Title: Applying trusted knowledge in evaluation phase of data mining
Authors: Nekvapil, Viktor
Citation: STEINBERGER, Josef ed.; ZÍMA, Martin ed.; FIALA, Dalibor ed.; DOSTAL, Martin ed.; NYKL, Michal ed. Data a znalosti 2017: sborník konference, Plzeň, Hotel Angelo 5. - 6. října 2017. 1. vyd. Plzeň: Západočeská univerzita v Plzni, 2017, s. 198-203. ISBN 978-80-261-0720-0.
Issue Date: 2017
Publisher: Západočeská univerzita v Plzni
Document type: konferenční příspěvek
conferenceObject
URI: https://www.zcu.cz/export/sites/zcu/pracoviste/vyd/online/DataAZnalosti2017.pdf
http://hdl.handle.net/11025/26363
ISBN: 978-80-261-0720-0
Keywords: důvěryhodné znalosti;hodnocení;data mining
Keywords in different language: trusted knowledge;evaluation;data mining
Abstract in different language: New concept of Trusted Knowledge (TK) is introduced. Trusted Knowledge are data from trusted organizations such as ministries, statistical of-fices and so on which can replace domain expert in the evaluation phase of the data mining task. The approach called “A/TK-formulas” enables to filter out re-sulting patterns which are consequences of Trusted Knowledge and thus ena-bles user to concentrate on interesting ones. Conversely, user can request to show only resulting patterns which are consequences of TK to see which of them are in line with TK. The third option enables to request patterns which are in contradiction to the TK. Further new features of Trusted Knowledge frame-work are introduced in this paper – Trusted Knowledge for mining histograms and Trusted Knowledge hints.
Rights: © Západočeská univerzita v Plzni
Appears in Collections:Data a znalosti 2017
Data a znalosti 2017

Files in This Item:
File Description SizeFormat 
Nekvapil.pdfPlný text654,92 kBAdobe PDFView/Open


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/26363

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.