Název: Recognition of motor imagery electroencephalography using independent component analysis and machine classifiers
Autoři: Hung, Chih-I
Lee, Po Lei
Wu, Yu-Te
Chen, Hui Yun
Chen, Li-Fen
Yeh, Tzu-Chen
Hsieh, Jen-Chuen
Citace zdrojového dokumentu: WSCG '2004: Short Communications: the 12-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2004, 2.-6. February 2004 Plzeň, p. 101-108.
Datum vydání: 2004
Nakladatel: Václav Skala - UNION Agency
Typ dokumentu: konferenční příspěvek
conferenceObject
URI: http://wscg.zcu.cz/wscg2004/Papers_2004_Short/K97.pdf
http://hdl.handle.net/11025/6234
ISBN: 80-903100-5-2
Klíčová slova: elektroencefalografie;analýza nezávislých komponent;rozhraní mozek-počítač
Klíčová slova v dalším jazyce: electroencephalography;independent componet analysis;brain-computer interface
Abstrakt: Motor imagery electroencephalography (EEG), which embodies cortical potentials during mental simulation of left or right finger lifting tasks, can be used as neural input signals to activate brain computer interface (BCI). The effectiveness of such an EEG-based BCI system relies on two indispensable features: distinguishable patterns of brain signals and accurate classifiers. This work aims to extract a reliable neural feature, termed as beta rebound map, out of motor imagery EEG by means of independent component analysis, and employ four classifiers to investigate the efficacy of beta rebound map. Results demonstrated that, with the use of ICA, the recognition rates of four classifiers, linear discriminant analysis (LDA), back-propagation neural network (BP-NN), radial-basis function neural network (RBF-NN), and support vector machine (SVM) improved significantly from 54%, 54%, 57.3% and 55% to 69.8.3%, 75.5%, 76.5% and 77.3%, respectively. In addition, the areas under the ROC curve, which assess the quality of classification over a wide range of misclassification costs, also improved greatly from .65, .60, .62, and .64 to .78, .73, .77 and .75, respectively.
Práva: © Václav Skala - UNION Agency
Vyskytuje se v kolekcích:WSCG '2004: Short Communications

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
K97.pdfPlný text351,08 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/6234

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.