Název: Big data and data mining methods in the tourism industry in the Czech republic
Autoři: Marková, Věra
Gangur, Mikuláš
Citace zdrojového dokumentu: KRESA, Zdeněk (ed.) Business Trends 2022, Plzeň 2022, p. 132-141.
Datum vydání: 2022
Nakladatel: Faculty of Economics University of West Bohemia
Typ dokumentu: konferenční příspěvek
conferenceObject
URI: http://hdl.handle.net/11025/54539
ISBN: 978-80-261-1126-9
Klíčová slova: big data;data mining;turismus;review
Klíčová slova v dalším jazyce: big data;data mining;tourism;review
Abstrakt v dalším jazyce: The increasing volume of data is also becoming a new challenge for the tourism industry and research. Research on the use of big data in tourism and its analysis using advanced analytical methods such as data mining, machine learning, or artificial intelligence is gaining importance worldwide. This paper aims to analyze the current research in the field of big data in tourism and tourism data processing, especially using data mining and machine learning methods, in the Czech Republic. Another aim is to compare the level of knowledge in this area in the Czech Republic and the world. The research is based on analyzing found articles dealing with this topic. These articles were analyzed in terms of the type and source of data, the analytical methods used, and the focus of the research. The results showed a slight increase in research on big data or data mining methods in tourism in the Czech Republic in recent years, but this topic is still neglected compared to the rest of the world. Researchers mostly use user-generated data, such as online hotel reviews, for sentiment analysis, fake review detection, or for classifying positive and negative reviews. A significant gap in the current research is that only a few researchers deal directly with applications in the Czech tourism environment.
Práva: © Authors of papers
Vyskytuje se v kolekcích:Konferenční příspěvky / Conference papers (KEM)
Business Trends 2022: Conference Proceedings
Business Trends 2022: Conference Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
ConferenceProceedings_BusinessTrends_2022-132-141.pdfPlný text243,54 kBAdobe PDFZobrazit/otevřít
ConferenceProceedings_BusinessTrends_2022-uvodni strany.pdfPlný text290,1 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/54539

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.