Název: Automatické rozpoznávání znakového jazyka z obrazových dat
Další názvy: Automatic Sign Language Recognition from Image Data
Autoři: Campr, Pavel
Vedoucí práce/školitel: Železný, Miloš
Datum vydání: 2013
Nakladatel: Západočeská univerzita v Plzni
Typ dokumentu: disertační práce
URI: http://hdl.handle.net/11025/10780
Klíčová slova: automatické rozpoznávání znakové řeči;strojové učení;počítačové vidění;umělá inteligence
Klíčová slova v dalším jazyce: automatic sign language recognition;machine learning;computer vision;artificial inteligence
Abstrakt: Tato práce se zabývá problematikou automatického rozpoznávání znakového jazyka z obrazových dat. Práce představuje pět hlavních přínosů v oblasti tvorby systému pro rozpoznávání, tvorby korpusů, extrakci příznaků z rukou a obličeje s využitím metod pro sledování pozice a pohybu rukou (tracking) a modelování znaků s využitím menších fonetických jednotek (sub-units). Metody využité v rozpoznávacím systému byly využity i k tvorbě vyhledávacího nástroje "search by example", který dokáže vyhledávat ve videozáznamech podle obrázku ruky. Navržený systém pro automatické rozpoznávání znakového jazyka je založen na statistickém přístupu s využitím skrytých Markovových modelů, obsahuje moduly pro analýzu video dat, modelování znaků a dekódování. Systém je schopen rozpoznávat jak izolované, tak spojité promluvy. Veškeré experimenty a vyhodnocení byly provedeny s vlastními korpusy UWB-06-SLR-A a UWB-07-SLR-P, první z nich obsahuje 25 znaků, druhý 378. Základní extrakce příznaků z video dat byla provedena na nízkoúrovňových popisech obrazu. Lepších výsledků bylo dosaženo s příznaky získaných z popisů vyšší úrovně porozumění obsahu v obraze, které využívají sledování pozice rukou a metodu pro segmentaci rukou v době překryvu s obličejem. Navíc, využitá metoda dokáže interpolovat obrazy s obličejem v době překryvu a umožňuje tak využít metody pro extrakci příznaků z obličeje, které by během překryvu nefungovaly, jako např. metoda active appearance models (AAM). Bylo porovnáno několik různých metod pro extrakci příznaků z rukou, jako např. local binary patterns (LBP), histogram of oriented gradients (HOG), vysokoúrovnové lingvistické příznaky a nové navržená metoda hand shape radial distance function (hRDF). Bylo také zkoumáno využití menších fonetických jednotek, než jsou celé znaky, tzv. sub-units. Pro první krok tvorby těchto jednotek byl navržen iterativní algoritmus, který tyto jednotky automaticky vytváří analýzou existujících dat. Bylo ukázáno, že tento koncept je vhodný pro modelování a rozpoznávání znaků. Kromě systému pro rozpoznávání je v práci navržen a představen systém "search by example", který funguje jako vyhledávací systém pro videa se záznamy znakového jazyka a může být využit například v online slovnících znakového jazyka, kde je v současné době složité či nemožné v takovýchto datech vyhledávat. Tento nástroj využívá metody, které byly použity v rozpoznávacím systému. Výstupem tohoto vyhledávacího nástroje je seřazený seznam videí, které obsahují stejný nebo podobný tvar ruky, které zadal uživatel, např. přes webkameru.
Abstrakt v dalším jazyce: This thesis addresses several issues of automatic sign language recognition, namely the creation of vision based sign language recognition framework, sign language corpora creation, feature extraction, making use of novel hand tracking with face occlusion handling, data-driven creation of sub-units and "search by example" tool for searching in sign language corpora using hand images as a search query. The proposed sign language recognition framework, based on statistical approach incorporating hidden Markov models (HMM), consists of video analysis, sign modeling and decoding modules. The framework is able to recognize both isolated signs and continuous utterances from video data. All experiments and evaluations were performed on two own corpora, UWB-06-SLR-A and UWB-07-SLR-P, the first containing 25 signs and second 378. As a baseline feature descriptors, low level image features are used. It is shown that better performance is gained by higher level features that employ hand tracking, which resolve occlusions of hands and face. As a side effect, the occlusion handling method interpolates face area in the frames during the occlusion and allows to use face feature descriptors that fail in such a case, for instance features extracted from active appearance models (AAM) tracker. Several state-of-the-art appearance-based feature descriptors were compared for tracked hands, such as local binary patterns (LBP), histogram of oriented gradients (HOG), high-level linguistic features or newly proposed hand shape radial distance function (denoted as hRDF) that enhances the feature description of hand-shape like concave regions. The concept of sub-units, that uses HMM models based on linguistic units smaller than whole sign and covers inner structures of the signs, was investigated in the proposed iterative method that is a first required step for data-driven construction of sub-units, and shows that such a concept is suitable for sign modeling and recognition tasks. Except of experiments in the sign language recognition, additional tool \textit{search by example} was created and evaluated. This tool is a search engine for sign language videos. Such a system can be incorporated into an online sign language dictionary where it is difficult to search in the sign language data. This proposed tool employs several methods which were examined in the sign language recognition task and allows to search in the video corpora based on an user-given query that consists of one or multiple images of hands. As a result, an ordered list of videos that contain the same or similar hand configurations is returned.
Práva: Plný text práce je přístupný bez omezení.
Vyskytuje se v kolekcích:Disertační práce / Dissertations (KKY)

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
diss2_final_print.pdfPlný text práce8,58 MBAdobe PDFZobrazit/otevřít
posudky-odp-campr.pdfPosudek oponenta práce2,97 MBAdobe PDFZobrazit/otevřít
protokol-odp-campr.pdfPrůběh obhajoby práce965,29 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/10780

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.