Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorHöferlin, Benjamin
dc.contributor.authorHeidemann, Gunther
dc.contributor.editorSkala, Václav
dc.date.accessioned2014-03-24T12:09:22Z
dc.date.available2014-03-24T12:09:22Z
dc.date.issued2010
dc.identifier.citationWSCG 2010: Full Papers Proceedings: 18th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision in co-operation with EUROGRAPHICS, p. 9-16.en
dc.identifier.isbn978-80-86943-88-6
dc.identifier.urihttp://wscg.zcu.cz/WSCG2010/Papers_2010/!_2010_FULL-proceedings.pdf
dc.identifier.urihttp://hdl.handle.net/11025/10857
dc.description.abstractToday, discriminative local features are widely used in different fields of computer vision. Due to their strengths, discriminative local features were recently applied to the problem of traffic sign recognition (TSR). First of all, we discuss how discriminative local features are applied to TSR and which problems arise in this specific domain. Since TSR has to cope with highly structured and symmetrical objects, which are often captured at low resolution, only a small number of features can be matched correctly. To alleviate these issues, we provide an approach for the selection of discriminative and robust features to increase the matching performance by speed, recall, and precision. Contrary to recent techniques that solely rely on density estimation in feature space to select highly discriminative features, we additionally address the question of features’ retrievability and positional stability under scale changes as well as their reliability to viewpoint variations. Finally, we combine the proposed methods to obtain a small set of robust features that have excellent matching properties.en
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.relation.ispartofseriesWSCG 2010: Full Papers Proceedingsen
dc.rights© Václav Skala - UNION Agencyen
dc.subjectdiskriminační místní znakycs
dc.subjectrozpoznávání dopravních značekcs
dc.titleSelection of an Optimal Set of Discriminative and Robust Local Features with Application to Traffic Sign Recognitionen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.subject.translateddiscriminative local featuresen
dc.subject.translatedtraffic sign recognitionen
dc.type.statusPeer-revieweden
dc.type.driverinfo:eu-repo/semantics/conferenceObjecten
dc.type.driverinfo:eu-repo/semantics/publishedVersionen
Vyskytuje se v kolekcích:WSCG 2010: Full Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Hoferlin.pdfPlný text1,61 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/10857

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.