Název: Plant recognition by AI: Deep neural nets, transformers, and kNN in deep embeddings
Autoři: Picek, Lukáš
Šulc, Milan
Patel, Yash
Matas, Jiří
Citace zdrojového dokumentu: PICEK, L. ŠULC, M. PATEL, Y. MATAS, J. Plant recognition by AI: Deep neural nets, transformers, and kNN in deep embeddings. Frontiers in Plant Science, 2022, roč. 13, č. September, s. 1-16. ISSN: 1664-462X
Datum vydání: 2022
Nakladatel: Frontiers Media S.A.
Typ dokumentu: článek
article
URI: 2-s2.0-85139567145
http://hdl.handle.net/11025/51180
ISSN: 1664-462X
Klíčová slova v dalším jazyce: plant;species;classification;recognition;machine learning;computer vision;species recognition;fine-grained
Abstrakt v dalším jazyce: The article reviews and benchmarks machine learning methods for automatic image-based plant species recognition and proposes a novel retrieval-based method for recognition by nearest neighbor classification in a deep embedding space. The image retrieval method relies on a model trained via the Recall@k surrogate loss. State-of-the-art approaches to image classification, based on Convolutional Neural Networks (CNN) and Vision Transformers (ViT), are benchmarked and compared with the proposed image retrieval-based method. The impact of performance-enhancing techniques, e.g., class prior adaptation, image augmentations, learning rate scheduling, and loss functions, is studied. The evaluation is carried out on the PlantCLEF 2017, the ExpertLifeCLEF 2018, and the iNaturalist 2018 Datasets-the largest publicly available datasets for plant recognition. The evaluation of CNN and ViT classifiers shows a gradual improvement in classification accuracy. The current state-of-the-art Vision Transformer model, ViT-Large/16, achieves 91.15% and 83.54% accuracy on the PlantCLEF 2017 and ExpertLifeCLEF 2018 test sets, respectively; the best CNN model (ResNeSt-269e) error rate dropped by 22.91% and 28.34%. Apart from that, additional tricks increased the performance for the ViT-Base/32 by 3.72% on ExpertLifeCLEF 2018 and by 4.67% on PlantCLEF 2017. The retrieval approach achieved superior performance in all measured scenarios with accuracy margins of 0.28%, 4.13%, and 10.25% on ExpertLifeCLEF 2018, PlantCLEF 2017, and iNat2018-Plantae, respectively.
Práva: © authors
Vyskytuje se v kolekcích:Články / Articles (NTIS)
Články / Articles (KKY)
OBD

Soubory připojené k záznamu:
Soubor VelikostFormát 
Picek_Plant_Recognition_by_AI_092022.pdf3,4 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/51180

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD