Title: Valence band hard x-ray photoelectron spectroscopy on transition-metal oxides containing rare-earth elementsValence band hard x-ray photoelectron spectroscopy on transition-metal oxides containing rare-earth elements
Authors: Takegami, D.
Nicolai, Laurent Christophe
Koethe, T. C.
Kasinathan, Deepa
Kuo, Changyang
Liao, Yenfa
Tsuei, Kuding
Panaccione, Giancarlo C.
Offi, Francesco
Monaco, Giulio
Brookes, Nicholas B.
Minár, Jan
Tjeng, Liu Hao
Citation: TAKEGAMI, D., NICOLAI, L. C. H., KOETHE, T. C., KASINATHAN, D., KUO, C. H., LIAO, Y., TSUEI, K., PANACCIONE, G. C., OFFI, F., MONACO, G., BROOKES, N. B., MINÁR, J., TJENG, L. H. Valence band hard x-ray photoelectron spectroscopy on transition-metal oxides containing rare-earth elementsValence band hard x-ray photoelectron spectroscopy on transition-metal oxides containing rare-earth elements. Physical Review B, 2019, roč. 99, č. 16. ISSN 2469-9950.
Issue Date: 2019
Publisher: American Physical Society
Document type: článek
article
URI: 2-s2.0-85064121182
http://hdl.handle.net/11025/36127
ISSN: 2469-9950
Keywords in different language: ANGULAR-DISTRIBUTION PARAMETERS;HIGH-ENERGY PHOTOEMISSION;ELECTRONIC-STRUCTURE
Abstract in different language: Here we report on our study to quantitatively describe the intensities of the valence band hard x-ray photoemission spectra (HAXPES) of a rare earth element containing 3d transition metal oxides. Using LaCoO3 as a representative model compound, we compared the experimental data to the results of ab initio one-step photoemission band structure calculations as well as to the sum of the partial density of states of the atomic constituents weighted by their tabulated photoionization cross sections. We discovered that the semicore La 5p density of states surprisingly contributes in a significant manner to the valence band spectrum: Although the La 5p partial density of states in the valence band region is negligible compared to that of the O 2p or the Co 3d, the La 5p cross section in the hard x-ray range is found to be orders of magnitude larger than that of the other subshells. This explains the long-standing issue of why the hard x-ray valence band spectra of a rare-earth element containing materials have line shapes that are very different from those taken at lower photon energies and why they cannot be described in terms of partial density of states of the subshells usually considered for the lower photon energy spectra. We infer that the contribution of the rare-earth 5p must be taken into account and cannot be ignored.
Rights: © American Physical Society
Appears in Collections:Články / Articles (RAM)
OBD

Files in This Item:
File SizeFormat 
Minar_TNK+19_LaCoO3_HAXPES_10.1103.pdf992,18 kBAdobe PDFView/Open


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/36127

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

search
navigation
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD