Title: Chaotic Oscillator Based on Mathematical Model of Multiple-Valued Memory Cell
Authors: Petržela, Jiří
Citation: 2018 International Conference on Applied Electronics: Pilsen, 11th – 12th September 2018, Czech Republic, 113-116.
Issue Date: 2018
Publisher: Západočeská univerzita v Plzni
Document type: konferenční příspěvek
URI: http://hdl.handle.net/11025/35484
ISBN: 978–80–261–0721–7
ISSN: 1803–7232
Keywords: analogový oscilátor;chaos;lineární topologická konjugace;Lyapunovy exponenty;nelineární dynamika;statická paměť;podivné atraktory
Keywords in different language: analog oscillator;chaos;linear topological conjugacy;Lyapunov exponents;nonlinear dynamics;static memory;strange attractors
Abstract in different language: This paper describes development of analog chaotic oscillatorbased on mathematical model of static multiple-valued memory system. Underlying dynamics is covered by set of three ordinary differential equations without driving force and stochastic processes. Existence of chaos is proved both numerically by calculation of the largest Lyapunov exponent (LLE) and experimentally by real laboratory experiments; these can be considered as evidence of the robustness and structural stability of the observed strange attractors. Even though analyzed dynamical system is topologically conjugated to famous Chua's oscillator (proved in paper) discovered circuitry can be considered as novel chaotic oscillator.
Rights: © Západočeská univerzita v Plzni
Appears in Collections:Applied Electronics 2018
Applied Electronics 2018

Files in This Item:
File Description SizeFormat 
Petrzela.pdfPlný text4,18 MBAdobe PDFView/Open

Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/35484

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.