Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorPorcu, Massimiliano B.
dc.contributor.authorScateni, Riccardo
dc.contributor.editorRossignac, Jarek
dc.contributor.editorSkala, Václav
dc.date.accessioned2014-04-11T07:25:37Z-
dc.date.available2014-04-11T07:25:37Z-
dc.date.issued2007
dc.identifier.citationWSCG '2007: Full Papers Proceedings: The 15th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2007 in co-operation with EUROGRAPHICS: University of West Bohemia Plzen Czech Republic, January 29 – February 1, 2007, p. 257-264.en
dc.identifier.isbn978-80-86943-98-5
dc.identifier.urihttp://wscg.zcu.cz/wscg2007/Papers_2007/full/!WSCG2007_Full_Proceedings_Final-1.zip
dc.identifier.urihttp://hdl.handle.net/11025/11018
dc.description.abstractUnderstanding when a cloud of points in three-dimensional space can be, semantically, interpreted as a surface, and then being able to describe the surface, is an interesting problem in itself and an important task to tackle in several application elds. Finding a possible solution to the problem implies to answer to many typical questions about surface acquisition and mesh reconstruction: how one can build a metric telling whether a point in space belongs to the surface? Given data from 3D scanning devices, how can we tell apart (and eventually discard) points representing noise from signal? Can the reached insight be used to align point clouds coming from di erent acquisitions? Inside this framework, the present paper investigates the features of a new dimensional clustering algorithm. Unless standard clustering methods, the peculiarity of this algorithm is, using the local fractal dimension, to select subsets of lower dimensionality inside the global of dimension N. When applied to the study of discrete surfaces embedded in three dimensional space, the algorithm results to be robust and able to discriminate the surface as a subset of fractal dimension two, differentiating it from the background, even in the presence of an intense noise. The preliminary tests we performed, on points clouds generated from known surfaces, show that the recognition error is lower than 3 percent and does not a ffect the visual quality of the final result.en
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.relation.ispartofseriesWSCG '2007: Full Papers Proceedingsen
dc.rights© Václav Skala - UNION Agencyen
dc.subjectreprezentace povrchucs
dc.subjectklastrovánícs
dc.subjectgeometrické algoritmycs
dc.titleDimensional Induced Clustering for Surface Recognitionen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.subject.translatedsurface representationsen
dc.subject.translatedclusteringen
dc.subject.translatedgeometric algorithmsen
dc.type.statusPeer-revieweden
dc.type.driverinfo:eu-repo/semantics/conferenceObjecten
dc.type.driverinfo:eu-repo/semantics/publishedVersionen
Vyskytuje se v kolekcích:WSCG '2007: Full Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Porcu.pdfPlný text720,02 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/11018

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.