Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorZhao, Wei
dc.contributor.authorRoos, Nico
dc.contributor.editorSkala, Václav
dc.date.accessioned2018-04-10T11:05:37Z-
dc.date.available2018-04-10T11:05:37Z-
dc.date.issued2016
dc.identifier.citationWSCG 2016: full papers proceedings: 24th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision in co-operation with EUROGRAPHICS Association, p. 61-69.en
dc.identifier.isbn978-80-86943-57-2
dc.identifier.issn2464–4617 (print)
dc.identifier.issn2464–4625 (CD-ROM)
dc.identifier.uriwscg.zcu.cz/WSCG2016/!!_CSRN-2601.pdf
dc.identifier.urihttp://hdl.handle.net/11025/29532
dc.description.abstractMotions are important features for robot vision as we live in a dynamic world. Detecting moving objects is crucial for mobile robots and computer vision systems. This paper investigates an architecture for the segmentation of moving objects from image sequences. Objects are represented as groups of SIFT feature points. Instead of tracking the feature points over a sequence of frames, the movements of feature points between two successive frames are used. The segmentation of motions of each pair of frames is based on the expectation-maximization algorithm. The segmentation algorithm is iteratively applied over all frames of the sequence and the results are combined using Bayesian update.en
dc.format9 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.relation.ispartofseriesWSCG 2016: full papers proceedingsen
dc.rights© Václav Skala - UNION Agencyen
dc.subjectsegmentace pohybucs
dc.subjectEM algoritmuscs
dc.subjectBayesovská aktualizacecs
dc.subjectSIFT funkcecs
dc.subjectshlukování trajektoriícs
dc.titleAn EM based approach for motion segmentation of video sequenceen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.subject.translatedmotion segmentationen
dc.subject.translatedEM algorithmen
dc.subject.translatedBayesian updateen
dc.subject.translatedSIFT featureen
dc.subject.translatedtrajectory clusteringen
dc.type.statusPeer-revieweden
Vyskytuje se v kolekcích:WSCG 2016: Full Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Zhao.pdfPlný text885,93 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/29532

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.