Název: Catastrophic risk management in non-life insurance
Autoři: Skřivánková, Valéria
Tartaľová, Alena
Citace zdrojového dokumentu: E+M. Ekonomie a Management = Economics and Management. 2008, č. 2, s. 65-72.
Datum vydání: 2008
Nakladatel: Technická univerzita v Liberci
Typ dokumentu: článek
article
URI: http://www.ekonomie-management.cz/download/1331826671_986f/06_skrivankova.pdf
http://hdl.handle.net/11025/17229
ISSN: 1212-3609 (Print)
2336-5604 (Online)
Klíčová slova: extrémní pojistné nároky;omezená distribuce;extrémní registrace;statistická analýza extrémů
Klíčová slova v dalším jazyce: extremal insurance claims;limit distributions;extreme registration;statistical analysis of extremes
Abstrakt v dalším jazyce: The paper deals with some aspects of modelling catastrophic risk and with its application to non- -life insurance claims. First, we formulate the problem of generalization of classical Cramér-Lundberg collective risk model. Then using some well-known extreme value results we study two methods for extremal claims registration. Finally, we apply the theoretical results for real insurance data. As suitable mathematical models for large insurance claims are used heavy-tailed distributions (subexponential, stable and max-stable distributions).The main reason why we are interested in stable distributions is, that for the extreme value distributions the classical central limit theorem (CLT) condition (finite mean and variance) doesn‘t hold. Instead of CLT we use the Fisher-Tippett theorem which specifies the limit laws for maximum of independent identically distributed (iid) random variables as Generalised Extreme Value (GEV) distribution. For recording extreme insurance claims we use two approaches. The first one is based on modelling maximum of the sample and called method of block-maxima. This method is based just on the Fisher-Tippett theorem and in non-life insurance we can use it for non-proportional Largest Claim Reinsurance (LCR). The second approach is based on modelling excess values over the chosen threshold. This approach is called Peaks Over Threshold method and is based on the Picands theorem which specifies the limit law for the exceedances as Generalised Pareto Distri- bution (GPD). This method is used in non-proportional Excess-of-Loss Reinsurance (XL). In the end, we apply these methods for modelling real fire insurance claims. We find an optimal exceedance level for reinsurance and identify lognormal distribution for all data and Pareto distri- bution for the tail. The empirical data are compared with considered theoretical distribution using chi-squared and Kolmogorov-Smirnov goodness-of-fit tests. For detailed statistical analysis of data we use STATGRAPHICS and its procedure Distribution fitting.
Práva: © Technická univerzita v Liberci
CC BY-NC 4.0
Vyskytuje se v kolekcích:Číslo 2 (2008)
Číslo 2 (2008)

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
06_skrivankova.pdfPlný text236,08 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/17229

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.