photographs to some extent. Trained with our rendered images, the Faster R-CNN has an AP of 80.69% on manually annotated UAV images test set, much higher than the one only trained with COCO 2014 dataset and PASCAL VOC 2012 dataset (43.36%). Moreover, our rendered image dataset contains not only bounding boxes of all UAVs, but also locations of some important parts of UAVs and locations of all pixels covered by UAVs, which can be used for more complicated application, such as mask detection or keypoint detection. |
Práva: | © Václav Skala - UNION Agency |
Vyskytuje se v kolekcích: | WSCG '2018: Short Papers Proceedings |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
Peng.pdf | Plný text | 10,4 MB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/34647
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.